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Abstract
We propose a new representation of distance information that is independent from any
specific acquisition device, based on the size of portrayed subjects. In this alternative
description, each pixel of an image is associated with the size, in real life, of what it rep-
resents. Using our proposed representation, datasets acquired with different devices can be
effortlessly combined to build more powerful models, and monocular distance estimation
can be performed on images acquired from devices that were never used during training.
To assess the advantages of the proposed representation, we used it to train a fully con-
volutional neural network that predicts with pixel-precision the size of different subjects
depicted in the image, as a proxy for their distance. Experimental results show that our rep-
resentation, allowing the combination of heterogeneous training datasets, makes it possible
for the trained network to gain better results at test time.

Keywords Distance estimation · Depth estimation · Perspective geometry ·
Convolutional neural network

1 Introduction

Distance estimation has recently gained great interest from the computer vision community.
It is a topic of particular relevance due to its various applications, which include autonomous
and semi-autonomous driving [38], analysis of video surveillance cameras for traffic safety
analysis [1] or information forensics [8], and multimedia processing for artistic purposes
[30]. Further applications can be found specifically for monocular distance estimation, in
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fields where the imaging device should be as compact as possible (e.g. endoscopy and
laparoscopy scans [19]), or whenever it is preferable to introduce depth vision without an
expensive hardware upgrade, as with biomedical and astronomical technologies [14].

Several existing works address this topic by ignoring the perspective geometry of image
formation. As such, they require a re-calibration or even re-training phase for each specific
hardware setup. In this work we propose a universal representation that makes it possible to
jointly use data coming from different sensors, and thus to generate a single, more powerful,
hardware-agnostic model.

The depth perception of the human visual system exploits different cues:

- Binocular cues combine the signals received from both eyes in order to reconstruct a 3-
dimensional geometry. They are the source of inspiration for stereopsis-based systems
such as the Microsoft Kinect [40].

- Motion cues exploit the time-varying signals received from each eye. The same
technique is also used in depth-from-motion methods [29].

- Muscular cues integrate information coming from the voluntary or involuntary move-
ment of eye parts [15, 35].

- Monocular cues use only the retinal signal of a single eye. Related automatic methods
may explicitly rely on specific elements such as texture, shading and defocus [9, 28],
introduce additional cues such as structured light patterns [32], or implicitly extract all
the necessary features from the input image [13, 21, 37].

Binocular and motion cues provide the most reliable source for automatic distance esti-
mation, as they are based on a rigorous geometric model [20]. Monocular cues are generally
less robust [25] but still present several advantages. For instance, they allow distance estima-
tion in absolute terms provided that the subject size is known [36], and their implementation
is inherently cheaper than that of binocular cues, as it requires a single imaging device.
Since monocular and binocular methods exploit two different kinds of image features, dis-
tance estimation can then be made more robust by integrating such complementary and
decorrelated methods.

Taking inspiration from the monocular family of visual cues, we focus on the concept of
“familiar size” [17]: during the development of the human visual system in our first months
of life, we get to implicitly learn the relationship between the apparent size of a known
object on our retina, and its actual distance from us [39]. The same technique is further
exploited by hikers and building surveyors, with the so-called rule of thumb, where the sub-
ject’s apparent size is measured relative to an object at arm distance (e.g. the measurer’s
own thumb). In these cases, knowing the subject size in real life is fundamental to actu-
ally perform an estimation of its distance, hence the term “familiar size”. In this paper we
propose a unified representation of distance, based on the familiar size cue. This modeliza-
tion is independent of device-specific characteristics, and as such it allows us to integrate
information from different sensors to train richer data-driven models, which take advantage
from large and heterogeneous datasets to improve prediction [2], and to apply such models
to data generated by different devices. This process could also bring to common represen-
tation acquisitions performed with different sensors on the same scene, in order to combine
the different sources of information and produce a more robust measurement.

Section 2 provides the theoretical background on perspective geometry, and describes
several works that rely on a single image to predict the subject distance. Section 3 defines
the proposed alternative representation for distance information, and the proposed neural
network model that will be used for evaluation. Section 4 describes the different datasets
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Fig. 1 For all three pictures, the subject size (face) is the same both in real life and in picture. Knowing the
camera parameters is essential in determining different distances of the face from the camera

used, and the necessary steps to transform them according to our proposed representation.
Section 5 illustrates the experimental setup and the final results.

2 Background and related works

The depth perception exploited by human vision follows the pinhole model of image
formation, which can be formalized and applied to digital images as follows:

Let F be a person-specific or device-specific parameter (px).
Let real size be the known subject size1 in real life (m).
Let apparent size be the measured subject size (px):

distance = real size

apparent size
F (1)

In the case of digital acquisition devices, parameter F corresponds to the camera focal length
expressed in pixels, which in turn can be computed from the focal length in meters as:

F = image size

sensor size
Fmetric (2)

The distance value associated to a specific subject therefore depends on hardware-specific
elements (sensor size) as well as variable camera configuration (i.e. zooming through
Fmetric). This is visually shown in Fig. 1.

