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Abstract. We address the task of image saliency estimation through
proper recombination of existing methods in the state of the art. We
define a general scheme, which we then specialize to perform dataset-
specific and image-specific recombination, based on either linear weight
regression, or method selection. The advantage of this approach lies in
the possibility of exploiting the different strengths of existing methods.
Experiments are conducted with both deep learning and hand-crafted
methods on a widely used dataset, using standard evaluation measures.
The proposed recombination strategy allows us to improve upon the
state of the art, by exploiting a linear combination of the saliency maps
produced by existing methods. We also show that image-specific combi-
nation and selection of saliency maps is limited by the apparent lack of
relevant information intrinsic in the image itself.
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1 Introduction

Saliency estimation refers to the localization of the areas in an image having
particular clue for a human observer, while salient object detection refers to the
detection and segmentation of the most salient objects in the scene. There is,
however, no consensus about the definition of “what saliency is” in the com-
munity. Multiple observers may consider salient different elements in the scene,
and some elements may be considered more salient than others depending on the
scene context and/or on the observer’s cultural background. This makes saliency
estimation an ill-posed problem [1,29]. This is also reflected by the many saliency
detection methods proposed in the literature. As demonstrated by the authors
in [6] and [10], there is no best overall saliency detection algorithm that is able
to achieve equally good results across different benchmark datasets. They ana-
lyze and benchmark many different saliency detection algorithms each based on
different assumptions, heuristics and features that can be either hand-crafted,
learned by Convolutional Neural Networks (CNN), or both.

Among the hand-crafted approaches is [17] that computes saliency from the
perspective of image reconstruction error of background images generated at dif-
ferent level of details. A graph-based manifold ranking is used in [30] to classify
superpixels into foreground and background regions. In [34] an image patch is
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considered not salient if it is heavily connected to the image boundaries. Other
graph-based approaches are the ones presented in [11], and [2]. In [32] is pre-
sented a graph-based approach that exploits a fast Minimum Barrier Distance to
measure a pixel’s connectivity to the image boundary. In [7] the saliency of each
image region is carried out by simultaneously evaluating global contrast differ-
ences and spatial coherence with nearby regions. Color is used in [12] where the
saliency is based on a linear combination of high-dimensional color spaces. In
[22] global contrast, spatial sparsity, and object priors are integrated to estimate
the saliency of image regions. Finally, an approach based on multiple features
computed in a multi-level segmentation schema is presented in [26].

CNN-based approaches are able to process images extracting information
at different levels of details, and can automatically learn what is the relevant
information within an image given a specific task. For example, a multi-branch
approach is proposed in [33] and [15], processing the image at a different level
of details. In [16] the image is analyzed to produce pixel-level and super-pixel
level segmentation maps that are then fused together, while a multi-task learn-
ing scheme based on saliency and segmentation is used in [18]. In [19] it is
designed a novel network architecture that works in a global-to-local manner to
improve saliency detection performance. In [14] both low level and high level
features are exploited in a unified deep learning approach. A CNN is used in
[31] as an embedding function to map pixels and their attributes to classify
them as salient/background. Using different layers in the neural architecture
provides multi-scale feature maps that can be exploited for an efficient salient
object detection. Example of algorithms using this approach are [10], and [3].
Recurrent network architectures can effectively help reducing prediction errors
by iteratively integrating contextual information which is important for saliency
detection. To this end, recurrent convolutional networks are used to refine the
saliency map by correcting errors during the learning process [20,27,28].

2 Proposed Approach to Saliency Estimation

Our approach to saliency estimation is based on the analysis, selection, and
combination of existing saliency estimation methods.

Given an input image i ∈ I, and a set Si = {si,m : m ∈ M} of saliency
predictions produced by |M | existing saliency estimation methods, we construct
a novel saliency map ŝi by linear combination:

ŝi =

( ∑
m∈M

wi,m · si,m

)
≥ T (1)

where wi,m ∈ R, and T = 0.5. Imposing a threshold T on the predictions even-
tually produces a binary estimation of image saliency, which has been shown to
positively affect standard measures [3].

We introduce various additional constraints into Eq. 1, that allow us to frame
the problem in terms of either combination of saliency methods, or selection of
saliency methods.
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2.1 Combination of Saliency Methods

Equation 1 is formulated in terms of linear combination of weights. A Convolu-
tional Neural Network (CNN) is trained to generate the proper set of weights by
processing either the RGB image itself, or the related existing saliency estima-
tions. To this extent, preliminary investigation led to the adoption of a ResNet-18
[9], trained with the objective of reproducing the ground truth saliency maps.
The hard threshold T cannot be directly applied during the training process, as
its non-differentiability would compromise the gradient backpropagation. It has
been instead replaced, at training-time only, with a soft threshold implemented
through a steep sigmoid function. On top of this solution, we experiment with
further constraints:

1. We impose a fixed set of weights for all images:

wi,m = wj,m, ∀i, j ∈ I (2)

In this case, the weights will be optimized globally on the defined training
set, instead of learning to infer them from each RGB image.

