
Multiscale fully convolutional
network for image saliency

Simone Bianco
Marco Buzzelli
Raimondo Schettini

Simone Bianco, Marco Buzzelli, Raimondo Schettini, “Multiscale fully convolutional
network for image saliency,” J. Electron. Imaging 27(5), 051221 (2018),
doi: 10.1117/1.JEI.27.5.051221.

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 5/14/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Multiscale fully convolutional network for image saliency

Simone Bianco, Marco Buzzelli,* and Raimondo Schettini
Università degli Studi di Milano-Bicocca, Dipartimento di Informatica, Sistemistica e Comunicazione, Milano, Italy

Abstract. We focus on saliency estimation in digital images. We describe why it is important to adopt a data-
driven model for such an illposed problem, allowing for a universal concept of “saliency” to naturally emerge from
data that are typically annotated with drastically heterogeneous criteria. Our learning-based method also
involves an explicit analysis of the input at multiple scales, in order to take into account images of different
resolutions, depicting subjects of different sizes. Furthermore, despite training our model on binary ground truths
only, we are able to output a continuous-valued confidence map, which represents the probability of each image
pixel being salient. Every contribution of our method for saliency estimation is singularly tested according to a
standard evaluation benchmark, and our final proposal proves to be very effective in a comparison with the state-
of-the-art. © 2018 SPIE and IS&T [DOI: 10.1117/1.JEI.27.5.051221]
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1 Introduction
Estimation of image saliency can be defined as the task of
assigning different levels of visual relevance to different
regions in a digital image. Automating such process
would be a helpful resource for object recognition, adaptive
image and video compression, content-aware image editing,
image retrieval, and object-level image manipulation.1

Despite the clear advantage that would be gained from
solving this task, there is no universally accepted definition
on what makes an element “salient,” thus rendering saliency
estimation particularly challenging. This can be better seen
by observing Fig. 1; while the main object of interest in
the first image can be generally recognized as the butterfly
itself, the other two examples present less obvious answers.
Figure 1(b) shows a crowded dining scene with no clear
main subject. The annotators of the corresponding dataset3

addressed this problem by assigning a decreasing level of
saliency to each segmented element in the images. Note
that this saliency rank was computed by collecting gaze data
from multiple observers. In a similar fashion, Fig. 1(c)
provides another nontrivial example, annotated in the corre-
sponding dataset4 with only the most looked-at region,
according to human observers.

Both the extreme subjectivity intrinsic to the annotation
task and the criteria heterogeneity adopted by different data-
set curators contribute to making even more difficult a prob-
lem that is illposed in the first place. Methods for saliency
estimation that are based on handcrafted low-level features
have always struggled in reaching good performance.1 The
observed characteristics suggest, in fact, that a data-driven
model with at least some level of semantic awareness
would be essential to properly address the proposed task.
This kind of solution would also allow for a universal con-
cept of image saliency to naturally emerge from a large set of
heterogeneously annotated data. Bianco et al.5 successfully

embedded these elements and presented a learning-based
approach to salient object detection that outperforms all com-
peting methods according to multiple evaluation measures
from a standard benchmark. In this work, we complement
such method by performing a multiscale analysis of the
input image and by producing a continuous-valued output
saliency map. The combination of these elements provides
an extrajump in saliency estimation accuracy, as proven
with experiments on several standard datasets.

Section 2 describes a standard benchmark for salient
object detection, as well as an overview of the top perform-
ing methods on the benchmark itself. Section 3 shows
the proposed method for saliency estimation, defining
both the basic idea and the introduced elements. Section 4
presents three sets of experiments, aimed, respectively, at
assessing the contribution of producing a continuous-valued
output, finding the best configuration for multiscale analysis,
and comparing the final solution against the adopted
benchmark.

2 Related Works and Evaluation Benchmarks
The literature on the subject of saliency estimation presents a
vast landscape of different approaches to the problem. The
great majority of such methods involves the definition of
handcrafted features and rules6–8 or the adoption of optimi-
zation strategies.9,10 Machine learning approaches, instead,
treat the problem from a data-driven perspective: in
Ref. 5, for example, we proposed using a fully convolutional
neural network architecture, which makes it possible to pro-
duce a dense (i.e., per-pixel) estimation of the saliency fea-
ture. By pretraining such model on tasks such as semantic
segmentation,11 it is also possible to introduce in the
model middle-level features that prove to be useful for
semantically sensitive tasks in general, such as saliency esti-
mation itself. Recurrent fully convolutional networks
(RFCN)12 adopt a different strategy built on top of the con-
cept of FCNs, integrating it with backward selfcorrecting
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connections as well as saliency prior knowledge.
Multicontext deep learning (MC),13 one of the first solutions
to address saliency estimation with the use of convolutional
neural networks, defines a unified framework to represent
both global and local context in a data-driven fashion.
The authors of deeply supervised saliency (DSS)14 introduce
short connections to the skip-layer structures described by
the holistically nested edge detector architecture,15 providing
an alternative way to generate rich multiscale feature maps at
different layers.