Several works [6, 18] are based on the perspective geometry of (1) to perform distance-
related reasoning. This formulation requires an explicit localization of each known subject
in the image in order to effectively measure their apparent size. Such approach presents
its limitations when dealing with severe occlusions and unconventional poses. In the
case of human subjects, for example, real size is their (known) height in meters, and
apparent size is their (unknown) height in pixels. If the person is standing straight,
apparent size is simply the height of the bounding box resulting from a person detector.
If the subject is in any other pose, instead, it is necessary to follow their body structure in
order to accurately measure their height in pixels.

1All sizes refer to linear size and not surface size, so they can be either height or width. For the experiments
of this paper we will always use width measures.
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An alternative solution is to directly predict the distance associated with each pixel, com-
pletely ignoring the image formation model. Such formulation is typically implemented
with Convolutional Neural Networks (CNN), and has the advantage of addressing different
problems with a unique solution. It can, in fact, handle different poses and cluttered scenes
indiscriminately [24]. It is not bound to specific object classes, and it is able to implicitly
handle fine-grained models (e.g. a child’s average height is different from that of an adult).
Several recent works adopt this dense formulation of the problem. Uhrig et al. [37] presented
a multi-objective CNN that simultaneously predicts objects class, discretized distance, and
a novel representation used to separate multiple instances. Experiments were performed on
the CityScapes [5] and KITTI [12] datasets separately. As highlighted in (1), in fact, the
same elements can be associated with different distance values when dealing with differ-
ent acquisition devices, due to the effect of focal length F . The KITTI Vision Benchmark
[12] encourages the development of models predicting stereo-pair disparity in place of dis-
tance, by providing ground truth annotations in such format. This formulation, however, is
also tied to a specific hardware setup, as it depends on the baseline distance between the
two cameras used. Godard et al. [13] introduced a learning loss based on predicted disparity
that optimizes the consistency between left-right pairs used in the training phase. They also
observed how training on data from different devices actually deteriorates the performance
of their solution, again due the different camera calibrations.

Ladicky et al. [21] reformulated the problem of distance estimation as predicting the
probability of each pixel belonging to a so-called “canonical depth”. This interpretation
reduces the dependency from device-specific parameters, and was proven effective when
training on multiple datasets. Aiming at a similar goal, we propose an alternative represen-
tation that is independent of sensor configuration, and we show its advantage in improving
the performance of two neural network-based models: an architecture introduced in this
very paper, and an existing model presented by Neven et al. [27]. Eigen et al. [7] approached
the problem of distance estimation with a solution based on Conditional Random Fields
(CRF), and introduced a training loss that is only partially scale-invariant, in order to focus
on relative depth details without compromising overall accuracy. Other works also adopted
CRF-based approaches to the problem [22], to induce a local reciprocal influence to the final
estimation. We took inspiration from this strategy and adopted a Fully Convolutional Neural
Network architecture (FCN) for the experimental evaluation of our proposed representation,
as it allows for a dense (pixel-precise) prediction based on a local analysis [23].

3 Proposed representation for distance information

In order to integrate data coming from two different devices A and B there are two possible
solutions:

1. Convert the training distance information from A and B into real-life (metric) size, as
a consequence of (1):

real size = distance{A,B} · apparent size{A,B}
F{A,B}

(3)

(The fact that (3) can be applied to either device is denoted by {A,B}). The predicted
size will then be converted back to distance, based on the desired camera parameters
from either A or B.
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2. Transform all training data from A according to a reference set of camera parameters
from B, by combining (3) with (1):

distanceB = distanceA · FB

FA

· apparent sizeA

apparent sizeB

(4)

The predicted distance will always be based on parameters from B, but it can later be
transformed back to any desired setting with the same formulation.

The two alternatives are tightly related, as (4) is a direct extension of (3). The second one is
an explicit prediction of the distance information, inherently depending on camera param-
eters. The first one is directly related to image content, and it is totally uncorrelated to any
specific sensor configuration. This is the formulation we will use in this work, applying the
advantages of dense prediction models to the pinhole camera model. Such approach allows
us to gather training data from different sources, increasing both cardinality and diversity in
the dataset.

A practical example of our proposed representation is depicted in Fig. 2: each pixel is
described by the size, in real life, of what it portrays. When the subject is further away, each
pixel will span a larger area, thus real size will be larger. This concept is straightforward
for flat surfaces that are parallel to the acquisition device plane. In all other cases, it is
generalized to the average size of what is depicted by the pixel itself, or:

average size =
∫ xi+1
xi

∫ yj+1
yj

real size dx dy

(xi+1 − xi) · (yj+1 − yj )
(5)

where x and y refer to a world coordinate system aligned to the acquisition sensor’s coordi-
nate system, while xi and yj are used to delimit the frustum behind each pixel. For legibility,
we will also refer to the average size as real size.