2. We limit the linear combination to M (N), defined as the subset of the N
best-performing methods. That is:

wi,m = 0, ∀m ∈ M \ M (N) (3)

2.2 Selection of Saliency Methods

The weight-regression problem defined in the previous sections can be reformu-
lated as a classification task:∑

m∈M

wi,m = 1, wi,m ∈ {0, 1} (4)

To this extent, a CNN is trained with the objective of selecting, for each
image, the best performing method. In this case, the model is trained with a
softmax cross-entropy loss, comparing the performed selection with the defined
best method. The ground truth best method can be determined as the one with
the best performance evaluated with standard measures (see Sect. 3.1). The input
to the neural model can either be the RGB image itself, or the related existing
saliency maps.

Existing literature covers this classification-oriented view of the problem as
an Ensamble Dictionary Learning task (EDL) [35]. Here we focus on whole-image
selection of more-recently developed methods for saliency estimation.

3 Experimental Results

In this section we present the experimental setup, along with results obtained
on saliency estimation with the proposed combination and selection of existing
solutions.
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3.1 Experimental Setup

State of the art methods for saliency estimation are often published along with
the corresponding predictions on standard datasets. The most popular ones are
the MSRAB dataset [21] and the related MSRA10K dataset [7]. In order to setup
a common dataset among all algorithms exploited in this paper, we defined
the MSRAB Validation Subset (366 images) and MSRAB Test Subset (1516
images), as the intersection between the original splits of MSRAB and the entire
MSRA10K dataset. For the optimization of a fixed set of weights, we train on the
MSRAB Validation Subset and evaluate on the MSRAB Test Subset. To learn
the more complex image-specific models, instead, we train on a combination
of existing datasets for saliency estimation from [3], and also evaluate on the
MSRAB Test Subset. Following [10], evaluation is performed in terms of both
MAE and Fβ :

MAE =
1
|I|

∑
i∈I

1
|C|

∑
c∈C

|PRi,c − GTi,c| (5)

Fβ=
√
0.3 = max

t∈T

(
1 + β2

)
1

|I|
∑

i∈I Precisioni(t) · 1
|I|

∑
i∈I Recalli(t)

β2 · 1
|I|

∑
i∈I Precisioni(t) + 1

|I|
∑

i∈I Recalli(t)
(6)

where I is the set of images, C the set of coordinates for every given image,
and T the set of possible thresholds. PR and GT are, respectively, the saliency
prediction and ground truth. Expansion of Precision and Recall is here omitted
for brevity reasons. A mixture measure can also be defined as the average of the
complemented rescaled MAE, and the rescaled Fβ :

mixi,m =
(
1 − normMAE

i,m

)
+ norm

Fβ

i,m (7)

where:

normx
i,m =

xi,m − minm∈M (xi,m)
maxm∈M (xi,m) − minm∈M (xi,m)

(8)

In this work we considered a total of 20 saliency estimation algorithms: ten
hand-crafted, and ten deep-based. For the hand-crafted ones we analyzed SC
[33], DHS [19], MDF [15], ELD [14], DS [18], DCL [16], RFCN [27], DRCN [20],
DSS [10], and MFCN [3]. For the had-crafted algorithms, we considered GMR
[30], DSR [17], MC [11], ST [22], RBD [34], EQC [2], MB+ [32], RC [7], HDCT
[12], and RFI [26].

3.2 Dataset Content Analysis

Before evaluating the combination strategies, we investigated if there is any
connection between image content and best performing algorithm. The first col-
umn in Table 1 shows a priori probabilities of each method (belonging to either
the deep learning, or hand-crafted family) being the best one for the analyzed
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Table 1. A priori and conditioned probabilities of different methods (M) given a
certain type of content (belonging to either C1 and C2). Algorithms are sorted in
descending order by the mixture measure defined in Eq. 7.