Finding a common evaluation ground for this task is
revealed to be particularly challenging, especially among
methods that use convolutional neural networks: different
authors often test their solutions in different experimental
setups, producing an extreme sparsity among datasets and
adopted evaluation measures. At the same time, it is impor-
tant to test under comparable environments, especially in a
situation where the observed high annotation heterogeneity
might lead to potentially different interpretations of the con-
cepts of saliency. There exist very few works aimed at defin-
ing a standardized benchmark for saliency estimation, the
most successful being described by Borji et al.1 This bench-
mark compares more than 40 methods on seven datasets,
using several evaluation measures aimed at assessing differ-
ent aspects of the analyzed algorithms. The authors also host
a public web page,16 where researchers can submit their own
solutions for evaluation and inclusion in the official leader-
boards. We choose this particular benchmark for its large
availability of datasets, measures, and compared methods,
and we intend to re-establish its status of global standard
benchmark. We also propose the introduction of a leave-
one-dataset-out (LODO) setup for training, later described
in Sec. 4, which allows for a fair comparison with existing
methods, and at the same time provides an effective learning
environment for upcoming deep learning methods.

In the following, we describe the five best-performing
methods from the adopted benchmark, which are used in
Sec. 4.3 as a direct comparison with our proposed solution.
The method presented in discriminative regional feature inte-
gration (DRFI)6 builds a multilevel representation of the
input image and creates a regression model mapping the
regional feature vector of each level to the corresponding
saliency score. These scores are finally fused in order to
determine the complete saliency map. In quantum cut

(QCUT),9 authors model salient object segmentation as an
optimization problem. They, then exploit the link between
quantum mechanics and graph-cuts to develop an object seg-
mentation method based on the ground state solution of a
modified Hamiltonian. The authors of minimum barrier dis-
tance (MBD)7 presented an approximation of the MBD
transform and combined it with an appearance-based back-
groundness cue. The resulting method performs significantly
better than other solutions having the same computational
requirements. In saliency tree (ST),8 authors simplify the
image into primitive regions, with associated saliency
based on multiple handcrafted measures. They generated a
saliency tree using region merging and performed a system-
atic analysis of such tree to derive the final saliency map.
Robust background detection (RBD)10 introduces boundary
connectivity: a background measure based on an intuitive
geometrical interpretation. This measure is then used
along with multiple low-level cues to produce saliency
maps through a principled optimization framework.

3 Proposed Method for Saliency Estimation
We propose a fully convolutional neural network (FCN11)
that exploits layers previously trained on recognizing
1000 object classes17 as the starting point for a deep analysis
of the original input image, in order to produce a per-pixel
estimation of its saliency. The resulting architecture, after
being properly trained, will be able to generate an estimation
of object saliency that transcends the 1000 classes defined
for the pretraining. These classes are, in fact, used to
build a semantically aware internal representation, but do
not constrain the type of objects that can be identified as
being “salient.” A simple proof of this is the “person” cat-
egory, which is absent from the original set of classes but
well prominent in the final saliency estimation results, as
shown in Sec. 4. The overall structure of the proposed archi-
tecture is shown in Fig. 2, and details are provided in Table 1:
the output of layer conv5-3 from a VGG-19 network (visual
geometry group18) is mapped to the final problem size (i.e.,
two channels for “salient” and “nonsalient”) by using a series
of pooling, convolution, ReLU, and dropout blocks. The
result is then combined with the outputs of pool4 and
pool3 by direct sum. Since these activations all have a differ-
ent spatial resolution, two convolutional-transpose layers
(also known as fractionally strided convolutions) are used

Fig. 1 Difference in saliency annotation strategy for three datasets: (a) THUR15K,2 (b) PASCAL-S,3 and
(c) JuddDB.4
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to bring them to a compatible size, and a third one is used to
map the result to the original input size. The whole network
is trained end-to-end, eventually updating also the prelearned
weights that were used to initialize the VGG-19 module.
This starting solution, first presented in Ref. 5 and inspired
by Ref. 11, is here extended and complemented with two
elements: continuous-valued prediction and multiscale
analysis, which are experimentally proven to increase the
accuracy of the saliency estimation.