An additional advantage of performing a prediction with pixel-precision is that (1) is
no longer dependent on apparent size, which is reduced to one. The eventual conver-
sion from real size to distance is thus simplified to a multiplication by the camera focal

Fig. 2 Visualization of our size-based representation of distance: each pixel is associated with the size of
what it represents in real life. This is obtained by combining distance information with the camera parameters.
Image credit Courtney Simonds
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length expressed in pixels (F ). Typically, the methods based on the pinhole camera model,
such as those described in Section 2, use the opposite approach to the same formulation, as
they consider the subject real size to be known, and predict its apparent size via object
detection.

The problem formulation we propose here is based on the “familiar size” monocular cue
for distance estimation. For this reason, we must constrain both training and prediction to
those image regions that correspond to a known object class. In particular, for the exper-
iments presented in this paper, we initially focus on the “people” class. This decision is
guided by two factors: the availability of training data, as highlighted in Section 4, and the
high relevance of human subjects in personal photo collections [26]. Despite the particu-
lar setup employed here, though, the method can be effortlessly extended to other object
classes, as we show with further experiments.

Prediction of subject size is inherently tied to the semantics of image content. It is, in
fact, fundamental to understand the nature of the portrayed elements, in order to estimate
their size. For this reason, we propose a Fully Convolutional Network (FCN) that internally
represents the semantics of the scene by using layers previously trained on object recogni-
tion [24, 33]. The activation of layer conv5-3 from a VGG-19 net [33] is processed with two
“Conv-ReLU-DropOut” blocks, followed by a “Conv” block. The result is upsampled using
a convolution-transpose layer, summed to the activation of layer pool4, upsampled again,
summed to activation of layer pool3 and upsampled one last time. When properly trained,
this finally produces an input-sized prediction corresponding to the content size in real life
of each pixel (i.e. real size in (1)). A similar approach was used by Bianco et al. [3] to
highlight the salient regions of a picture, exploiting its semantic content without explicitly
defining any specific object class.

Training a FCN aims to minimize the average error between prediction P and ground
truth GT computed at each position i in image coordinates I :

L =
∑

i∈I error (GTi, Pi)

|I | (6)

Here |I | identifies the cardinality of set I . In our experimental setup, error is implemented
as a cross entropy loss on discretized levels.

The ground truth contains real size information, which is typically quite sparse due to
the nature of depth-acquisition devices. This reduces the set of pixels effectively useful for
training. As we are going to take in consideration only human subjects, then, the training
data is even sparser, as shown in Fig. 3.

To take into account this particular condition, we create a mask pointing only to relevant
pixels, and we fill the annotation “holes” using a nearest neighbor approach. This strategy
allows us to avoid any artifact during future manipulations of the ground truth data, such as
image resizing. We then introduce the relevance mask in the loss computation multiplying
it by the pixel-wise error, and we average the result on all relevant pixels M:

L′ =
∑

i∈M error (GTi, Pi) · maski

|M| (7)

Thanks to this operation, the backpropagation algorithm excludes any mismatched predic-
tion on non-relevant pixels, updating the gradients only as a function of pixels indicated by
the mask. The final architecture is shown in Fig. 4. More details on how to produce and
process the human-subject masks are given in Section 4.
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Fig. 3 Mask generation and ground truth preprocessing. a The RGB input image. b The corresponding
ground truth. c The ground truth after hole-filling. d The initial mask from invalid ground truth values. e The
person-specific mask. f The final relevance mask

Fig. 4 Schematic view of the Fully Convolutional Network employed for distance estimation through size
prediction. Intermediate activations of a VGG-based processing [33] are resized and combined in order to
implement a multi-resolution analysis. The final prediction is evaluated only on relevant image positions
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4 Datasets transformation to common representation

Four different datasets were used for the experiments: CityScapes [5], SYNTHIA [31],
KITTI [12], and RGB-D People [34]. Sample images are shown in Fig. 5. Each dataset
is originally encoded using different conventions and formats, due to the different sensors
involved in their acquisition. Thus each required a specific preprocessing, described in the
following, aimed at obtaining the proposed common representation real size. Eventually,
dataset-independent processing such as data augmentation was also performed as described
in Section 5.1.

The CityScapes dataset [5] (CSC) contains stereo video sequences from European
city streets. It contains 5000 high resolution stereo pairs (2048×1024) divided into 2975
training images, 500 validation images, and 1525 test images. The attached correspond-
ing disparity maps were computed using SemiGlobal Matching [16]. Conversion from
disparity to real size was performed with the following simplification on the formulas
for disparity-to-distance and distance-to-size:

real size = distance

F
= F baseline

disparity

F
= baseline

disparity
(8)

Fine class annotations are provided for the training and validation sets, including the
“person” and “rider” classes, which we used as training masks for the “people”-specific
experiments. Further annotations used in later experiments are “car”, “bike” and “motor-
bike”.

The SYNTHIA dataset [31] (SYN) is a collection of 1280×760 synthetic frames ren-
dered from virtual cities in different weather and lighting conditions. For the purpose of
this work, we used the subset called SYNTHIA-RAND-CITYSCAPES, which originally
contains 9400 instances, sampling one every fourth image in order to balance the different
training sets. The distance information is stored as 16-bit encoded images, representing the

Fig. 5 Sample images from each dataset show the difference in content and format among the used training
data
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distance value for each pixel in centimeters. Conversion to metric size in real life was thus
obtained simply dividing by 100 and by the focal length of the virtual camera. The seman-
tic classes of this dataset are annotated with criteria similar to those used in CityScapes. In
this case, though, the information was retrieved directly from the scene 3D model instead
of relying on manual annotation.

