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Abstract—We propose a novel modular CNN architecture that
provides semantic segmentation and understanding of outdoor
street environment images. Our solution processes a 512x1024
resolution image on a single Titan Xp GPU at 37.4 FPS attaining
70.4% IoU on the Cityscapes test dataset.

Index Terms—semantic segmentation, efficient street scene
parsing, deep convolutional neural network, multiresolution pro-
cessing

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have become the
standard baseline of many computer vision tasks [1]–[3]. Since
the last five years almost all best performing models are based
on (possibly deep) learned features as opposed to tailored-to-
the-problem handcrafted features. Furthermore the increasing
efficiency of novel CNN models and the introduction into the
market of low-power embedded GPUs made the employment
of CNN architectures computationally feasible for a wide
range of practical applications. More than others, the automo-
tive field has seen a strong expansion in recent years where a
crucial role is played by perception systems for autonomous
vehicles and for assisted driving.

The purpose of this work is to design a CNN architecture
that can provide semantic segmentation and a global scene
understanding in outdoor street environments. Our Neural Net-
work architecture receives as input RGB images and provides
a probability distribution over object classes for each pixel
in the input image. The network is designed to process still
images independently.

In the following paragraphs we introduce our contributions
and a review of related CNN architectures for semantic
segmentation. In Section II the dataset and the evaluation
metrics adopted are presented. In Section III the proposed
CNN architecture is described by outlining all the design
choices and motivating them with experimental results. Section
IV presents crucial implementation details to reproduce our
results. Section V presents a comparison with state-of-the-
art CNN architecture and finally Section VI presents further
extensions that can be integrated into our baseline architecture.
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Fig. 1. Our Deep CNN architecture for semantic segmentation.

A. Focus and contributions

We focus on semantic segmentation of street images for
car-specific applications, where a model is continuously run
on vehicles in order to quickly make decisions in reaction
to environmental events. For this reason, our choices emerge
from a compromise between precision and processing speed,
building an efficient architecture that is based on a lightweight
decoder. Our contributions are: we designed a new network
architecture based on multi-resolution analysis, presented in
Section III, which is able to achieve high quality predictions
without sacrificing efficiency. The system we present can pro-
cess an image with a resolution of 512×1024 pixels on a single
GPU at 37.4 FPS, reaching 70.4% IoU in the Cityscapes test
dataset. We have adopted an incremental approach in designing
our network, as we highlight the advantages and disadvantages
of each choice, and we have included the implementation
details in Section IV with the aim of making the experiments
easily repeatable. We designed a deep learning-based solution
that is highly modular. The network architecture for semantic
segmentation can be, in fact, further improved by adding an
upsampling module as shown in Section V, or horizontally
extended with additional tasks such as depth estimation, as
shown in Section VI.

B. Related works

The great majority of current image segmentation archi-
tectures are based on the encoder-decoder structure [3] to
exploit a large receptive field and, at the same time, to
produce high-resolution predictions. Architectures that use
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dilated convolutions [4]–[6] to expand the receptive field, also
adopt some form of downsampling to keep the computational
effort low. Semantic maps are generally produced at 1/8 or
1/16 of the final resolution, and are subsequently upsampled
using either nearest or bilinear interpolation.

A good compromise between processing speed and accuracy
is difficult to achieve, and it heavily depends on the final
application. For this reason, existing works can typically be
categorized into two classes:

1) Accuracy-oriented architectures: The first work that
successfully used CNNs for semantic segmentation is FCN
[3]. Authors used a pre-trained encoder in conjunction with a
simple decoding module, applying skip connections from the
lower-level layers to process high-resolution activation maps.
DeepLab [7] included Dilated Convolutions [8] to increase
the context awareness (i.e. receptive field) of inner layers,
while keeping a low number of parameters. Several methods
adopted the Residual Network architecture [9] as encoder
(such as DeepLabv2 [10], Resnet38 [11], FRRN [12]), further
improving performance on the task of semantic segmentation.
DeepLabv3 [6] and PSPNet [5] introduced the concept of con-
text layers to further expand the theoretical receptive field of
internal activations. These methods achieve high accuracy on
different benchmarks but at the expense of high computational
costs.