3.1 Continuous-Valued Prediction
Most available datasets for saliency estimation and fore-
ground detection are published with a binary ground

truth.4,2,19–21 It is therefore natural to approach the problem
as a per-pixel binary classification task, so we train our FCN
with a per-pixel softmax cross-entropy loss (the global loss
of each minibatch is computed by averaging all loss values
from the single pixels involved). For datasets providing dis-
crete annotations,3,22 we apply a preprocessing threshold,
setting to 1 all values greater than 0. At inference time, it
is then possible to stop the network processing right after
the softmax layer, in order to effectively produce two com-
plementary continuous maps, which respectively represent
the probability of each pixel being, or not being, salient.
If necessary, the saliency channel can then be binarized
by applying a 0.5 threshold (equivalent to taking the argmax

Fig. 2 Activations of the fully convolutional network employed for saliency estimation, with an input
example of resolution 256 × 256 pixels. Details of the VGG-19 network18 are omitted for ease of
visualization.

Table 1 Details of the adopted fully convolutional architecture, with an input example of resolution 256 × 256 pixels. Layers marked with square
brackets come from the original VGG-19 network,18 whose details are omitted for ease of visualization.

Operation Input layers Output layer

Filter size

Stride Output sizeKernel Ch. in Ch. out

MaxPool [conv5-3] pool5 2 × 2 — — 2 8 × 8 × 512

Conv pool5 conv6 7 × 7 512 4096 1 8 × 8 × 4096

ReLU conv6 relu6 — — — — 8 × 8 × 4096

DropOut relu6 drop6 — — — — 8 × 8 × 4096

Conv drop6 conv7 1 × 1 4096 4096 1 8 × 8 × 4096

ReLU conv7 relu7 — — — — 8 × 8 × 4096

DropOut relu7 drop7 — — — — 8 × 8 × 4096

Conv drop7 conv8 1 × 1 4096 2 1 8 × 8 × 2

Conv-T conv8 convT1 4 × 4 2 512 1/2 16 × 16 × 512

Sum [pool4], convT1 sum1 — — — — 16 × 16 × 512

Conv-T sum1 convT2 4 × 4 512 256 1/2 32 × 32 × 256

Sum [pool3], convT2 sum2 — — — — 32 × 32 × 256

Conv-T sum2 convT3 16 × 16 256 2 1/8 256 × 256 × 2
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between the two complementary channels, as was previously
done5), or using any of the thresholding techniques described
in Sec. 4 for evaluation.

3.2 Multiscale Analysis
As both the input image and the portrayed elements could be
of any size, it is fundamental to create a model for saliency
estimation that is able to analyze the image at different
scales. This kind of multiscale awareness should affect the
training procedure, introducing into the learned model pieces
of information that come from observing the annotated data
at various scales, as well as the inference procedure, collect-
ing saliency cues at different levels and appropriately com-
bining them into one final output.

At training time, we can obtain this effect as shown in
Fig. 3(a), by cropping subregions of random size from the
input images and annotations, and eventually bringing them
to a common resolution (in our case, 256 × 256 pixels) in
order to exploit fast minibatch parallelization. This last resiz-
ing step will indeed destroy all information about the rela-
tionship between the crop and the rest of the image but will
work as a form of data augmentation to take into account the
diversity of subject size that can be encountered at test time.
The effective advantage of this approach was established in
Ref. 5, where it was proven to be the most-effective type of
data augmentation for our task, compared to random flip and
random gamma correction.

At inference time, the fully convolutional nature of our
model makes it possible to process an input of any size
and consequently produces an output of the same dimen-
sions. This, however, does not guarantee a multiscale analy-
sis of the whole image. The neural model will, in fact, only
analyze the input image on subregions of limited size (the
receptive field is 32 × 32 pixels) and efficiently apply this
processing in a sliding-window fashion over the whole
image. In order to explicitly perform multiscale analysis,
we need to create copies of the input image at different res-
olutions (a so-called image pyramid23), apply the network as
a sliding-window over each pyramid level, rescale all the

predictions to the size of the original input, and merge the
results. This procedure is shown in Fig. 3(b). Different scales
and different merging strategies can be adopted as investi-
gated in Sec. 4.

