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ABSTRACT
In this paper we present a deep learning method to estimate
the illuminant of an image. Our model is not trained with illu-
minant annotations, but with the objective of improving per-
formance on an auxiliary task such as object recognition. To
the best of our knowledge, this is the first example of a deep
learning architecture for illuminant estimation that is trained
without ground truth illuminants. We evaluate our solution
on standard datasets for color constancy, and compare it with
state of the art methods. Our proposal is shown to outper-
form most deep learning methods in a cross-dataset evalua-
tion setup, and to present competitive results in a comparison
with parametric solutions.

Index Terms— Illuminant estimation, computational
color constancy, semi-supervised learning, deep learning,
convolutional neural networks

1. INTRODUCTION

Color constancy is the ability of human beings to recognize
the colors of objects independently of the characteristics of
the light source. Computational color constancy aims to first
estimate the illuminant and subsequently use this information
to correct the image, to display how it would appear under
a canonical illuminant [1]. The class of “learned” methods
is among the most successful illumination estimation meth-
ods to date [2, 3], and typically relies on a training set of
images which are labeled with the respective scene illumi-
nant. Although the human visual system is often compared to
a machine learning algorithm, during evolution it was never
presented with ground truth illuminants. Instead it is hy-
pothesized that the ability of color constancy arose because
it helped other crucial tasks, such as recognizing fruits, ob-
jects, and animals independently of the scene illuminant [4].

This observation motivates us to investigate to what extent
we can learn illuminant estimation as a byproduct of an auxil-
iary task, for which we consider object recognition. Previous
works highlighted the usefulness of object recognition in ap-
plications related to color theory, such as assessment of chro-
matic adaptation transforms through memory color matching
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Fig. 1. Schematic representation of our proposal for compu-
tational color constancy. The Illuminant Estimation module
is trained with the objective of optimizing the Object Recog-
nition module. At inference time, only the Illuminant Estima-
tion module is needed.

[5], performing color constancy with the assistance of faces
[6] or via pre-training on generic object recognition before
fine-tuning for illuminant estimation [7]. In our proposal we
describe a training process which uses only the labels for the
auxiliary task but no illuminant ground truth whatsoever. Dur-
ing training, the input image will first pass through an illumi-
nant estimation network, which estimates the scene illumi-
nant and corrects the image accordingly. The white-balanced
image will then be processed by an object classification net-
work, which produces an estimation of the classes that are
present in the image. By training both networks in an end-to-
end fashion, we can effectively train the illuminant estimation
network without any illuminant ground truth. This illuminant
estimation network can then be independently applied to other
datasets, such as standard color constancy benchmarks, with-
out using the object recognition network. To the best of our
knowledge this is the first learned method for illuminant esti-
mation which does not require illuminant annotations.

Approaches to color constancy can be divided into para-
metric and learned. Parametric solutions are typically based
on handcrafted features which depend on few manually-
tunable parameters, the most effective to date being Akbarinia
et al. [3] and Cheng et al. [8]. For a complete review of para-
metric methods for illuminant estimation we refer to [2].
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Learning-based solutions recently proved to be particularly
effective when trained in a cross-validation setup: Bianco et
al. [9] developed a patch-wise illuminant estimation neural
network and generate a global estimation through consen-
sus. Lou et al. [7] propose the fine-tuning of a network that
was pre-trained for both object recognition, and illuminant
regression based on the predictions of other color constancy
methods. Oh et al. [10] reformulate the problem of illumi-
nant estimation as a classification task by clustering the target
illuminants. All these solutions require an illuminant ground
truth, and are designed to be trained on the same type of
images that were seen during the test phase.

