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Abstract. We investigate the negative effects of rain streaks over the
performance of a neural network for real time semantic segmentation of
street scenes. This is done by synthetically augmenting the CityScapes
dataset with artificial rain. We then define and train a generative adver-
sarial network for rain removal, and quantify the benefits of its applica-
tion as a pre-processing step to both rainy and “clean” images. Finally,
we show that by retraining the semantic segmentation network on images
processed for rain removal, it is possible to gain even more accuracy, with
a model that produces stable results in all analyzed atmospheric condi-
tions. For our experiments, we present a per-class analysis in order to
provide deeper insights over the impact of rain on semantic segmentation.
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1 Introduction

The automotive field has seen a strong expansion in recent years, where a cru-
cial role is played by perception systems for autonomous vehicles and for assisted
driving. The development of computer vision techniques in this field potentially
allows for a decrease of the production costs due to the exploitation of inexpen-
sive hardware, i.e. RGB cameras in place of depth sensors. Large benchmark
datasets such as the CityScapes dataset have proven to be extremely valuable in
developing and testing automotive-related solutions, such as networks for monoc-
ular depth estimation [1] and for semantic segmentation [10] of street scenes.

The specialized literature is mostly focused on either improving the model
accuracy, or in reducing the computational complexity of the involved models.
Relatively little effort has been put into investigating and quantifying the impact
of meteorological conditions over the method performance, including phenom-
ena that alter the image quality such as haze, rain, and changes in illumination
conditions. This is mostly due to the lack of appropriate datasets, i.e. real-life
photos acquired in bad weather conditions, and annotated for computer vision
tasks such as semantic segmentation. For this reason, in fact, we will resort to
synthetic rain augmentation over annotated datasets for the quantitative exper-
iments presented in this paper.



2 S. Zini et al.

Valada et al. [17] presented a multi-stream deep neural network that learns
features from multimodal data, and adaptively weights different features based
on the scene conditions. The authors assessed semantic segmentation on the
synthetic dataset Synthia [15] (which includes rainy scenes), but did not offer
a direct comparative evaluation on the presence and absence of rain-induced
artifacts. Khan et al. [6] created an entirely artificial dataset for semantic seg-
mentation in different atmospheric conditions, to be used as training data for
the task. We argue that although synthetic data generation is essential in pro-
ducing an adequately large database, introducing synthetic rain artifacts over
real images would instead offer the grounds for an evaluation that is closer to
a real-case scenario. Porav et al. [13] focused on the removal of rain droplets,
which by definition refer to the artifacts introduced by a wet glass on a clear
day. As such these are only partially representative of real-case scenarios. Halder
et al. [3] developed a physics-based data augmentation technique, used to train
more robust models for semantic segmentation, although they offer no insights
on the benefits of rain-removal techniques. Recently, Li et al. [7] defined a uni-
fied benchmark for images perturbed by rain streaks, rain drops, and mist, and
tested different methods for rain removal, including among the evaluation crite-
ria the impact over vehicle detection. In terms of general purpose rain removal,
without emphasis on its impact over other computer vision tasks, the scientific
literature offers a wide variety of solutions. A recent review by Yang et al. [18]
presents a comprehensive analysis of methods, from model-based to data-driven.

In this paper, we focus on the effects of rain streaks on a neural network
for semantic segmentation of street scenes. We experiment with a semantic seg-
mentation architecture that belongs to the class of “real time” solutions, as we
consider it to be an interesting use case for a stress test, whereas accuracy-
oriented networks would be implicitly more robust. The domain of semantic
segmentation inherently enables a fine-grained analysis of the results, as per-
class performance can be individually scrutinized. The aforementioned lack of
annotated datasets for semantic segmentation in a rainy environment is here
addressed by performing synthetic data augmentation, in the form of artificial
rain streaks. Additionally, we are interested in evaluating to what extent it is
possible to regain semantic segmentation accuracy by exploiting rain removal
techniques. For this reason, we introduce a generative model for the removal of
rain streaks, to be applied over the synthetically-augmented images.