Method P (M) P (M|C1) P (M|C2)

Object Scene/in Scene/out No-people People

Deep learning (DL) DHS [19] 0.553 0.517 0.709 0.593 0.553 0.553

ELD [14] 0.193 0.249 0.109 0.117 0.206 0.142

DSS [10] 0.144 0.118 0.073 0.190 0.130 0.198

RFCN [27] 0.012 0.018 0.000 0.003 0.013 0.006

DCL [16] 0.046 0.038 0.036 0.059 0.044 0.053

DS [18] 0.003 0.002 0.018 0.002 0.003 0.003

MFCN [3] 0.007 0.008 0.000 0.005 0.006 0.009

SC [33] 0.001 0.002 0.000 0.000 0.002 0.000

MDF [15] 0.033 0.041 0.055 0.019 0.037 0.019

DRCN [20] 0.008 0.006 0.000 0.012 0.006 0.016

Hand-crafted (HC) EQC [2] 0.201 0.193 0.200 0.214 0.216 0.145

DRFI [26] 0.119 0.104 0.127 0.139 0.114 0.138

ST [22] 0.171 0.159 0.200 0.185 0.169 0.179

MB+ [32] 0.108 0.097 0.091 0.126 0.105 0.119

RBD [34] 0.113 0.139 0.055 0.080 0.119 0.088

GMR [30] 0.123 0.148 0.182 0.081 0.125 0.116

DSR [17] 0.068 0.057 0.073 0.083 0.063 0.085

RC [7] 0.030 0.026 0.000 0.039 0.028 0.041

MC [11] 0.035 0.052 0.018 0.012 0.040 0.016

HDCT [12] 0.032 0.024 0.055 0.041 0.021 0.072

dataset. We can see how these distributions change when conditioned on two
types of image content: the first conditioning (C1) partitions the possible subjects
into “object”, “scene (indoor)”, and “scene (outdoor)”. The second conditioning
(C2) considers the presence or absence of people in the image. We observe little
impact on the probability distribution over M with or without different types of
conditioning. This suggests little to no connection between the considered image
content and best performing method.

3.3 Combination of Saliency Methods

The first experiment consists in determining a set of linear combination weights
specific for each input image. This has been dealt with by defining a CNN that
predicts the linear weights as a function of either the RGB image itself, or the
saliency estimation maps produced by existing saliency estimation methods.

The second experiment consists in evaluating a dataset-specific weights com-
bination instead of image-specific ones. In order to do this, we optimize a fixed
set of weights in Eq. 1 to be applied for all the images. As shown in the third and
fourth rows of Table 2, for this experiment the best results were obtained on deep
learning methods using as input the RGB images, producing 0.0253 MAE and
0.9418 Fβ . These values represent an improvement with respect to the reported
baselines in the first and second rows of Table 2: best single method and com-
bination with uniform weights. The best single method refers, respectively, to
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Table 2. Performance obtained with method combination on the MSRAB Test Subset.

Deep learning (DL) Hand-crafted (HC)

MAE Fβ MAE Fβ

Single best method (DHS [19] and EQC [2]) 0.0275 0.9365 0.0927 0.8365

Uniform weights 0.0265 0.9407 0.0715 0.8803

Image-specific weights (from RGB) 0.0253 0.9418 0.0601 0.8928

Image-specific weights (from saliency) 0.0254 0.9426 0.0590 0.8953

Dataset-specific weights (fixed) 0.0242 0.9445 0.0528 0.8887

DHS for deep learning solutions and EQC for what concerns hand-crafted algo-
rithms. The fixed weights optimization allowed reaching 0.242 MAE and 0.9445
Fβ on deep learning methods, compared to the best single-method DHS (0.0275
MAE and 0.9365 Fβ). Significant improvements are also observed on hand-
crafted methods, although the obtained performance does not reach the level of
deep learning solutions. As a general observation, the simpler fixed-weights setup
appears to outperform the generation of image-specific weights. We hypothesize
that the RGB images do not contain enough information to provide the necessary
nuanced image-specific sets of weights.

To further explore the promising fixed-weights setup, we optimize on a
varying subset of saliency estimation methods. Figure 1 shows the performance
obtained, in terms of MAE and Fβ , by imposing zero weights on all but the
first N best performing methods, as ordered as in Table 1. As a comparison,
uniform weights are also reported. It can be seen that introducing more than
four best-performing methods in a uniform-weight linear combination, deterio-
rates the overall performance. This is especially evident for what concerns the
deep learning methods (sub-figures (a) and (b)). Corroborating this observation,
the improvement introduced by proper weight optimization on less performing
methods appears to be negligible. Notice that the curve trend on the training set
is not strictly decreasing due to the optimization being guided by a mixture of
the two metrics, and due to the randomness of the mini-batch training process.

3.4 Selection of Saliency Methods

In this Section, we present an analysis on image-specific selection of saliency
estimation methods. To this extent, Table 3 offers several baselines: uniform
sampling is a purely random selection of the input saliency estimation method,
while prior sampling takes into account the a priori probability of each method
being the best solution on the MSRAB Test Subset. It should be noted that
the prior sampling under-performs with respect to the best single method, due
to the adopted metrics not being directly related to classification accuracy. An
ideal oracle could be based on MAE, Fβ , or a mix of the two measures, as
shown in rows four to six in Table 3, reaching in the best scenario 0.0200 MAE
and 0.9553 Fβ for deep learning methods. These values can therefore be consid-
ered the upper-bound of any solution for automated selection of image-specific
saliency estimation methods.
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Fig. 1. Performance of fixed weights on the MSRAB Validation Subset and Test Sub-
set, obtained by optimizing on only the first N best performing saliency estimation
methods.