2. PROPOSED METHOD FOR COLOR CONSTANCY

In this section, we present our learning approach to estimate
the scene illuminant in the absence of any illumination ground
truth data, but with label information for an auxiliary task.
Here we consider object recognition as the auxiliary task, but
other objectives such as object detection or semantic segmen-
tation could be used as well. We propose an Illuminant Esti-
mation / Object Recognition network (IEOR), which is com-
posed of two parts: an Illuminant Estimation module (IE) and
an Object Recognition module (OR), as shown in Fig. 1. Fol-
lowing this structure, IE is learning to predict, for any given
image, a color correction that would improve OR.

2.1. Object Recognition network

The Object Recognition network performs the auxiliary su-
pervised task described in our approach, which is used to in-
directly train the Illuminant Estimation network. OR takes
an input RGB image, and produces a prediction of class pres-
ence. For the purpose of this paper, we will focus on vegetable
recognition [11], a task for which color is important as high-
lighted in Fig. 2. Other problems for which a correct white
balancing is expected to improve results might be recognition
of painting styles [12], or assessment of image aesthetics [13].

In order to obtain the desired separation of the network’s
internal logic into IE and OR modules, with the intermediate
representation being the estimated illuminant, it is necessary
to make OR overly-sensitive to color variations. This would
then effectively drive IE to work as a useful preprocessing
step, i.e. to learn to perform the necessary color correction.
To fulfill this requirement, the following strategy is adopted:

1. We pre-train OR alone on the chosen auxiliary task.
No color jittering is applied in this phase.

2. We connect IE and train the whole system end-to-end
with color jittering as described in Sec. 2.2.
During this second phase the gradients flow through
OR, but we update only the weights in IE.

If we do not constrain the training process as explained, it
might lead to unusable solutions, such as always producing

a neutral illuminant, or spreading the processing without a
clear distinction of the intermediate “estimated illuminant”.
For the current implementation of our method, we adopt an
architecture based on AlexNet [14]. The network weights are
initialized on the task of object classification from ImageNet
[14], with the final fully-connected layer re-instantiated in or-
der to match the different cardinality and task. Before feeding
the image to the network, we subtract 0.5 as an approximation
of the mean-image subtraction technique that allows to speed
up training and fine-tuning of the neural model.

2.2. Illuminant Estimation network

The Illuminant Estimation network takes an input RGB im-
age and predicts the scene illuminant. For the purpose of this
paper, we choose to limit the illuminant model to a diagonal
matrix, i.e. ρe = (ρeR, ρ

e
G, ρ

e
B)

T, although alternative combi-
nations are possible [15]:Rout

Gout
Bout

 =

1/ρeR 0 0
0 1/ρeG 0
0 0 1/ρeB

 ·
Rin
Gin
Bin

 (1)

This representation also matches the annotation associated to
most datasets for color constancy, which provide ground truth
illuminants in terms of triplets [16, 17, 8].

During the end-to-end training of the whole IEOR net-
work, we artificially augment the input data by applying a ran-
dom illuminant extracted from a Gaussian distribution with
mean 1 and standard deviation 0.3. Once training is com-
pleted as described in Sec. 2.1, IE can be used as a standalone
network for color correction on any image, which is not nec-
essarily depicting the classes seen during the training phase.

The IE module is also based on AlexNet, which was
shown in the past to perform well on color constancy [7], and
images are preprocessed by subtracting 0.5 as with the OR
module. The color-corrected image obtained by applying the
estimated illuminant to the input image is clipped between
0 and 1. This operation is necessary to avoid feeding to the
pre-trained OR values in a range that was never encountered
during training, and is also recreating what would happen by
displaying the color-corrected image.

3. EXPERIMENTS

In these experiments we set out to evaluate how our illumi-
nant estimation network, which does not require any illumi-
nant ground truth, compares to other illuminant estimation
methods on standard datasets. We consider two possible nor-
malization techniques (global and channel-wise), and com-
pare the results with state of the art methods.

