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Abstract. In this paper we address the task of salient object detec-
tion without requiring an explicit object class recognition. To this end,
we propose a solution that exploits intermediate activations of a Fully
Convolutional Neural Network previously trained for the recognition of
1,000 object classes, in order to gather generic object information at dif-
ferent levels of resolution. This is done by using both convolution and
convolution-transpose layers, and combining their activations to gener-
ate a pixel-level salient object segmentation. Experiments are conducted
on a standard benchmark that involves seven heterogeneous datasets.
On average our solution outperforms the state of the art according to
multiple evaluation measures.

Keywords: Salient object detection · Fully convolutional neural
network · Foreground/background segmentation

1 Introduction

Accurate visual saliency models are fundamental for multiple disciplines such
as computer vision [5], neuroscience [12], and cognitive psychology [11]. In this
paper we focus on salient object detection, which consists in segmenting the
main foreground object from the background in a digital image. Salient object
detection methods are commonly used in applications such as object-of-interest
proposal, object recognition, adaptive image and video compression, content
aware image editing, image retrieval, and object-level image manipulation [6].

In the literature there is no universal agreement for the definition of fore-
ground and background. This will be evident later on in this paper, by comparing
the annotation criteria adopted through the different benchmark datasets. Dur-
ing the training of our Fully Convolutional Network, we simultaneously exploit
annotated data coming from different datasets. In this way we obtain a model
that represents a good compromise among the different datasets on the definition
of foreground/background segmentation.

Many different approaches and solutions have been proposed in the last years
for salient object detection. The method proposed in Discriminative Regional
Feature Integration (DRFI) [13] builds a multi-level representation of the input
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image, and creates a regression model mapping the regional feature vector of
each level to the corresponding saliency score. These scores are finally fused in
order to determine the complete saliency map. In Quantum Cut (QCUT) [3]
authors model salient object segmentation as an optimization problem. They
then exploit the link between quantum mechanics and graph-cuts to develop an
object segmentation method based on the ground state solution of a modified
Hamiltonian. The authors of Minimum Barrier Distance (MBD) [26] present
an approximation of the MBD transform, and combine it with an appearance-
based backgroundness cue. The resulting method performs significantly better
than other solutions having the same computational requirements. In Saliency
Tree (ST) [18] authors simplify the image into primitive regions, with associated
saliency based on multiple handcrafted measures. They generate a saliency tree
using region merging, and perform a systematic analysis of such tree to derive
the final saliency map. Robust Background Detection (RBD) [28] introduces
boundary connectivity: a background measure based on an intuitive geometrical
interpretation. This measure is then used along with multiple low level cues to
produce saliency maps through a principled optimization framework.

In a very recent work Borji et al. [6] present an exhaustive review of state
of the art methods for salient object detection. They compared more than forty
methods on a benchmark composed of seven different datasets. In this paper we
investigate the use of a Fully Convolutional Network (FCN) for salient object
detection taking inspiration from the work of Long et al. [19], and evaluate
it on the Borji et al. [6] benchmark. Differently from compared solutions, we
propose a data-driven model that leverages semantic cues as the basis for saliency
estimation. Other approaches using deep learning methods also exist [7,10,15],
although they don’t adhere to the data and methods in the reference benchmark
we adopt here. The main contributions of this paper can be summarized as
follows:

– we propose a semantically-aware FCN to address the problem of salient object
detection that is able to produce a binary pixel-level saliency map;

– we systematically investigate the contribution of different kinds of synthetic
data augmentation to train the FCN;

– we evaluate the effectiveness of our proposal on a standard benchmark for
salient object detection composed of seven different datasets [6]. The proposed
method on average outperforms the state of the art according to multiple
evaluation measures.

2 Proposed Method

We propose a Fully Convolutional Network to address the problem of salient
object detection, taking inspiration from a work originally developed for semantic
segmentation [19], that uses layers previously trained for the recognition of 1,000
object classes (Visual Geometry Group, or VGG [22]). This allows our network
to be semantically-aware, and therefore capable of exploiting high-order concepts
for separating foreground from background. Furthermore, the fully convolutional
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architecture is specifically designed to produce a per-pixel prediction, which
perfectly fits the task of generating an input-sized foreground/background mask.