2) Efficiency-oriented architectures: ENet [13] was devel-
oped as a high-speed architecture, drastically increasing the
efficiency of the model, but sacrificing accuracy. ERFNet
[14] adopted a very simple encoder-decoder structure inspired
by ENet. ERFNet authors designed the network structure on
Residual Factorial convolutions that efficiently process the
input signal with dedicated filters for each spatial dimension.
SegNet [15] exploits high-resolution information by saving
max-pooling indices at the encoding stage, and subsequently
using them during the decoding phase. The design of ICNet
[16] is based on a three-branch architecture with deep training
supervision. The authors also experimented with a form of
model compression to further accelerate the network.

II. DATASET AND EVALUATION METRICS

We carried out our experiments on the Cityscapes [17]
dataset, which is a set of urban street images annotated with
pixel-wise semantic information. It is composed of 5000 high
resolution images (2048×1024) out of which 2975, 500 and
1525 images belong respectively to train, validation and test
subsets. Annotations include 30 different classes of objects,
although only 19 are typically used for training and evaluation.
Two metrics are used for model validation: mean of class-
wise Intersection over Union (mIoU), defined as the mean
of mIoU computed independently for each class, and Frame
Per Second (FPS), defined as the inverse of time necessary
for our network to perform one forward pass. All the FPS
performances reported in the following sections are referred
to a single Titan Xp GPU.

Encoder baseline enc4 enc24 enc24shared enc124shared
Multiresolution X X X
Shared Parameters X X
Subsampling factor 1 4 2 + 4 2 + 4 1 + 2 + 4
mIoU (%) 65.5 57.5 61.5 63.0 64.2
FPS 6.7 50.6 38.7 38.7 24.9

TABLE I
PERFORMANCE ON CITYSCAPES VALIDATION SET AND SPEED (FPS) OF

FOUR ENCODER ARCHITECTURES. baseline IS A FULL-RESOLUTION
NETWORK. enc4 IS TRAINED AND EVALUATED WITH DOWNSAMPLED

INPUT. enc24 AND enc124 MEANS 2 AND 3 BRANCHES WITH
SUBSAMPLING FACTORS 2,4 AND 1,2,4 RESPECTIVELY. shared MEANS

THAT WEIGHTS ARE PARTIALLY SHARED BETWEEN BRANCHES. IN BOLD
THE CONFIGURATION ADOPTED IN THE FINAL MODEL.

III. NETWORK DESIGN

We propose a Neural Network which consists of a multires-
olution architecture that jointly exploits high-resolution and
large context information to produce an accurate segmentation
of the input image. Our network relies on an encoder-decoder
structure as depicted in Fig. 1. The encoder is composed by
two branches with partially shared weights which task is to
extract fine and coarse features from the input image sub-
sampled at two different resolutions. The two multiresolution
signals are merged by a fusion module presented in Section
III-C. The decoder performs a compression in the channels
dimension followed by an upsampling. The output of the net-
work is a class-wise probability distribution for each pixel. Our
network architecture, based on a fully-convolutional encoder-
decoder, is presented in details in the following subsections.
We designed our network through incremental steps. Each
design choice is motivated by experimental results. We started
from a baseline model and incrementally added single features
analyzing benefits and disadvantages.

A. Input down-sampling

Input down-sampling is a simple way to speedup inference
process. However aggressive down-sampling causes loss of
fine details (e.g. precise borders between classes, fine textures).
We setup two simple explorative experiments to investigate a
trade-off between system speed and accuracy. We employed a
DRN-D-22 model [4] pretrained on Imagenet as encoder and a
simple bilinear upsampling as decoder. We trained and tested
this base model with two different subsampling values. The
first column of Table I shows the mIoU of the baseline model
without subsampling. Than the same model is trained and
evaluated with input images subsampled by factor 4 (second
column). Model speed increases from 6.7 FPS to 50.6 but
mIoU drops by 8%.

B. Multiresolution encoder

We designed a multi-resolution architecture as a com-
promise between model speed and discriminative power.
Our multi-resolution encoder consists two branches: a low-
resolution branch which is composed of all the layers of a
Dilated Residual Network 22 type D (DRN-D-22) [4] with
the exception of the last two. A medium-resolution branch
with only the first layers of the DRN-D-22 before dilated
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Fig. 2. Two fusion module configurations. Both exploit addiction as merge
strategy. postproc sum performs a dimensionality reduction.