The KITTI Vision Benchmark Suite [12] (KIT) provides multi-sensor recordings
acquired in and around the city of Karlsruhe, Germany. The “raw data” section includes
rectified images and LiDAR distance points. We used the “Campus” subset, and sequence
72 of the “City” subset, due to the high presence of human subjects. This results in a
total of 2308 images, with varying resolution under 1392×512 pixels. We first projected
LiDAR-acquired 3D points to the image plane, using the provided projection matrix. This
produced an extremely sparse set of distance measurements on image coordinates, which
we dilated using a 3× 3 diamond-shaped structuring element. Conversion to real size was
then again obtained dividing the distance by the provided focal length F , following (1). This
dataset offers no pixel-precise annotation about the location of people and other classes of
interest. We therefore automatically generated such information by applying the semantic
segmentation network described by Long et al. [24], and selecting the corresponding classes.

The RGB-D People Dataset [34] (RDP) contains 3399 images and disparity acquisitions
from three vertically-mounted Kinect sensors placed in a university hall. For the experi-
ments involved in this work, only two of the three devices were used, for data balancing
reasons. The resolution of the RGB images is 480×640 pixels. We first converted the dis-
parity data coming from the Kinects into metric distance using the following formula from
Spinello et al. [34]:

distance = F · baseline · 8
V max − disparity

(9)

V max is the maximum measurable value, and baseline is the distance between Infrared
(IR) projector and IR camera. Radial and tangential distortions were then corrected for both
depth and color data using the respective intrinsic matrices. This was done to align the
two sources of data. The distance points were brought to IR-projector-world coordinates,
moved to RGB-camera-world coordinates, and eventually reprojected to the image plane.
The distance data, now registered to the color data, was finally converted to size in real life
by dividing it by the camera focal length. This dataset does not provide any pixel-precise
segmentation masks, which we therefore generated using the method proposed by Long et
al. [24].

The processed datasets were sampled with the general intention of balancing the different
data, and further reduced by excluding images without any subject belonging to the class
of interest. The final cardinalities for the “people” class are shown in Table 1. Thanks to
the achieved common representation, these datasets can be effortlessly joined in various
combinations: Section 5 shows the effect of training on different subsets of the collected
dataset.

5 Experiments

Experiments are structured towards a quantitative evaluation of the proposed representa-
tion. To this end, we trained our neural network on human subjects from different subsets
of the datasets shown in Table 1, and tested it every time on a fixed set: the validation set of
CityScapes [5], which is composed of 500 images annotated with both distance information
and pixel-precise semantic classes. Our goal is to test whether building a larger and more
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Table 1 Cardinality of the chosen datasets

Abbr. Dataset name Subset Total Used

CSC CityScapes Training set 2975 2498

SYN SYNTHIA RAND-CITYSCAPES 9400 2350

KIT KITTI Campus and City-72 2308 2294

RDP RGB-D People Sensors 0 and 1 2266 1937

CSCval CityScapes Validation set 500 441

The last column reports the number of images effectively used, after sampling and removing images without
human subjects

Bold face indicates the final adopted cardinality

diverse training set, which is made possible by our proposed representation for unifying
distance information, can in fact improve performance on a given test set. This representa-
tion is, however, general-purpose, and as such it was further tested on additional semantic
classes, such as bikes, motorbikes, and cars, and its benefits evaluated on another recent
method for depth estimation [27].

Preliminary tests were also conducted in order to select various hyper-parameters. All
the experiments were consequently run with logarithmic (base 10) quantization of real size

values in 100 classes between 0 and 0.1. We are, in fact, transforming a regression prob-
lem into a classification problem, as already proposed by Uhrig et al. [37]. Finally, we
adopted mini-batches composed of 15 images, and set the learning rate to 10−4, following
a preliminary selection phase.

5.1 Training preprocessing

During training we applied online data augmentation according to Bianco et al. [3], which
includes random horizontal flip, random gamma correction between 0.3 and 0.3−1, and ran-
dom cropping with varying size. All crops were then rescaled to a fixed size, set to 256×256
pixels, in order to exploit minibatch parallel computation during the network training. After
resizing the crop, the annotation values for real size were adjusted accordingly, multiplying
them by the ratio between the original crop size and the final dimensions after resizing. Each
training dataset presents a different distribution of real size values, and since the resizing
operation affects such distribution, it can be used as a tool to make one dataset more similar
to the target one used in the test phase. For all datasets, preliminary tests with three differ-
ent cropping size ranges were performed: 64÷256 to make the objects bigger and therefore
move the distributions to lower values, 256 ÷ 256 to keep the distributions unchanged as
there will be no resizing involved, or 256 ÷ 640 to make objects smaller and move the dis-
tributions to higher values. The final settings for each dataset are shown in Fig. 6. Given the
high sparsity of relevant ground truth data, as highlighted in Section 3 and Fig. 3, we verify
that the random crops always include a minimum amount of pixels belonging to the class of
interest (i.e. human subjects in the first set of experiments).