2 Methodology for rain generation, rain removal, and
semantic segmentation

In this section we describe the building blocks of our study over the impact of
rain on semantic segmentation of street scenes. We first describe how artificial
rain streaks can be generated and introduced on existing datasets. We then define
a generative adversarial network for the removal of rain in digital images, and
finally we define the adopted encoder-decoder network for real-time semantic
segmentation.
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In this and the next sections, we will call the images clean, rainy, and rain-
removed in relation to their status: with clean images, we will refer to images
taken in clear weather conditions, with rainy images, we will refer to pictures
taken under rainy weather, and finally, with rain-removed images, we will refer
to images processed in order to remove the rain originally presents in the picture.

2.1 Synthetic Rain Augmentation

In order to reproduce semi-realistic rainy images, following the work done in
[20], we decided to generate random rainy masks to apply over the target images.
Differently from [19], instead of using Photoshop to generate a limited number of
masks to randomly apply to the images, we used MATLAB to create a random
rainy mask generator, which for each image generates a new mask, based on some
parameters randomly selected in ranges that have been defined empirically, with
respect to the original approach from [19] and the objective of obtaining semi-
realistic rainy images. The pipeline is represented in Figure 1.

Starting from an SRGB image, the process first generates a raindrop mask, by
choosing four parameters: d; rain density, o1 Gaussian filter dimension, {1 streak
length, oy falling angle. After that, a rain streaks map is generated using two
parameters previously chosen for the first mask: [; streak length and o; falling
angle, and two other ones chosen at this step: ds rain density and oy Gaussian
filter dimension. Eventually, an optional haze mask is generated. These three
masks are then applied to the image in order to obtain the rainy version of the
original input image.

Raindrop mask Rainstreak mask Haze mask
generation generation generation

« dq rain density + dp rain density .

« o1 gaussian filter « 0 gaussian filter [optlonal step]
« |y length « |y length

* ay angle * ay angle

Fig. 1: Steps of the pipeline designed for the synthetic rain generation

2.2 Generative Adversarial Network for Rain Removal

In order to perform the rain removal process we employed an autoencoder Con-
volutional Neural Network (CNN) based on the U-Net architecture, trained in
a conditional Generative Adversarial Network (GAN) framework. In particular
we adopted the method used for rain reduction in [20].
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The structure of the rain removal CNN is based on the U-Net [14] architec-
ture, with the addition of skip connections as done for Pix2Pix network [4]. The
architecture is shown in Figure 2. Based also on recent works related to image
enhancement, some changes have been made to the classical U-Net architecture,
in order to reduce the introduction of artifacts and improve the quality of the
final results:

— The normalization layers have been removed from the model, in order to
avoid the generation of artifacts, as done in [8] and [12].

— Max-pooling operation have been replaced with convolutions with 2-pixel
stride to reduce feature spatial dimensions, without losing useful information
for the restoration process.

— A combination of bilinear upsampling with 2D Convolution has been adopted,
to reduce artifacts coming from the application of the deconvolutional layers
in the decoder part of the network.

In order to train the model in a Generative Adversarial Network framework
we adopted a patchGAN discriminative network, trained in a Conditional GAN
training approach [11]. The architecture of the discriminative model is shown in
Figure 2. During the training phase the discriminative network is fed with the
concatenation of the enhanced image and the original input image. The overview
of the network combination for training is shown in Figure 3.
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Fig. 2: Generative and discriminative model architectures. The generative model
is a U-Net autoencoder style architecture: the max pooling layers have been
replaced with convolutions with strides>1 and the upscaling operation is per-
formed with Bilinear Interpolation combined with convolutions. The discrimi-
native network is based on the architecture of the Conditional PatchGAN dis-
criminator.

Loss Function The loss function used to train the model is defined as:
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Fig. 3: Training system with Conditional patchGAN.