Fusion Module base sum base concat postproc sum postproc concat
Sum X X
Concat X X
Postprocessing Step X X
mIoU (%) 63.0 63.5 65.8 64.2
FPS 38.7 37.8 37.3 36.4

TABLE II
MIOU ON CITYSCAPES VAL SET AND FPS FOR DIFFERENT fusion modules.

DIFFERENCES ARE: SIGNAL SUMMATION OR CONCATENATION AND
PRESENCE OF A POST-PROCESSING STEP. IN BOLD THE CONFIGURATION

ADOPTED IN THE FINAL MODEL.

convolutions. The goal of the first branch is to extract large
context features whereas the goal of the second branch to
extract more local features that will help to recover fine borders
in the decoder. We experimented 3 encoder configurations.
The first named enc24 in Table I, consists of two branches
that process input images with sub-sampling factors 2 and 4
with the structure defined above. The second configuration,
named enc24shared, is similar to the first but weights are
shared between the two branches. Results in Table I show
that the network with shared branches achieve higher mIoU
levels. Weight sharing between branches, as pointed out in
[18], induces an implicit form of regularization. We chose
this configuration as base encoder for the next experiments.
In the third configuration named enc124shared in Table I,
we added a further branch to elaborate full-resolution image.
This brought some performance improvements but we decided
not to employ this configuration in our final model because
the whole system would slow down below the real-time
threshold of 30FPS. The different encoder designs in Table
I have a fixed the decoder architecture which is referred in
Subsection III-C as baseline. Figure 1 depicts the second
encoder design enc24shared. Others have been omitted but
they can be intuitively deduced from the above configuration.

C. Fusion module

The purpose of the fusion module is to join informa-
tion coming from low-resolution and high-resolution encoder
branches. First, input from the low-resolution branch is up-
sampled with a differentiable bilinear filter to match the
spatial size of signal coming from the medium-resolution
branch. Input coming from the medium-resolution branch is
expanded from 128 to 512 channels to match the number
of features of the low-resolution branch. Finally the multi-
resolution signals are merged. In Table II are reported experi-
mental results of four different designs. We experimented both
channel concatenation and addiction as merge strategies named
concat and sum respectively. Moreover we investigated if a

dimensionality reduction can be beneficial to the performance
(postproc). This is in opposition to the baseline where the
final classification layer is fed directly with the signal after
the merge operation (base). Experimental results in Table II
show that both mIoU and speed take advantage of the post-
processing step. The model is benefits from the addictions
of more non-linearities and the final upsampling operation is
applied to a tensors with lower channel dimensions. Figure 2
depicts two different configurations: base sum and postproc
sum, both with addiction merge strategy, without and with the
post-processing step. Fusion modules with concat as merge
strategy have a similar structure.

D. Network architecture

In Table III the complete network architecture is reported.
The upper part of Table III defines the Encoder structure
whereas the bottom part defines the Fusion Module and
the Decoder. The network exhibits a total of 19 Millions
of parameters and requires 58,7 GFLOP to perform single
inference on a 512x1024 image. Most parameters are in the
Encoder and in particular in the Residual Blocks.

A Block is a module composed by three layers: Convo-
lution, Batch Normalization and ReLU. In particular, blocks
with stride=2 perform input downsampling. Residual Blocks
have been presented in [4]. Conv + BN is a single block with
a Convolution followed by a Batch Normalization layer.

The network has two branches in the Encoder that share
the same weights, for this reason in Table III there is only one
column with the number of parameters for the two branches.
The difference between branches relies in the signal resolution.
Branch 2 is fed with a downsampled input. Branch 2 is the
part of the network with the highest computational burden.
Earliest layers of Branch 1 are heavier to compute, for this
reason Branch 1 is shallower by design.

The Fusion Module is composed by a first part where signals
are pre-processed independently followed by a second part
where signals are jointly processed. The Decoder ends with a
Classification layer (i.e. a 1x1 filter convolution) followed by
a bilinear upsampling.