5.2 Evaluation procedure

In order to evaluate the models, the classification prediction was de-quantized using the
central values of the discretization levels applied during preprocessing. Predicted (P ) and
ground truth (GT ) real size data was then transformed back to distance values through
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Fig. 6 Distribution of real size values of the four datasets, as impacted by three different crop size ranges.
Selected ranges are highlighted inside the legend

multiplication by the proper focal length F . The values were finally compared with the
ground truth using Mean Absolute Error (MAE) as well as several error measures from
Eigen et al. [7], including Absolute Relative Difference (ARD), Squared Relative Difference
(SRD), linear and logarithmic Root Mean Square Error (RMSE):

MAE =
√∑

i∈M ||Pi · F − GTi · F ||
|M| (10)
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ARD =
√∑

i∈M
||Pi ·F−GTi ·F ||

GTi ·F
|M| (11)

SRD =

√√
√
√

∑
i∈M

||Pi ·F−GTi ·F ||2
GTi ·F

|M| (12)

RMSElin =
√∑

i∈M (Pi · F − GTi · F)2

|M| (13)

RMSElog =
√∑

i∈M (log(Pi · F) − log(GTi · F))2

|M| (14)

Note that the logarithmic transformation in (14) actually removes the contribution of any
coefficient equally applied to annotation and prediction, including the effect of focal length
F .

Here ||x|| denotes the absolute value, and |M| the cardinality of set M . Equations (10) to
(14) were computed only over pixels highlighted by the relevance mask M , as done with the
loss in (7). The final errors were obtained averaging the results from all validation images.

All experiments were run for 10000 iterations, and the best performing iteration on the
validation set according to logarithmic RMSE was eventually selected.

5.3 Results using our proposed unified representation

These experiments were designed to assess the applicability and utility of the proposed
representation for distance information. Performance values on the CityScapes validation
set for the “people” class are reported in Table 2.

Rows 1 to 4 correspond to models trained singularly on each dataset. The least contribu-
tion is given by SYNTHIA, which ranked last among all evaluated setups. This dataset was
chosen for the presence of human subjects, despite the scarce photorealism of its rendered
images. Unexpectedly, the best single-dataset solution appears to be training on the KITTI
dataset, which performed much better than using the CityScapes training set itself. This is a
first confirmation of the utility of our proposed representation, without which it would have
not be possible to overperform the results obtained with the original training data. In order
to verify whether better performance could be obtained simply by using a larger amount of
CityScapes images, row 5 describes a model trained on both the CityScapes training set and

Table 2 Error measures on CityScapes validation set (average distance 40.39m) for the “people” class with
different training subsets, collected and transformed according to the proposed representation

Training datasets knaRtesnoitadilavsepacSytiCnoserusaemrorrE

CSC [5] SYN [31] KIT [12] RDP [34] MAE ARD SRD RMSElin RMSElog RMSElog

1 22.51 0.524 16.07 30.58 0.677 8

2 46.14 1.980 210.4 69.17 1.055 10

3 15.10 0.458 12.36 23.51 0.473 4

4 21.05 0.429 14.45 29.78 0.650 6

5 22.70 0.521 16.20 30.83 0.690 9

6 22.03 0.643 17.95 29.53 0.658 7

7 8.48 0.177 4.33 16.69 0.255 1

8 9.93 0.182 6.88 19.62 0.270 2

9 9.19 0.183 4.68 17.64 0.279 3

11 20.24 0.666 19.62 27.94 0.590 5

For all considered measures, a lower value is better

Bold face indicates the best training configuration
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official test set (which is distinct from the validation set we use for evaluation). The results
of this experiment, however, disprove this possibility, ranking at the 9th position. An alter-
native explanation is that CityScapes offers plenty of images, but with low diversity, and
thus it is not useful in building a well-generalizing model.

The second batch of experiments, from row 6 to row 8, involves a joint training on both
the CityScapes training set and one of the other datasets. The best result was given by
training jointly on the CityScapes and KITTI datasets, which were brought to a compatible
format exploiting our proposed representation. Other methods, such as the one proposed by
Uhrig et al. [37], were able to obtain good results while training on the CityScapes training
set only. One possible explanation can be found in the multi-task objective proposed in their
work, which guides the learning process in a different way. In this sense, our approach is an
alternative solution when multi-task is not desired or not available.

Given the promising but sub-optimal results of RGB-D People (rows 4 and 8), row 9
shows the results of training jointly on the three best performing sets: CityScapes, KITTI,
and RGB-D People. This combination, though, did not improve the model performance, as
it ranked at the 3rd place, right after the joint training on KITTI and RGB-D People. Finally,
row 10 describes the effect of training on all available datasets. The poor performance is
again probably due to the influence of dataset SYNTHIA, as suggested by the results in row 2.