Loss = A¢ - Le 4+ Agav - Lagw + Ap - L. (1)

which is the combination of three loss functions, weighted by three different
weight values Ac, Agdw, Ap

Given an image pair {z,y} with C channels, width W and height H (i.e.
C x W x H), where z is the input image and y is the corresponding target, we
define the three loss function as follows.

The per-pixel Euclidean loss, defined as:

¢ W H

e = g 2o 20 - 0 —y )

c=1w=1h=1

where ¢g(-) is the learned network for rain removal.

The perceptual loss [5] defined as distance function between features ex-
tracted from the target and output images, using a pre-trained VGG network
[16]:

L :;i%inv((b (xc,w,h))_v( c,w,h)||2 (3)
P CWLH; E Yl

c=1w=1h=1

where V(+) represents a non-linear CNN transformation (VGG16 network).
Finally, the original GAN loss described as:

Ladv = B y[log D(2,y)] + Ex[log(1 — D(z, G(x)))]; (4)

where G(-) is the trained generative network for image de-raining.

2.3 Encoder-decoder Network for Semantic segmentation

Semantic segmentation integrates traditional image segmentation (which parti-
tions the input image into subregions without a regular shape) with the cate-
gorical classification of each generated subregion. The great majority of current
image segmentation architectures are based on the encoder-decoder structure [9]
to exploit a large receptive field and, at the same time, to produce high-resolution
predictions.
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Fig. 4: Schematic representation of the iGUM encoder-decoder architecture used
for real-time semantic segmentation. Each activation is annotated with the cor-
responding number of channels.

We focus our study on the iGUM network (improved Guided Upsampling
Module) [10]. The architecture, shown in Figure 4, is composed of a lightweight
encoder and a iGUM-based decoder.

The encoder structure is compact and thus efficient. Its main building block
is a lightweight non-bottleneck residual block with two asymmetric kernels (3x 1)
and (1x3) preceded and followed by 1x 1 channel-wise convolutions. The encoder
produces two low-resolution outputs: the probability map per class (L), and a
low-resolution Guidance Offsets Table (GOT), which is then upsampled to the
target resolution by means of a scaling factor f. Both branches serve as input
to the iGUM module.

In encoder-decoder architectures, the decoder typically plays a refinement
role where features are iteratively upsampled to match the input size and to fi-
nally output a dense per-pixel prediction. In this case, the decoder is effectively
replaced in toto by the iGUM module: whereas semantic segmentation tradi-
tionally involves the prediction of a dense per-pixel map of class probabilities,
the iGUM module introduces a more efficient representation, which allows for
a non-uniform density grid. Let L € RVN*M*C e the low-resolution C-channel
probability map, and let p; and ¢; be the two channel composing the Guid-
ance Offsets Table at high resolution. The output of iGUM, a high-resolution
map H € RIVXIMXC g computed as a generalization of the nearest neighbor
operator:

N M
Hy = % L(S(|@] +pi +05] —m), 8(|y; + 4 +05] —n))  (5)

n m

Indices n and m slide over the low-resolution dimensions, while index 7 is used
to indicate the high-resolution domain. z and y; are the spatial sampling coor-
dinates. |xf + 0.5] and |yf + 0.5 round the coordinates to the nearest integer
location, and § is a Kronecker function for input selection. Offsets p; and g;
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effectively shift the sampling coordinates of each grid element in the z and y
dimensions respectively.

3 Experiments

3.1 Dataset and evaluation metrics

We performed our experiments on the Cityscapes [2] dataset: a set of urban
street images annotated with pixel-wise semantic information. It is composed
of 5000 high-resolution images (2048x1024) out of which 2975, 500 and 1525
images belong respectively to train, validation and test subsets. Annotations
include 30 different classes of objects, although only 19 are typically used for
training and evaluation, plus a background class:

e road e pole o sky e bus

e sidewalk o traffic light ® person e train

e building e traffic sign e rider e motorcycle

e wall e vegetation e car e bicycle

e fence e terrain o truck e (background)

The dataset is characterized by a vast diversity of scenes, with images taken from
different cities all with good or medium weather conditions.