3.1. Experimental setup

The training phase requires a classification task where color is
a discriminating feature, in order to properly drive the learn-
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Fig. 2. Samples from VegFru dataset, showing the importance
of color in vegetable class discrimination

ing process. To this extent, the vegetables subset from the
VegFru dataset [11] fits the desired criteria, as shown in Fig.
2. It contains more than 90000 images belonging to 200 veg-
etable classes. At test time we only apply the IE module (the
branch related to object recognition is not used) and we evalu-
ate our solution on two widely-adopted benchmarks for color
constancy. Shi-Gehler [16] is a linear reprocessing of the
original RAW images from the Gehler dataset [18]. It con-
tains 568 images of different scenarios with a ColorChecker
in each picture as a support for the ground truth extraction.
At test time, the area corresponding to the ColorChecker is
edited out to prevent the illuminant estimation algorithm from
directly using it. Results on the Shi-Gehler datasets are com-
puted with the ground truth from [9]. NUS from National
University of Singapore [8] contains a total of 1853 images
coming from 9 digital cameras of various brands. The type
of content is similar to Shi-Gehler, with both indoor and out-
door scenes, and ground truth extracted from a ColorChecker.
A unique characteristic of this dataset is the presence of the
same scenes taken from different cameras. Results on NUS
are reported as the average performance on each camera.

For evaluation we use the well-established angular recov-
ery error [2, 8], which compares the estimated (ρe) and refer-
ence (ρr) illuminant triplets regardless of their magnitude:

errang = arccos
(

ρeT ρr

||ρe|| ||ρr||

)
(2)

3.2. Input normalization

In order to account for the potential discrepancies between
training and test images, we adopt several techniques for in-
put normalization. We apply gamma correction whenever a
linear dataset is used at test time, since our training classifica-
tion datasets are already processed for gamma. The estimated
illuminant is then re-corrected before the final evaluation with
the provided ground truth. We then devise two alternative
ways to ensure the range of image values is stable, based on

the generation of a support diagonal illuminant:

1. Global normalization, which brings the overall average
of the input image to a fixed value without changing the
relationship between single channels.

2. Channel normalization, that modifies each channel in-
dependently, thus affecting the original illuminant.

3.3. Results

Table 1 reports the results of the two variants of our method on
Shi-Gehler and NUS datasets, compared to different baselines
and different algorithms from the state of the art.

Global normalization brings to very similar results on the
two datasets, providing a robust performance assessment of
our solution. Channel normalization leads instead to contrast-
ing conclusions on each dataset, suggesting a more challeng-
ing nature of NUS over Shi-Gehler. As channel normalization
destroys the relationship between channels, in fact, it essen-
tially discards any potentially misleading information about
the original illuminant. In the case of NUS, our model ben-
efits from this preprocessing, as it is forced to estimate the
proper illuminant directly from the image content.

In order to assess the effective advantage that comes from
using a classification-based loss, we train the Illuminant Esti-
mation module for direct regression (third row) over the color-
augmented examples of VegFru, i.e. we train without OR.
Performance on both sets shows that our classification-based
strategy can lead up to a 19% improvement in angular error,
thus highlighting the relevance of the proposed approach.

The “Learned (cross-dataset)” block includes data-driven
models that are trained on one dataset and tested on a differ-
ent one, instead of adopting a more traditional training-test
split of the same dataset. Our solution was trained on the
VegFru dataset, and is therefore best compared with methods
from this category, which are either trained on the GrayBall
dataset [20, 7] or on SFU-Lab [21]. Our IEOR network out-
performs the solutions by Joze et al. [20] and Gao et al. [21],
while producing comparable results to Lou et al. [7]. For
completeness, we also include other state of the art methods
that are trained on the training-set portion of the same dataset
used for evaluation (“Learned (in-dataset)”), although direct
comparison with these solutions is not applicable. Paramet-
ric methods [8] and [19] present different results with varying
parameters and configurations. For such solutions we only re-
port the best configuration, which was directly selected from
the test set performance.

Figure 3 shows some examples of our predictions with the
corresponding angular error, in order to provide a visual guide
for the interpretation of the reported performance values.