4 Experiments
The following experiments are designed to quantify the prac-
tical contribution of each individual element of the proposed
method for saliency estimation, in particular: continuous-val-
ued prediction and multiscale analysis at inference time. Our
combined solution is then evaluated against a standard set of
methods for saliency estimation. All conducted tests follow
the benchmark proposed in Ref. 1 in terms of datasets and
evaluation measures.

The seven tested datasets, presented in Table 2, offer dif-
ferent types of images and are annotated with sometimes
drastically different criteria, as noted in Sec. 1. For the pur-
pose of these experiments, we adopt an LODO setup, as the
original benchmark does not provide an official training-test
split for each dataset. This solution allows for a fair compari-
son with methods that do not involve an explicit training
phase on a set of annotated examples. At the same time,
it guarantees overfitting-free results, as our model is never
tested on the same annotation criteria that are used during
the training phase. Cross-dataset near-duplicate removal is
also conducted according to the methodology described in
Refs. 5 and 24, to avoid the same images being present at
both training and test time in our LODO setup: based on
a search on more than 200 million image pairs using struc-
tural similarity (SSIM25), five images were found to be
shared among different datasets. Although too few to mean-
ingfully influence the final performance evaluation, we none-
theless exclude them from the set of training examples
whenever they are present in the test set.

Different metrics are used to analyze different aspects of
the estimated image saliency:

F-measure (Fβ) is the weighted harmonic mean between
precision and recall

(a)

(b)

Fig. 3 Schematic view of multiscale analysis at (a) training and (b) inference time.
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EQ-TARGET;temp:intralink-;e001;63;502Fβ ¼
ð1þ β2Þprecision × recall

β2precisionþ recall
: (1)

In order to give more weight to precision, which is con-
sidered to be more important than recall for our task,1,19,26

parameter β2 is set to 0.3. The continuous-valued saliency
estimation can be binarized with different techniques before
effectively computing precision and recall. The adopted
benchmark presents three alternatives way to perform such
binarization:

1. Varying fixed threshold: Precision and recall are com-
puted at all integer thresholds between 0 and 255, and
then averaged.

2. Adaptive threshold:26 The threshold for binarization is
set to twice the mean value of the predicted
saliency map.

3. Saliency cut:27 The threshold is set to a low value, thus
granting high recall rate. Segmentation algorithm
GrabCut28 is then iteratively applied to the binarized
prediction, typically producing a saliency estimation
with more precise edges.

Area under curve (AUC) is the area under the receiver
operating characteristic curve (ROC). The ROC curve is
in turn computed by varying the binarization threshold
and plotting true-positive rate (TPR) versus false-positive
rate (FPR) values

EQ-TARGET;temp:intralink-;e002;63;189TPR ¼ TP

TPþ FN
; (2)

EQ-TARGET;temp:intralink-;e003;63;152FPR ¼ FP

FPþ TN
: (3)

Mean absolute error (MAE) is computed directly on the
prediction, without any binarization step, as

EQ-TARGET;temp:intralink-;e004;326;752MAE ¼ 1

W ×H

XW

x¼1

XH

y¼1

jpredictionðx; yÞ

− ground truthðx; yÞj; (4)

whereW andH refer to image width and height, respectively.

4.1 Continuous Prediction Versus Binary Prediction
This first set of the experiments aims at assessing the effect
of a continuous-valued estimation of image saliency, as
opposed to producing a directly binarized output. Table 3
presents this comparison for each evaluation measure and
each dataset proposed in the adopted benchmark.1 A
cross-dataset average is also provided in the last column, in
order to get a global view of the impact of such contribution.

The introduction of continuous-valued estimation is
mostly benefiting AUC. This curve is drawn by plotting the
FPR–TPR value pairs obtained at each possible binarization
threshold and collapses to a single point in the degenerate
case of an already-binary image. The standard evaluation
procedure provided with Ref. 1 generates an additional triv-
ial solution, corresponding to an all-ones saliency estimation
(FPR:1 and TPR:1). For an already-binary image, this results
in a straight line between two points, and the trapezoid area
underlying such line is missing two large chunks when
compared to a continuous-valued evaluation, as shown in
Fig. 4, resulting in suboptimal performance.