The main difference with respect to the semantic segmentation proposed in
[19] is that in our proposal the salient object could belong to any object category.
Our network is in fact able to segment salient objects belonging to categories not
restricted to the 20 classes defined in the original semantic segmentation task
[19], or the 1,000 object classes used to train the VGG [22]. Finally, we adopt
a different training procedure, as we find advantage in applying several kinds of
data augmentation. The effects of such augmentation are analyzed and discussed
in the experimental results section.
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Fig. 1. Schematic view of the Fully Convolutional Network employed for salient object
detection. Intermediate activations of a VGG-based processing are resized and com-
bined in order to implement a multi-resolution analysis.

The network architecture is illustrated in Fig. 1, and adheres to the following
logic:

1. Build abstractions of gradually decreasing spatial resolution, using [22].
2. Extract intermediate activations, and map their depth to the final problem

size (2 classes for our task), using convolution layers.
3. Increase size of activations, using convolution-transpose layers.
4. Sum-up activations having now compatible size.
5. Produce as output a binary pixel-level saliency map.

Thanks to this strategy, the network can see both the whole picture and small
details at the same time, thus producing a globally-aware yet precise output.

2.1 Training

Layers inherited from VGG (which supposedly only need fine-tuning) and new
layers (trained from scratch), are all updated using the same learning-rate. The
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task of calibrating the gradients for the two strategies is implicitly left to the
Adam optimizer [14].

Many methods in the state of the art generate a continuous-valued prediction
[3,13,18,26,28] directly correlated to the saliency of pixels in the image. Most
of the available datasets, though, are published with a binary ground truth
[5,8,17,24,25]. For this reason we choose to approach the problem as a per-pixel
binary classification task: all ground truth images are converted to binary data,
setting to 1 all values greater than 0. The neural network is then trained with
a softmax cross entropy loss, with the global loss of each batch computed by
averaging all loss values from the single pixels.

All training examples are processed by an online data augmentation pro-
cedure in order to provide additional information to the learning process. The
following perturbations are considered:

– Random crop. We select a square subwindow of random side between 256
pixels and the original image limits. The crop is then resized to the fixed
training dimension, i.e. 256 × 256 pixels.

– Random horizontal flip.
– Random gamma between 0.3 and 1

0.3 .

Each perturbation category was individually tested on a small subset of the
benchmark data, in order to assess its impact on performance. An analysis on
such effects is reported in Sect. 3.2.

All models are trained with a learning rate of 5×10−5 and a batch size equal
to 15 for a total of 20 epochs.

3 Experiments

3.1 Datasets

Experiments were performed according to the benchmark proposed in [6] con-
cerning both the datasets and the evaluation protocol of the results. The bench-
mark is composed by seven different datasets that are presented in Table 1.

Table 1. Summary of tested datasets

Dataset Images Notes

PASCAL-S [16] 850 High background clutter

THUR15K [8] 6233 Only 6233/15000 annotated images

JuddDB [5] 900 Salient object typically very small

DUT-OMRON [25] 5166 -

MSRA10K [17] 10000 -

ECSSD [24] 1000 -

SED2 [2] 100 Two salient objects per picture
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(a) PASCAL-S (b) THUR15K (c) JuddDB (d) DUT-OMRON

(e) MSRA10K (f) ECSSD (g) SED2

Fig. 2. Image-annotation examples for each of the seven datasets used in the
benchmark [6].

Each dataset has different kinds of content and bias. Figure 2 shows an image-
annotation pair for each dataset. The benchmark defines no official training/test
split for the seven datasets, mainly because at the time of its original release few
of the tested methods involved an explicit training phase. Our approach requires
a significant amount of training data, so we adopted a Leave-One-Dataset-Out
(LODO) solution. This allows us to have a fair comparison with the state of the
art, as we test on the official datasets, and to avoid overfitting the model to the
data. However, since in each LODO split we train the FCN on images collected
and annotated with potentially different criteria than those used on the test set,
our results could be lower than those we would obtain on homogeneous data
(e.g. train/test split of the same dataset).

In order to ensure a totally fair evaluation procedure, we checked for any
near-duplicates among dataset pairs. Following [4] we computed Structure Sim-
ilarity measure (SSIM) [23] between all pairs of images, previously scaled to
64×64 pixels and converted to grayscale, and manually checked those having
similarity higher than 0.9. Out of more than 200 million pairs, only five dupli-
cates were found. Although this number of pairs is probably too small to have
any overfitting effect, these images were excluded from the training set when-
ever the corresponding ones were present in the test set. Table 2 lists the found
duplicate pairs.
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Table 2. Duplicates found among the seven analyzed datasets.