IV. EXPERIMENTAL SETUP

All the network configurations in this paper have been
trained with Stochastic Gradient Descent (SGD) plus momen-
tum. Following [4], we set the base learning rate to 0.001 and
trained for 250 epochs. We adopted a fixed step learning rate
policy. The initial value is decreased two times by a order
of magnitude (at 100 and 200 epochs). We tried different
base learning rates and poly learning rate policy from [7]
but the baseline configuration gave us the best results. We
found that batch size is an important parameter that affects the
final model accuracy. We experimented with different values
finding that the best value for our setup is 8. In contrast to
what claimed in [19], increasing the batch size, in our case,
negatively affects performance. We suppose that the higher
stochasticity introduced by intra-batch dependencies acts as
regularizer, improving the final network performance.



TABLE III
THE PROPOSED NETWORK ARCHITECTURE. FOR EACH MODULE THE OUTPUT SIZE, NUMBER OF OPERATIONS (FLOP) AND NUMBER OF PARAMETERS

ARE REPORTED. Block IS COMPOSED BY CONVOLUTION, BATCHNORM AND RELU LAYERS. THE WORD Dilated MEANS THAT CONVOLUTIONS EXHIBIT A
DILATION TERM.

Encoder
Branch 1 Branch 2

Type Output size FLOP Type Output size FLOP Parameters
Subsample 256x512x3 393,2K 0

Block 512x1024x16 1,2G Block 256x512x16 308,7M 2,4K
Block 512x1024x16 1,2G Block 256x512x16 302,4M 2,3K

Block (stride=2) 256x512x32 609M Block (stride=2) 128x256x32 302,2M 4,6K
Residual Block 128x256x64 3,9G Residual Block 64x128x64 973,2M 131,4K
Residual Block 64x128x128 3,9G Residual Block 32x64x128 973,1M 524,9K

Dilated Residual Block 32x64x256 1,9G 2,1M
Dilated Residual Block 32x64x512 7,8G 8,4M

Dilated Block 32x64x512 4,8G 2,4M
Block 32x64x512 4,8G 2,4M
Fusion Module

Upsample 64x128x512 16,8M 0
Conv + BN 64x128x512 4,8G Conv + BN 64x128x512 19,3G 3,0M

Sum + ReLU 64x128x512 8,4M 0
Block 64x128x256 1,1G 131,3K
Block 64x128x128 268,5M 32,9K

Decoder
Classification 64x128x19 19,9M 2,5K

Upsample 512x1024x19 39,8M 0
Total FLOP: 58,7G Total Parameters: 19,0M

Transformation baseline color jitter lighting jitter random scale
mIoU (%) 65.8 62.6 64.2 67.5

TABLE IV
MIOU ON CITYSCAPES VALIDATION SET WITH DIFFERENT DATA

AUGMENTATION TECHNIQUES USED DURING TRAINING. IN BOLD THE
CONFIGURATION ADOPTED IN THE FINAL MODEL.

Furthermore we investigated some data augmentation tech-
niques. The use of these techniques is almost cost-free in terms
of computational resources at inference time. Even at train
time they can be applied as a CPU pre-processing step in
parallel with GPU computations. To make our model more
robust to different lighting conditions we experimented the
use of some light transformations. We consider this to be an
important characteristic of our system since it is expected to
work on real environments and outdoor scenes. We mainly
applied two light transformations: Color Jitter and Lighting
Jitter. Color Jitter consists in modifying image brightness,
saturation and contrast in random-order. Lighting Jitter is the
same jittering used in [2]. In particular σ = 0.1 is used
as standard deviation to generate random noise. We also
experimented a geometric transform: rescaling. Following [4]
images are resized with a random scale factor between 0.5 and
2. Table IV shows the results of the application of these data
augmentation techniques. Only random scale brought some
improvements, thus we decided to include it in our baseline
training procedure.