Conversely, mean absolute error (MAE) is impacted neg-
atively by the transition to a continuous-valued prediction.
This measure is essentially a direct comparison between
prediction and (binary) ground truth, so there is always
going to be some residual difference on “true positive”
areas, as our continuous-valued prediction is rarely giving
100% confidence on any pixel. Such differences, however
small, accumulate over the whole image and result in
worse performance according to this particular evaluation
measure. It should be noted, though, that even this higher
MAE value is still lower (and thus better) than those of
any competing method presented in Table 5 from Sec. 4.3.

Finally, the effect on Fβ is inconsistent, but on average
slightly better than what can be obtained with a binary out-
put. It can be concluded, therefore, that producing a continu-
ous-valued prediction provides a more formally correct
setting for the adopted evaluation procedure, while at the
same time yielding overall better results across different
metrics.

4.2 Multiscale Prediction Versus Single Scale
Prediction

With the following experiments, we intend verifying the
impact of multiscale analysis on the final performance of
our method for saliency estimation. In particular, we want
to assess the prediction quality that results from rescaling
the input image to different specific resolutions, and from
combining the predictions from these different inputs into
one final saliency map using either per-pixel maximum or
per-pixel average.

The first rows in Table 4 show how rescaling the image to
one fixed size, as opposed to feeding the original image to
the neural network, already brings consistently better perfor-
mance among all evaluation measures (note that we only

Table 2 Summary of tested datasets.

Dataset Images
Average
size (px) Notes

MSRA10K19 10,000 400 × 300 —

THUR15K2 6233 450 × 300 Only 6233/15,000
annotated images

DUT-OMRON21 5166 400 × 300 —

ECSSD20 1000 400 × 300 —

JuddDB4 900 1024 × 768 Salient object typically
very small

PASCAL-S3 850 500 × 350 High background
clutter

SED222 100 300 × 250 Two salient objects
per picture
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report averages across all seven datasets, for reasons of read-
ability). By picking the three most-effective input sizes, i.e.,
256 × 256, 384 × 384, and 512 × 512 pixels, we can then try
different combinations. The trained model potentially
assigns a high saliency score to different regions at different
scales, so resizing the predictions to a common resolution,
and computing a per-pixel maximum, is going to preserve
such high-confidence outputs from all levels of analysis.
This merging technique, however, does not produce the
expected results, possibly suggesting a different level of rel-
evance for each scale, and possibly requiring a dedicated rea-
soning for areas where different scales generate highly
disagreeing estimations of saliency. Consistently with this
last hypothesis, averaging the predictions leads to improved

performance under all criteria. Also note that linear combi-
nation of independent outputs was shown to be an effective
way of model stacking in the past.29 Overall, the best com-
bination consists of averaging the prediction results from
256-pixel-side images and 384-pixel-side images. This con-
figuration is used in a comparison with other methods for
saliency estimation in Sec. 4.3.
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False positive rate
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Fig. 4 ROC curves derived from continuous-valued and binary pre-
diction on the DUT-OMRON dataset. The graph visually shows the
impact of the two solutions on computing the AUC measure.

Table 4 Evaluation results for different input resolutions and combi-
nations (reported values are averages across all datasets). For all
measures, except MAE, a higher value is better. The configuration
selected for subsequent experiments is highlighted in boldface.

Input size
(px)

Merging
strategy

F β
varying

F β
adaptive

F β sal
cut AUC MAE

Original — 0.743 0.685 0.747 0.940 0.141

256 — 0.759 0.686 0.771 0.948 0.131

384 — 0.773 0.698 0.772 0.954 0.124

512 — 0.752 0.687 0.754 0.946 0.141

640 — 0.721 0.671 0.731 0.931 0.168

768 — 0.688 0.649 0.710 0.911 0.195

256, 384 Max 0.774 0.677 0.769 0.955 0.136

384, 512 Max 0.767 0.679 0.758 0.953 0.141

256, 512 Max 0.769 0.666 0.759 0.954 0.149

256, 384 Average 0.781 0.697 0.776 0.957 0.128

384, 512 Average 0.773 0.697 0.769 0.955 0.133

256, 512 Average 0.781 0.697 0.774 0.958 0.137

Table 3 Comparison of performance for binary estimation and continuous-valued estimation, on all considered datasets (P, T, J, D, S, M, E).
Cross-dataset average is also reported. For all measures, except MAE, a higher value is better.