Dataset/image Dataset/Duplicate image

JuddDB/00854.jpg ≈ DUT-OMRON/sun acnpbyuckesqygsf.jpg

PASCAL-S/101.jpg ≈ ECSSD/0046.jpg

PASCAL-S/180.jpg ≈ ECSSD/0054.jpg

PASCAL-S/276.jpg ≈ ECSSD/0062.jpg

PASCAL-S/277.jpg ≈ ECSSD/0063.jpg

3.2 Data Augmentation

A preliminary investigation on the usefulness of the data augmentation as
described in Sect. 2.1 was performed on the DUT-OMRON Leave-One-Dataset-
Out (LODO) setting. Figure 3 shows the loss values on both the training and
test sets for three different setups: no data augmentation, three separate pertur-
bations, and the same three perturbations applied jointly. It can be seen that all
the investigated perturbation strategies reduce the ability of fitting the training
data, while at the same time enhancing the model predictive power on unseen
data. Their joint application results in the best improvement, thanks to the little
correlation among the single contributions. Thus, it is used for the training of
the FCN on all the datasets.

Fig. 3. Softmax cross entropy loss on the DUT-OMRON LODO setup under different
kinds of data augmentation.

3.3 Evaluation Measures

Evaluation is performed under the following criteria, aimed at capturing different
aspects of the quality of the predicted saliency region:
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F-Measure (Fβ) is the weighted harmonic mean between precision and
recall:

Fβ =
(1 + β2)Precision × Recall

β2Precision + Recall
(1)

According to [6] the weight β2 is set to 0.3 in order to benefit precision, considered
more important than recall for this specific task [1,17]. Since precision and recall
require a binary input, the benchmark adopts three different alternatives for
binarization of the methods that do not provide a binary prediction:

1. Varying fixed threshold: Precision and Recall are computed at all integer
thresholds between 0 and 255, and then averaged.

2. Adaptive threshold [1]: The threshold for binarization is set to twice the mean
value of the prediction map.

3. Saliency Cut [9]: The threshold is set to a low value, thus granting high recall
rate. GrabCut [21] is then iteratively applied to the binarized prediction,
typically producing a map with more precise edges.

Area Under Curve (AUC) is the area under the Receiver Operating Char-
acteristic curve. The ROC curve is computed by varying the binarization thresh-
old and plotting True Positive Rate (TPR) versus False Positive Rate (FPR)
values.

Mean Absolute Error (MAE) is computed directly on the prediction,
without any binarization step, as:

MAE =
1

W × H

W∑

x=1

H∑

y=1

|Prediction(x, y) − GroundTruth(x, y)| (2)

where W and H refer to image dimensions.

3.4 Results

We compare our solution with the top five methods from [6] on all the seven
datasets using all criteria described in the previous section. Results are shown
in Table 3.

The proposed method is superior by a large margin according to both Fβ

measures and MAE. The binary nature of our prediction, though, is penalized
by AUC due to the particular benchmark evaluation protocol [6]. On average
our method outperforms all compared solutions for five of the seven datasets. On
JuddDB and MSRA10K, and to a lesser extent on THUR15K, we have lower
performance compared to the state of the art. We may notice that images in
the JuddDB dataset contain many different subjects, out of which only one is
annotated as the main salient object, based on fixations gathered from different
observers. This particular set of conditions, radically different from those of the
other datasets used for training in our Leave-One-Dataset-Out setup, could be
the root cause of sub-optimal performance of our method, and it is left to future
work for further analysis. Figure 4 reports some example predictions from all
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Table 3. Evaluation results for all measures on all datasets