By further training the best performing model (row 7) from 10000 to 45000 iterations,
we reached a final MAE equal to 6.24m on a dataset with average distance 40.39m. Figure 7

Fig. 7 Example per-pixel estimation on a test image with average distance 14.83m. The Mean Absolute
Error (MAE) between prediction and ground truth is 1.63m. The visualization and all adopted metrics are
limited to people areas, as we focused our first experiments on this particular category of known subjects.
Best viewed in color
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shows the prediction on an example image obtained with such model. The largest source of
error is due to the farthest subject, predicted at 50m instead of 72m, followed by some inaccura-
cies in the ground truth around people edges. Other visual examples are presented in Fig. 8.

5.4 Application of the proposed unified representation to other methods
in the state of the art

In this section we quantitatively evaluate the benefits of introducing our device-independent
representation into a different model for distance estimation. Neven et al. [27] presented a

Fig. 8 Example predictions on the people class. Values are clipped to the reported range to preserve visual
consistency among figures (best viewed in color). a Average distance annotation: 16.21m. MAE: 2.17m,
ARD: 0.10, SRD: 0.91, RMSElin: 7.63, RMSElog: 0.24. b Average distance annotation: 16.53m. MAE:
1.79m, ARD: 0.10, SRD: 1.07, RMSElin: 8.75, RMSElog: 0.20
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unified framework that predicts pixel-level disparity (i.e. the horizontal shift necessary to
find the same pixel across two images from a stereo rig: a measure correlated to distance
information), in a multitask environment that also includes semantic and instance segmen-
tation. In order to do so, the authors trained and evaluated their proposed model on the
CityScapes dataset, exploiting its rich set of annotations.

We reproduced our experimental setup in the work of [27] by introducing relevance
masks in the loss computation, as described in Section 3. This allowed us to constrain the
training and validation process to only pixels belonging to people areas. This baseline exper-
iment, trained on disparity values, resulted in a RMSElog equal to 0.923, between reference
and predicted depth. As a first modification, we replaced their disparity representation at
training time with our proposed real size, resulting in a RMSElog equal to 0.804. The lower
error obtained is a first demonstration of the advantage of switching to our representation.

Secondly, we intend to reproduce the experiment on training set expansion from
Section 5.3 into the method from [27]. Our representation, in fact, makes it possible to col-
lect a wider training set by converting different sources of data to a common representation.
In order to verify whether this effectively produces a better model, we once again intro-
duced the KITTI training subset as additional training data, as it was shown in Table 2 to
improve the final estimation performance of our model. Since this set is not annotated with
instance and semantic labels, which are required by the multitask nature of [27], at training
time we suppressed the gradient backpropagation from the semantic and instance predic-
tions produced on the KITTI training examples, while keeping those produced from the
CityScapes training examples. The model trained in this new environment was finally able
to reach an even better RMSElog, equal to 0.715. This result produces yet another indication
of the advantage in exploiting our proposed representation for distance information.

5.5 Multi-class evaluation of the proposed unified representation

In order to further assess the robustness and generalization capability of our representation,
we trained and evaluated our proposed neural network on other individual semantic classes,
namely cars, bikes, and motorbikes. We achieved this by exploiting the relevance masks
to exclude regions of the image that do not belong to the chosen subjects. We once again
evaluated the RMSElog obtained on the CityScapes validation set by either training on the
CityScapes only, or by jointly exploiting the KITTI training subset.

Table 3 RMSElog errors obtained on different object classes, and evaluated on the validation subset of
CityScapes

Class Cardinality RMSElog on CSCval % error reduction

Training images Valid. images Training images

CSC CSC+KIT CSCval CSC CSC+KIT

People 2498 4792 441 0.677 0.255 62.33%

Cars 2832 4928 479 0.833 0.366 56.02%

Bikes 1639 3198 344 0.591 0.323 45.35%

Motorbikes 502 1409 91 0.668 0.577 13.68%

Joint 2965 5273 493 0.781 0.318 59.25%

The last column highlights the percentage error reduction obtained by training on a wider set of images,
which is made possible by our proposed representation
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Results are reported in Table 3, along with the percentage error reduction given by the
training set expansion. Some classes appear to benefit more than others: the relative error
reduction is in fact strongly correlated with the number of available images, further sup-
porting the thesis on the importance of training cardinality. As a final experiment, we also
report in the last line of Table 3 the results obtained by training and evaluating on all the
analyzed semantic classes, i.e. the relevance mask was generated to jointly include people,
cars, bikes, and motorbikes. The error reduction given by dataset expansion on this experi-
ment is on par with the trend of all individual classes. This suggests that our model is able to

Fig. 9 Example predictions on all analyzed semantic classes. Values are clipped to the reported range to pre-
serve visual consistency among figures (best viewed in color). aAverage distance annotation: 24.28m. MAE:
3.84m, ARD: 0.09, SRD: 1.89, RMSElin: 18.00, RMSElog: 0.27. b Average distance annotation: 17.85m.
MAE: 3.82m, ARD: 0.13, SRD: 2.31, RMSElin: 25.55, RMSElog: 0.31
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manage multiple classes at the same time, effectively inferring the correct real size value
associated with each different semantic class. Some relevant examples are provided in
Fig. 9.