Measure Method P3 T2 J4 D21 S22 M19 E20 Average

F β Varying

Binary5 0.763 0.666 0.406 0.706 0.847 0.850 0.864 0.729

Continuous 0.768 0.722 0.408 0.720 0.850 0.859 0.875 0.743

F β Adaptive

Binary5 0.688 0.620 0.382 0.678 0.857 0.833 0.783 0.692

Continuous 0.685 0.617 0.380 0.652 0.853 0.834 0.776 0.685

F β Sal Cut

Binary5 0.778 0.702 0.409 0.712 0.791 0.890 0.888 0.739

Continuous 0.783 0.707 0.404 0.722 0.810 0.909 0.893 0.747

AUC

Binary5 0.820 0.851 0.680 0.828 0.844 0.877 0.896 0.828

Continuous 0.949 0.956 0.807 0.950 0.970 0.971 0.979 0.940

MAE
Binary5 0.122 0.106 0.210 0.079 0.080 0.073 0.065 0.105

Continuous 0.153 0.132 0.272 0.117 0.094 0.110 0.112 0.141
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Figure 5 shows the impact of our multiscale analysis on
all seven datasets used for evaluation, reporting the average
of the three Fβ variants as a reference measure. We can see
how dataset JuddDB4 is the most impacted by this strategy,
mainly due to its images being much larger than those of
other datasets: the depicted subjects at native resolution,
in fact, have a very different size with respect to the training
examples. PASCAL-S3 and DUT-OMRON21 are also posi-
tively affected by multiscale analysis to a meaningful, yet
lower, extent.

Figure 6 presents three visual examples of the advantage
in applying multiscale analysis. On these images, in fact, a
single-scale saliency estimation would generate “holes” in

the prediction due to a limited receptive field, whereas
our strategy allows the model to consider the whole
image. It can be observed, though, that the overall better esti-
mation comes at the price of coarser predictions. This sug-
gests a direction for future developments, where the fine-
grained results from analysis at high resolutions might be
exploited to provide more accurate details.

4.3 Comparison with the State-of-the-Art
We compare our final proposal, characterized by continuous-
valued prediction and multiscale analysis at 256 × 256 and
384 × 384 pixels combined with per-pixel average, with the

Fig. 5 Average of the three F β variants on different datasets, for unscaled input andmultiscale approach.
The impact of multiscale analysis is most prominent on JuddDB dataset.

Fig. 6 Effect of multiscale analysis on example images: (a) input image, (b) ground truth annotation,
(c) single-scale saliency estimation, and (d) multiscale saliency estimation. The content of columns
(c) and (d) is here binarized to facilitate the comparison.
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Table 5 Evaluation results for different measures on all datasets.