Two metrics are used for model validation: avereage of class-wise Intersection
over Union (IoU, also called Jaccard Index) and average class-wise Accuracy.
These are computed as:

TP
U= 7p FP L PN ©
TP
ACCuraCy = m (7)

Where TP, FP and FN are, respectively, the number of True Positive, False
Positive, and False Negative pixels.

3.2 Experimental Results

In this section we are going to analyze the performance of the semantic segmen-
tation model in relation to the condition of the data involved (i.e. “clean”, rainy,
and rain-removed). We evaluate the model considering condition of data used
for training as well as for validation.

For the analysis we have considered three version of the Cityscapes dataset:

— Clean images: the original images from the Cityscapes dataset.

— Rainy images: images obtained using the synthetic mask generation algo-
rithm starting from the “clean” images.

— Rain-removed images: images obtained by removing the rain from the
rainy images version of the Cityscapes, using the rain reduction algorithm.
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This analysis has been done with the purpose of studying how the level of
degradation in data can affect the performances of the segmentation algorithm
in inference time, and how it can affect the learning process of the model.

Table 1 and 2 report respectively the mean Accuracy and mean of class-wise
Intersection over Union.

Table 1: Accuracy of semantic segmentation on the Cityscapes validation dataset:
table shows the results in relation to the training data used for the semantic
segmentation network.

Accuracy Test data
Clean Rainy Rain removed
Clean 72.88% 24.73%  41.57%

Training data p oo 35.34% 35.75%  34.66%

Rain removed 69.75% 67.00% 67.96%

Table 2: Intersection Over Union of semantic segmentation on the Cityscapes
validation dataset: table shows the results in relation to the training data used
for the semantic segmentation network.

TIoU Test data
Clean Rainy Rain removed
Clean 62.59% 15.00% 27.50%

Training data p 0 o 20.48% 29.31%  27.85%

Rain removed 58.03% 56.28% 57.64%

As can be seen from the tables, for what concerns the segmentation with
the model trained on “clean” (rain-free) images, the rain removal step helps
to improve the performance with respect to direct segmentation of rainy im-
ages. While, as expected, with the “clean” validation images the segmentation
algorithm performs better than the other cases. It is interesting to notice how
the rain-removal pre-processing operation brings to an accuracy improvement
of 16.84% and mloU of 12.50% between the rainy images and the rain-removed
ones.

For what concerns the other two training cases, the one with the rainy train-
ing set and the one with the rain-removed training set, we can observe a different
behavior. In both of the cases, independently from the validation dataset used,
the performance of the segmentation model in terms of accuracy an IoU does
not change significantly. This behavior can be related to the amount of informa-
tion present in the images used for training. In the first of these two cases, the
network trained with the rainy images is not able to perform better than 36% in
terms of accuracy, and 30% in terms of mIoU. Since during the training phase,
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part of the information in each image is always occluded or corrupted, the model
is not capable to learn correct feature extraction for the classification of some
specific classes. Looking at the per-class mIoU analysis in Figure 5b, some of
the classes have mIoU of 0% or values very near to zero. As can be seen, for the
three validation set the situation is the same for all the classes, behavior that
shows how the limited capability of the network to correctly segment element of
the images is related to the missing information during training time, and not
related to the type of validation data.

Similar behavior can be observed with the model trained with the rain-
removed images. In this case, the performance improves in terms of accuracy
and IoU due to the partially restored information in the training set, after the
use of the rain-removal model. However, the general behavior is the same as the
previous case: even if we test the model with “clean” images, the model is not
able to perform better than the other two validation set cases, due to the missing
knowledge in the training images.