For this experiment, a CNN has been trained with the task of replicating the
effect of each mix-based oracle, in selecting the best saliency estimation method
for each specific image, based on a processing of the RGB image or the existing
saliency estimation maps. The results reported in the last two rows of Table 3
show that, for deep learning solutions, only a small improvement over the best
single method can be obtained by analyzing the available saliency maps, while
the RGB images do not contain enough information to perform the task. This
is in line with what has already been observed for methods combination. In the
case of hand-crafted methods, the results obtained by the trained neural models
outperform all reported baselines (Fig. 2).

3.5 Embedding Analysis

In this section we want to assess if indeed the RGB images contain enough
information to capture the necessary nuanced for the optimization of image-
specific weights (Sect. 3.3) or to predict the best method to apply (Sect. 3.4). To
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Input
(a)

GT
(b)

Best
single
method

(c)

Ours
(fixed

weights)
(d)

Fig. 2. Visual results of our approach to combination of saliency estimation maps. Rows
(a) and (b) show, respectively, the starting image and the corresponding ground truth
annotation. Row (c) is the best single method solution. Row (d) is our fixed-weight
optimization.

Table 3. Performance obtained with method selection on the MSRAB Test Subset.

Deep learning (DL) Hand-crafted (HC)

MAE Fβ MAE Fβ

Single best method (DHS [19] and EQC [2]) 0.0275 0.9365 0.0927 0.8365

Uniform sampling 0.0734 0.8632 0.0889 0.8406

Prior sampling 0.0355 0.9213 0.0863 0.8444

Oracle (MAE) 0.0173 0.9538 0.0473 0.9105

Oracle (Fβ) 0.0200 0.9521 0.0610 0.8997

Oracle (mix) 0.0175 0.9553 0.0465 0.9171

Image-specific selection (from RGB) 0.0298 0.9319 0.0795 0.8565

Image-specific selection (from saliency) 0.0270 0.9368 0.0835 0.8524

this end, we extract a set of features that describe images from different points

Table 4. 1-NN classification performance of the different features considered.

Features Accuracy (macro) Accuracy (micro)

Single best method (DHS [19]) 0.4677 0.1000

RGB 0.2863 0.1066

RGB histogram 0.2850 0.1060

LBP 0.2876 0.1206

HOG 0.2559 0.0945

AlexNet 0.3008 0.1209

Inception-ResNet-v2 0.3047 0.1200
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of view: simple RGB statistics (channel average and standard deviation), RGB
histograms (concatenation of the channel histograms each with 16 bins), LBP
[24], HOG [8], CNN features from two models trained on ImageNet: AlexNet
[13], chosen for its popularity, and Inception-ResNet-v2 [25], chosen for its good
balance between accuracy and number of operations [4]. Further experiments
might also take into account local descriptors [5]. The analysis is performed by
creating 2D projections of each feature with t-SNE [23]. The projections are
reported in Fig. 3. Each point represents the projection of a feature extracted
from one image, and its color corresponds to the best method for that given
image. From the projections it is possible to notice that for certain features some
clusters emerge. In the ideal case, an informative feature, would create a separate
cluster for each method. In order to measure the purity of the clusters created, we
perform a 1-NN classification on each feature. The classification results in terms
of both macro-averaged and micro-averaged accuracy are reported in Table 4. As
a further comparison, we also add the performance of the classifiers that always
predicts to use the global best method (i.e. DHS). From the results reported it
is possible to notice that the best results are obtained by the CNN features, but
that the results are very low, suggesting a large impurity in the clusters thus
enforcing the hypothesis that the RGB images do not contain enough information
(or do not provide suitable information) to perform this task.

RGB RGB histogram LBP

HOG AlexNet Inception-ResNet-v2

Fig. 3. 2D t-SNE [23] projections of each feature considered. (Color figure online)
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4 Conclusions

By considering all the different rationales in existing saliency estimation algo-
rithms, and their diverse levels of performance, we define a general scheme for
saliency estimation through proper recombination of existing methods in the
state of the art. The advantage of this approach lies in the possibility of exploiting
the different strengths of existing methods. We treat the combination problem
as either linear weight regression, or method selection. We are able to improve
performance on the state of the art by optimizing a linear combination over
a subset of saliency estimation method. Several attempts at producing image-
specific combination resulted in sub-optimal results. Further analysis showed the
apparent non-correlation between image content and best performing saliency
estimation algorithm for both the combination and selection tasks.
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