6 Conclusions

Distance estimation from monocular images is a challenging task that has recently been the
subject of many publications. Given the importance of exploiting large and diverse train-
ing sets for data-driven models, we have proposed an alternative representation for distance
information that is independent from any specific device or camera setting. This solution,
based on the pinhole geometry of image formation, allows the creation of a model for dis-
tance estimation using data gathered from different devices. Experimental results provide a
definitive proof of the importance of our proposed representation, which made it possible to
produce better-performing models than what could be obtained by training on the originally
available data.

By definition, our model mainly relies on the semantic content of the analyzed image.
For the purpose of experiments, only pixels belonging to semantically well-defined subjects
were used during both training and test, such as people, vehicles or other classes from the
PASCAL Visual Object Classes Challenge [10]. It would be interesting to evaluate the per-
formance on pixels belonging to unknown classes, where the model would need to exploit
a different kind of features, such as blur due to focus [9].

In our current solution we externally provide the camera focal length in order to effec-
tively produce a distance estimation in absolute terms. In the future, we might jointly predict
this extra parameter based on the spatial relationship between elements such as the parts of
a human face, as proposed by Flores et al. [11] and Burgos et al. [4].

Finally, we showed that the proposed representation can be applied to other existing
models, including those described in Section 2. For this preliminary evaluation we focused
on two architectures in order to have a greater control over the experiments. In the future
we might assess the contribution of our proposal to other methods of distance estimation.

Acknowledgements We gratefully acknowledge the support of NVIDIA Corporation with the donation of
the Titan X Pascal GPU used for this research.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. Battiato S, Farinella GM, Gallo G, Giudice O (2018) On-board monitoring system for road traffic safety
analysis. Comput Ind 98:208–217

2. Bianco S, Buzzelli M, Mazzini D, Schettini R (2017) Deep learning for logo recognition. Neurocomput-
ing 245:23–30

3. Bianco S, Buzzelli M, Schettini R (2018) Multiscale fully convolutional network for image saliency. J
Electron Imaging 27:27 – 27 – 10

4. Burgos-Artizzu XP, Ronchi MR, Perona P (2014) Distance estimation of an unknown person from a
portrait. In: European conference on computer vision. Springer, pp 313–327



Multimed Tools Appl

5. Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, Franke U, Roth S, Schiele B
(2016) The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp 3213–3223

6. Dong X, Zhang F, Shi P (2014) A novel approach for face to camera distance estimation by monocular
vision. Int J Innov Comput Inf Control 10(2):659–669

7. Eigen D, Puhrsch C, Fergus R (2014) Depth map prediction from a single image using a multi-scale deep
network. In: Advances in neural information processing systems, pp 2366–2374

8. Elgammal A, Duraiswami R, Harwood D, Davis LS (2002) Background and foreground modeling using
nonparametric kernel density estimation for visual surveillance. Proc IEEE 90(7):1151–1163

9. Ens J, Lawrence P (1993) An investigation of methods for determining depth from focus. IEEE Trans
Pattern Anal Mach Intell 15(2):97–108

10. Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman A (2011) The PASCAL Visual Object
Classes Challenge 2011 (VOC2011) Results. http://www.pascal-network.org/challenges/VOC/voc2011/
workshop/index.html

11. Flores A, Christiansen E, Kriegman D, Belongie S (2013) Camera distance from face images. In:
International symposium on visual computing. Springer, pp 513–522

12. Geiger A, Lenz P, Stiller C, Urtasun R (2013) Vision meets robotics: the kitti dataset. Int J Robot Res
32(11):1231–1237

13. Godard C, Mac Aodha O, Brostow GJ (2016) Unsupervised monocular depth estimation with left-right
consistency. arXiv:1609.03677

14. Gossan S, Ott C (2012) Methods of measuring astronomical distances
15. Harkness L (1977) Chameleons use accommodation cues to judge distance. Nature 267(5609):346–349
16. Hirschmuller H (2005) Accurate and efficient stereo processing by semi-global matching and mutual

information. In: 2005. CVPR 2005. IEEE computer society conference onComputer vision and pattern
recognition, vol 2. IEEE, pp 807–814

17. Hochberg CB, Hochberg JE (1952) Familiar size and the perception of depth. J Psychol 34(1):107–114
18. Hoiem D, Efros AA, Hebert M (2008) Putting objects in perspective. Int J Comput Vis 80(1):3–15
19. Hong D, TavanapongW,Wong J, Oh J, De Groen PC (2014) 3d reconstruction of virtual colon structures

from colonoscopy images. Comput Med Imaging Graph 38(1):22–33
20. Howard IP, Rogers BJ (1995) Binocular vision and stereopsis. Oxford University Press, Oxford
21. Ladicky L, Shi J, Pollefeys M (2014) Pulling things out of perspective. In: Proceedings of the IEEE

conference on computer vision and pattern recognition, pp 89–96
22. Li B, Shen C, Dai Y, van den Hengel A, He M (2015) Depth and surface normal estimation from

monocular images using regression on deep features and hierarchical crfs. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp 1119–1127