Measure Method P [16] T [8] J [5] D [25] S [2] M [17] E [24] Average

Fβ Varying Ours 0.763 0.666 0.406 0.706 0.847 0.850 0.864 0.729

DRFI [13] 0.679 0.670 0.475 0.665 0.831 0.881 0.787 0.713

QCUT [3] 0.695 0.651 0.509 0.683 0.810 0.874 0.779 0.714

MBD [26] N/A 0.622 0.472 0.624 0.799 0.849 0.739 0.684

ST [18] 0.660 0.631 0.455 0.631 0.818 0.868 0.752 0.688

RBD [28] 0.652 0.596 0.457 0.630 0.837 0.856 0.718 0.678

Measure Method P [16] T [8] J [5] D [25] S [2] M [17] E [24] Average

Fβ Adaptive Ours 0.688 0.620 0.382 0.678 0.857 0.833 0.783 0.692

DRFI [13] 0.615 0.607 0.419 0.605 0.839 0.838 0.733 0.665

QCUT [3] 0.654 0.625 0.454 0.647 0.801 0.843 0.738 0.680

MBD [26] N/A 0.594 0.422 0.592 0.803 0.830 0.703 0.657

ST [18] 0.601 0.580 0.394 0.577 0.805 0.825 0.690 0.639

RBD [28] 0.607 0.566 0.403 0.580 0.825 0.821 0.680 0.640

Measure Method P [16] T [8] J [5] D [25] S [2] M [17] E [24] Average

Fβ Sal Cut Ours 0.778 0.702 0.409 0.712 0.791 0.890 0.888 0.739

DRFI [13] 0.690 0.674 0.447 0.669 0.702 0.905 0.801 0.698

QCUT [3] 0.613 0.620 0.480 0.647 0.672 0.843 0.747 0.660

MBD [26] N/A 0.642 0.470 0.636 0.759 0.890 0.785 0.697

ST [18] 0.671 0.648 0.459 0.635 0.768 0.896 0.777 0.693

RBD [28] 0.667 0.618 0.461 0.647 0.750 0.884 0.757 0.683

Measure Method P [16] T [8] J [5] D [25] S [2] M [17] E [24] Average

AUC Ours 0.820 0.851 0.680 0.828 0.844 0.877 0.896 0.828

DRFI [13] 0.897 0.938 0.851 0.933 0.944 0.978 0.944 0.926

QCUT [3] 0.870 0.907 0.831 0.897 0.860 0.956 0.909 0.890

MBD [26] N/A 0.915 0.838 0.903 0.922 0.964 0.917 0.910

ST [18] 0.868 0.911 0.806 0.895 0.922 0.961 0.914 0.897

RBD [28] 0.867 0.887 0.826 0.894 0.899 0.955 0.894 0.889

Measure Method P [16] T [8] J [5] D [25] S [2] M [17] E [24] Average

MAE Ours 0.122 0.106 0.210 0.079 0.080 0.073 0.065 0.105

DRFI [13] 0.221 0.150 0.213 0.155 0.130 0.118 0.166 0.165

QCUT [3] 0.195 0.128 0.178 0.119 0.148 0.118 0.171 0.151

MBD [26] N/A 0.162 0.225 0.168 0.137 0.107 0.172 0.162

ST [18] 0.224 0.179 0.240 0.182 0.145 0.122 0.193 0.184

RBD [28] 0.199 0.150 0.212 0.144 0.130 0.108 0.173 0.159

datasets. False positives mostly correspond to actual objects that were not in
the ground truth due to annotation guidelines (e.g. the flower in Fig. 4b and the
fish in Fig. 4e), which could also be contributing to the lower performance on
datasets MSRA10K and THUR15K. False negatives are often related to holes in
our prediction (e.g. the window glasses in Fig. 4a), thus highlighting a current
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downside of the solution. Finally, we can also observe that the edges of our pre-
dictions are in general smoother and less precise than the reference annotations.

(a) PASCAL-S (b) THUR15K (c) JuddDB (d) DUT-OMRON

(e) MSRA10K (f) ECSSD (g) SED2 (h) Legend

Fig. 4. Example predictions on different datasets.

A direct comparison with other methods in terms of computational complex-
ity cannot be performed in a fair setup, as our solution is designed to run on
GPU, unlike the compared methods. On a NVIDIA TITAN X GPU our predic-
tion takes on average 0.09 s on each image of the MSRA10K dataset (typical
image resolution 400×300). For reference, the fastest among compared methods
(RBD [28]) takes 0.269 s using a desktop machine with Xeon E5645 2.4 GHz
CPU [6].

4 Conclusions

In this work we exploited the semantic awareness of a Fully Convolutional Net-
work to address the problem of salient object detection. We verified the effective-
ness of this approach by comparing it on a standard benchmark, composed of
seven datasets and more than forty methods (we reported here only the top five).
Despite the challenging Leave-One-Dataset-Out setup, which naturally excludes
the possibility of overfitting the model to the data, we outperformed the state
of the art on most datasets.

In the future we might switch from a binary foreground/background predic-
tion to a multiclass one, in order to also consider the different levels of saliency
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defined in some of the used datasets. Bringing this even further, we might directly
treat the problem as a regression task, and study the effects of different training
losses on the final performance.

Finally, we plan on extending evaluation and comparison to other datasets
[15,20] and methods [15,27], which were currently left-out for not being contem-
plated in the adopted benchmark, as well as for space constraints.
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