V. COMPARISON WITH THE STATE-OF-THE-ART

In Table V we reported the performance of the proposed
architecture along with state of the art methods on Cityscapes
test set. Information about dataset and evaluation metrics are

given in Section II. We only included algorithms that declare
their running time on Cityscapes leaderboard, since usually
those that don’t care about processing time are computation-
ally heavy. Most of these methods, e.g. PSPNet, DeepLabv3
[5], [6] achieve very high mIoU levels (DeepLabv3+ is the
best published model to date, reaching 81.2%), but they adopt
very time-consuming multi-scale testing to increase accuracy,
i.e. they reprocess the whole input image at different scales
and average the results, in order to account for the potentially
different conditions encountered during training. Our network
architecture achieves 68.2% of mIoU on Cityscapes test set
without any postprocessing. By replacing the bilinear upsam-
pling in the decoder with a guided upsampling layer (see
[20] and Section VI) our architecture can achieve 70.4% of
mIoU with a slight speed decrease. mIoU measure has been
computed by Cityscapes online evaluation server. FPS in Table
V refer to a single Titan Xp GPU. Our network performs even
better than some methods like Adelaide [21], Dilation10 [8]
etc. that do not care about speed. Only ICNet [16] and ERFNet
[14] achieve similar performances in terms of mIoU while
being slightly faster. They make use of different strategies
to reach high efficiency predictions which are orthogonal to
ours. ICNet is based on a multiscale architecture similar to
ours but with a different number of scales and different fusion
modules. Authors of ICNet employed auxiliary losses to train
the network while our network can be trained end-to-end with
a single cross-entropy loss. In addiction to that, to lighten
the computational burden of the final model, they compressed
the trained model. This technique is orthogonal to the network
structure design and could be employed in the exact same way
to compress our model, however this goes beyond the purpose
of this work. ERFNet model exhibit high efficiency thanks



Name Subsampling mIoU (%) FPS
SegNet [15] 4 57.0 26.4
ENet [13] 2 58.3 121.5
SQ [22] no 59.8 26.4
CRF-RNN [23] 2 62.5 2.2
DeepLab [7] 2 63.1 0.4
FCN-8S [3] no 65.3 4.9
Adelaide [21] no 66.4 0.05
Dilation10 [8] no 67.1 0.4
ICNet [16] no 69.5 47.9
ERFNet [14] 2 69.7 62.6
Ours (bilinear) 2 68.2 43.9
Ours (guided upsampling) 2 70.4 37.4

TABLE V
COMPARISON WITH STATE-OF-THE-ART METHODS ON CITYSCAPES TEST

SET.

to the use of novel building blocks: Factorized Convolutions.
Again our design choices are orthogonal to this, and our
architecture could easily make use of Factorized Convolutions
to improve efficiency.

VI. FURTHER EXTENSION

The proposed CNN architecture is highly modular and
can be easily extended with addictional modules to improve
the quality of predictions and to exploit extra functionalities.
The decoder module is one of the simplest part of the
architecture and is composed by a dimensionality-reduction
operator followed by an upsampling operator. We chose to
employ the bilinear upsampling operator as a tradeoff between
computational complexity and prediction accuracy. However
the bilinear operator can be substituted with a more powerful
module at the cost of a slightly speed decrease. In Table V we
reported two versions of our CNN architecture with bilinear
and with guided upsampling module [20] in the decoder.
Guided Upsampling [20] is an empowered type of upsampling
operator where the regular sampling grid is warped by a
differentiable CNN module.

Another extension to the current architecture involves multi-
task prediction. It has been shown that jointly predicting mul-
tiple tasks can improve performance on the single objectives
[25], and this is particularly true for semantic segmentation in
conjunction with tasks such as depth estimation and instance
recognition [26]. The current work can in fact be extended
introducing estimation of the absolute distance between the
subjects and the camera, as described in [24]. An example
prediction is shown in Fig. 3 specifically for pixels belonging
to specific semantic classes, although the same process can be
generalized to the whole image.

VII. CONCLUSIONS

A new network architecture to perform real-time semantic
segmentation of street scenes has been proposed. It consists of
a multiresolution architecture to take full advantage of high-
resolution textures and large context information. We evaluated
our network on the Cityscapes test dataset showing that it is
able to achieve 70.4% mIoU while running at 37.4 FPS on a
single Titan Xp GPU.
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Fig. 3. Semantic segmentation results obtained with the proposed network
architecture, and extension with depth estimation from [24].
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