23. Liu F, Shen C, Lin G, Reid I (2016) Learning depth from single monocular images using deep
convolutional neural fields. IEEE Trans Pattern Anal Mach Intell 38(10):2024–2039

24. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In:
Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440

25. Marotta J, Perrot T, Nicolle D, Servos P, Goodale M (1995) Adapting to monocular vision: grasping
with one eye. Exp Brain Res 104(1):107–114

26. Mendelson AL, Papacharissi Z (2010) Look at us: collective narcissism in college student facebook
photo galleries. Netw self: Identity, Commun Cult Soc Netw Sites 1974:1–37

27. Neven D, De Brabandere B, Georgoulis S, Proesmans M, Van Gool L (2017) Fast scene understanding
for autonomous driving. arXiv:1708.02550

28. Prados E, Faugeras O (2006) Shape from shading. In: Handbook of mathematical models in computer
vision, pp 375–388

29. Ranftl R, Vineet V, Chen Q, Koltun V (2016) Dense monocular depth estimation in complex dynamic
scenes. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4058–
4066

30. Rodrigues DG, Grenader E, Nos FdS, Dall’Agnol MdS, Hansen TE, Weibel N (2013) Motiondraw: a
tool for enhancing art and performance using kinect. In: CHI’13 extended abstracts on human factors in
computing systems. ACM, pp 1197–1202

31. Ros G, Sellart L, Materzynska J, Vazquez D, Lopez AM (2016) The synthia dataset: a large collection
of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp 3234–3243

32. Scharstein D, Szeliski R (2003) High-accuracy stereo depth maps using structured light. In: 2003. Pro-
ceedings. 2003 IEEE computer society conference on computer vision and pattern recognition. IEEE,
vol 1, pp i–i

33. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition.
arXiv:1409.1556

http://www.pascal-network.org/challenges/VOC/voc2011/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2011/workshop/index.html
http://arXiv.org/abs/1609.03677
http://arXiv.org/abs/1708.02550
http://arXiv.org/abs/1409.1556


Multimed Tools Appl

34. Spinello L, Arras KO (2011) People detection in rgb-d data. In: 2011 IEEE/RSJ international conference
on Intelligent robots and systems (IROS). IEEE, pp 3838–3843

35. Subbarao M, Surya G (1994) Depth from defocus: a spatial domain approach. Int J Comput Vis
13(3):271–294

36. Torralba A, Oliva A (2002) Depth estimation from image structure. IEEE Trans Pattern Anal Mach Intell
24(9):1226–1238

37. Uhrig J, Cordts M, Franke U, Brox T (2016) Pixel-level encoding and depth layering for instance-level
semantic labeling. In: German conference on pattern recognition. Springer International Publishing,
pp 14–25

38. Wedel A, Franke U, Klappstein J, Brox T, Cremers D et al (2006) Realtime depth estimation and obstacle
detection from monocular video. Lect Notes Comput Sci 4174:475

39. Yonas A, Pettersen L, Granrud CE (1982) Infants’ sensitivity to familiar size as information for distance.
Child Dev 53(5):1285–1290

40. Zhang Z (2012) Microsoft kinect sensor and its effect. IEEE Multimed 19(2):4–10

Simone Bianco obtained his PhD in computer science at DISCo (Dipartimento di Informatica, Sistemistica
e Comunicazione) of the University of Milano-Bicocca, Italy, in 2010. He obtained his BSc and the MSc
degrees in mathematics from the University of Milano-Bicocca, Italy, in 2003 and 2006, respectively.
He is currently Assistant Professor and his research interests include computer vision, machine learning,
optimization algorithms, and color imaging.

Marco Buzzelli obtained his Bachelor Degree and Master Degree in Computer Science at University
of Milano-Bicocca (Italy), respectively in 2012 and 2014, focusing on Image Processing and Computer
Vision tasks. He is currently a PhD student in Computer Science. His main topics of research include
characterization of digital imaging devices, and image understanding in complex scenes.



Multimed Tools Appl

Raimondo Schettini is Full Professor at the University of Milano Bicocca (Italy). He is Vice-Director of the
Department of Informatics, Systems and Communication, and head of Imaging and Vision Lab (www.ivl.
disco.unimib.it). He has been associated with Italian National Research Council (CNR) since 1987 where he
has leaded the Color Imaging Lab from 1990 to 2002. He has been team leader in several research projects
and published more than 300 refereed papers and several patents about color reproduction, image processing,
analysis and classification. He is Fellow of the International Association of Pattern Recognition (IAPR) for
his contributions to pattern recognition research and color image analysis.

www.ivl.disco.unimib.it
www.ivl.disco.unimib.it

	A unifying representation for pixel-precise distance estimation
	Abstract
	Abstract
	Introduction
	Background and related works
	Proposed representation for distance information
	Datasets transformation to common representation
	Experiments
	Training preprocessing
	Evaluation procedure
	Results using our proposed unified representation
	Application of the proposed unified representation to other methods in the state of the art
	Multi-class evaluation of the proposed unified representation

	Conclusions
	References