3.4. Analysis on the training-set color bias

The illuminant distribution present in the classification train-
ing dataset plays an important role for our proposed method.
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Table 1. Performance of different algorithms for illuminant estimation. Our solution can be directly compared with cross-
dataset learned methods. Values reported for parametric solutions [8] and [19] are selected with the best configuration of test
parameters. Learned methods with in-dataset training are also reported, although a direct comparison cannot be performed.

Method Angular error (Shi-Gehler [16]) Angular error (NUS [8])
Mean Median Std Max Mean Median Std Max

Baselines
Unchanged 13.62° 13.55° 2.85° 27.37° 19.50° 18.82° 1.90° 25.83°
Greyworld 7.35° 6.70° 3.78° 25.84° 4.59° 3.64° 3.57° 22.61°
Regression 5.96° 5.31° 3.47° 19.88° 5.19° 3.90° 4.16° 22.07°

Parametric
Akbarinia et al. [3] 3.8 ° 2.4 ° - - - - - -
Cheng et al. [8] 3.52° 2.14° - 28.35° 3.02° 2.12° - 17.24°
Funt et al. [19] 3.2 ° 2.3 ° - 21.7 ° - - - -

Learned
(cross-dataset)

Ours (global norm.) 4.84° 4.12° 3.22° 20.80° 4.88° 4.17° 3.11° 18.70°
Ours (channel norm.) 5.48° 4.81° 3.21° 19.88° 4.32° 3.37° 3.56° 22.36°
Joze et al. [20] 6.5 ° 5.1 ° - - - - - -
Gao et al. [21] 5.03° 3.39° - - - - - -
Lou et al. [7] 4.7 ° 3.3 ° 5.3 ° - - - - -

Learned
(in-dataset)

Chakrabarti et al. [22] 3.59° 2.96° - 21.58° 3.04° 2.40° - 15.38°
Bianco et al. [9] 2.63° 1.98° - 14.77° - - - -
Oh et al. [10] 2.16° 1.47° - - 2.41° 2.15° - -
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angular error: 2.26° angular error: 4.96°angular error: 3.87°

Fig. 3. Example color corrections of our method at different
levels of angular error

IE implicitly learns to replicate the average illuminant of
the training set. If this average is not neutral, the predicted
illuminants on the test set will not, in general, match the pro-
vided ground truth. If we use an oracle to shift our predic-
tions to the average ground truth illuminant, we can expect to
further reduce the angular error on Shi-Gehler from 4.84° to
4.60° (5%), and from 4.32° to 4.23° on NUS (2%).

Secondly, a high variability in the illuminant during the
initial pre-training of OR may make it excessively robust to
color variations, thus compromising the consequent train-
ing of IE. This condition is particularly hard to avoid: since
dataset heterogeneity typically results in better classification
performance [23], dataset curators tend to implicitly or ex-
plicitly encourage a certain degree of illuminant variability.
To this extent, in the future we might consider preprocessing

the classification-oriented training set itself for unsupervised
white balancing, reducing the intra-class variability with the
help of methods for saliency estimation [24].

4. CONCLUSIONS

We have presented a deep learning method for illuminant es-
timation that does not require any ground truth illuminant for
training. In order to fulfill this objective, we indirectly train
our neural model with the task of improving the performance
of an auxiliary object recognition network. Our strategy al-
lows the use of powerful deep learning models but without the
need of collecting illuminant information, and relying instead
on widely available annotations from other tasks. In experi-
ments our method was, as expected, outperformed by learned
methods which use ground truth data. However, surprisingly,
in cross-dataset experiments our method obtains similar re-
sults as other learned based methods. As future research we
plan to train Illuminant Estimation / Object Recognition net-
works for more complex illumination scenarios, e.g. with
multiple illuminants. These scenarios are currently hardly in-
vestigated with learned based methods because of the lack
of large datasets with ground truth information. However, in
the proposed end-to-end learning of illuminant estimation the
presence of ground truth data would not be required.
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