Measure Method P3 T2 J4 D21 S22 M19 E20 Average

F β varying Ours 0.811 0.726 0.536 0.744 0.877 0.880 0.890 0.781

DRFI6 0.679 0.670 0.475 0.665 0.831 0.881 0.787 0.713

QCUT9 0.695 0.651 0.509 0.683 0.810 0.874 0.779 0.714

MBD7 N/A 0.622 0.472 0.624 0.799 0.849 0.739 0.684

ST8 0.660 0.631 0.455 0.631 0.818 0.868 0.752 0.688

RBD10 0.652 0.596 0.457 0.630 0.837 0.856 0.718 0.678

F β adaptive Ours 0.697 0.620 0.424 0.665 0.847 0.845 0.778 0.697

DRFI6 0.615 0.607 0.419 0.605 0.839 0.838 0.733 0.665

QCUT9 0.654 0.625 0.454 0.647 0.801 0.843 0.738 0.680

MBD7 N/A 0.594 0.422 0.592 0.803 0.830 0.703 0.657

ST8 0.601 0.580 0.394 0.577 0.805 0.825 0.690 0.639

RBD10 0.607 0.566 0.403 0.580 0.825 0.821 0.680 0.640

F β sal cut Ours 0.812 0.713 0.530 0.751 0.813 0.918 0.894 0.776

DRFI6 0.690 0.674 0.447 0.669 0.702 0.905 0.801 0.698

QCUT9 0.613 0.620 0.480 0.647 0.672 0.843 0.747 0.660

MBD7 N/A 0.642 0.470 0.636 0.759 0.890 0.785 0.697

ST8 0.671 0.648 0.459 0.635 0.768 0.896 0.777 0.693

RBD10 0.667 0.618 0.461 0.647 0.750 0.884 0.757 0.683

AUC Ours 0.967 0.955 0.880 0.958 0.977 0.979 0.983 0.957

DRFI6 0.897 0.938 0.851 0.933 0.944 0.978 0.944 0.926

QCUT9 0.870 0.907 0.831 0.897 0.860 0.956 0.909 0.890

MBD7 N/A 0.915 0.838 0.903 0.922 0.964 0.917 0.910

ST8 0.868 0.911 0.806 0.895 0.922 0.961 0.914 0.897

RBD10 0.867 0.887 0.826 0.894 0.899 0.955 0.894 0.889

MAE Ours 0.135 0.133 0.205 0.117 0.092 0.103 0.113 0.128

DRFI6 0.221 0.150 0.213 0.155 0.130 0.118 0.166 0.165

QCUT9 0.195 0.128 0.178 0.119 0.148 0.118 0.171 0.151

MBD7 N/A 0.162 0.225 0.168 0.137 0.107 0.172 0.162

ST8 0.224 0.179 0.240 0.182 0.145 0.122 0.193 0.184

RBD10 0.199 0.150 0.212 0.144 0.130 0.108 0.173 0.159

Note: The best result for each dataset-measure combination is highlighted in boldface.
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five best-performing methods from the adopted benchmark.1

Table 5 reports this comparison for all five evaluation mea-
sures on the seven datasets, trained in an LODO configura-
tion in order to provide a more fair comparison with methods
that do not require an explicit training phase. According to
cross-dataset average results, our proposed continuous-val-
ued multiscale saliency estimation performs better than all
compared methods under every evaluation measure. By con-
sidering the detailed per-dataset performance, we observe
how it is only occasionally surpassed by QCUT9 on specific
datasets and metrics combinations, possibly due to the opti-
mization nature of such algorithm. Finally, it can be noted
how, for all measures, the performance of our solution is con-
sistently lower on JuddDB4 when compared to other data-
sets. This phenomenon affects all analyzed methods, and
it is probably due to the peculiar annotation criteria adopted
by the dataset curators, so different from those of other col-
lections. As previously noted, in fact, JuddDB typically
presents images with multiple subjects, among which only
one is labeled as being salient, with information gathered
from eye gazes of multiple human observers. Despite this
challenging setup, we are still able to create a model that
is general enough to outperform all other competing meth-
ods, due to a data-driven approach that combines multiscale
analysis with a continuous-valued prediction.

Although direct comparison is only possible with meth-
ods adhering to the adopted benchmark, we also present
results from other data-driven methods under similar (though
not identical) evaluation settings. Reference 13 (MC) reports
0.721 Fβ and 0.147 MAE on the PASCAL-S dataset, both
inferior than our 0.773 average Fβ and 0.135 MAE.
Reference 12 (RFCN) scores 0.989 Fβ on ECSSD and
0.827 Fβ on PASCAL-S, compared to our 0.854 average
Fβ on ECSSD. Although the numbers are not directly com-
parable, as these methods are trained on different datasets
and the reported Fβ is the best one obtained with different
binarization thresholds, it is interesting to observe how we
can obtain similar results with a simpler model, as we do
not require any recurrent connection in the image processing.
Finally, authors of Ref. 14 (DSS) seem to outperform our
solution on both ECSSD and PASCAL-S datasets. Their
method produces much sharper saliency estimations, thus
further supporting our hypothesis for a possible direction
of future improvement.

5 Conclusions
In this paper, we have addressed the problem of image
saliency estimation. The task is inherently challenging, as
no global agreement exists on what makes an object, in a
digital picture, salient. A proof of this is seen in the high
heterogeneity among criteria used to annotate public data-
sets. These reasons led us to propose a data-driven model,
with the intent of creating a general concept of “saliency”
by observing such large collections of diversely annotated
data. The method we presented analyzes the input image
at different resolutions to produce a continuous-valued prob-
ability map, describing the likelihood of each pixel being
salient. This strategy is experimentally shown to be a
valid approach to the problem: each of our contributions
is rigorously tested on a standard benchmark for salient
object detection, consisting of seven datasets and five evalu-
ation measures. Our final proposal presents very good

performance in comparison with state-of-the-art methods,
demonstrating the value of the proposed solution.

A possible direction for future improvements was found
in the excessive coarseness of our saliency estimation. To
this extent, we might exploit the already available predictions
at high resolutions to create finer details in the final
saliency map.
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