In Figure 5c we can see the per-class analysis: it is easy to observe the same
behavior of the model trained with the rainy images, but it is also possible to
observe an improvement in the segmentation of classes that were not recognized
by the model trained with rainy images. This improvement is related to the
enhancement of the training data due to the pre-processing step over the training
set. Aside, it is interesting how the training with the rain-removed images has
improved the results of the segmentation model with respect to the one trained
with “clean” images.

3.3 Visual inspection

We here present a visual inspection of the impact of rain and rain-removal tech-
niques over semantic segmentation. Figure 6 clearly shows the deterioration in
prediction accuracy introduced by rain-related artifacts (row c¢). The strong tex-
ture of rain streaks completely changes the interpretation of the road and side-
walk areas, which are mistaken as an obstacle (wall/fence). This phenomenon
occurs despite the strong intrinsic bias of the “road” class, that appears in the
plurality of training data pixels, and that occupies a consistent area through-
out different images. On top of this, small regions such as the traffic signs and
far-away vehicles are completely missed.

By processing the rain-augmented image using our rain-removal network, it
is possible to partially restore the accuracy of semantic segmentation in some
of the areas. As Figure 6d shows, the segmentation of the small cars is almost
completely recovered, and part of the road and sidewalk are correctly identified.
A qualitative and subjective evaluation of rain removal on the RGB image shows
arguably less impressive results, suggesting a disconnect between perceived qual-
ity and usefulness for computer vision.

The best results, however, are obtained by retraining the semantic segmen-
tation network using images that were processed with the rain-augmentation
pipeline and subsequent rain-removal. In this case, the prediction in the same
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scenario, as depicted in Figure 6e shows an excellent restoration of several de-
tails, although some imperfections remain in the top-right corner of the example
image.

I:\ Correct class
. Incorrect class
I:' Ignored region

Fig. 6: Impact of rain on semantic segmentation. Row (a) presents the color
coding for semantic segmentation, the ground truth for the analyzed image,
and the legend for error visualization. Rows (b) to (e) show, respectively, the
prediction on the original “clean” image, on the image with artificial rain, on
the image with rain removed, and once again on the image with rain removed
but using a semantic segmentation model trained on images processed for rain
and subsequent rain removal.

For the sake of completeness, we also perform a qualitative evaluation over
two out-of-dataset real-life pictures, depicted in Figure 7. Specifically, we re-
port semantic segmentation results over the original rainy images trained with
the “clean” version of the Cityscapes dataset (column a), and results over rain-
removed images trained with the rain-removed version of Cityscapes (column
b). These two extreme cases show the significant improvement in segmentation
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quality that can be obtained by the joint application of our rain removal net-
work both on training data and inference data. The final results still show some
imperfections, which can be attributed to the different nature of the image data
when compared to the training set, both concerning rain appearance, as well as
the general content and format of the pictures.

4 Conclusions

In this work we investigated the negative effects of rain streaks over the perfor-
mance of neural networks. Specifically we focused on the semantic segmentation
task.

We proposed an analysis of the performance of a semantic segmentation
neural network, in relation to different training configurations, and different
inference conditions.

In order to perform the analysis we defined a pipeline for synthetic rain
generation and a rain removal neural network to augment the Cityscapes dataset,
obtaining three different versions of the dataset for both training and testing the
semantic segmentation network.

The model has been trained in three different conditions: with “clean” images,
with images with artificial rain streaks, and with images processed for removal
of the artificial rain streaks. In the first case the experiments show how the
application of rain-removal on rainy images gives benefit for the segmentation
step of a model trained in optimal image conditions. The other experiments,
regarding the impact of the degraded information in the images used for training
the model, shows how the application of an enhancement algorithm can improve
the performance of the model at inference time. We observed an improvement of
34% of accuracy and 30% of mIoU between the model trained with the degraded
images and the one trained with the enhanced ones.
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(@ (b)

Fig. 7: Visual assessment of rain (column a) and rain-removal (column b) over
real case images, using semantic segmentation trained respectively on “clean”
images, and images processed for rain-removal. Original images credit Nick Ut,
and Genaro Servin.
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