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Abstract: We present a review of methods for automatic estimation of visual saliency: the perceptual
property that makes specific elements in a scene stand out and grab the attention of the
viewer. We focus on domains that are especially recent and relevant, as they make saliency
estimation particularly useful and/or effective: omnidirectional images, image groups for co-saliency,
and video sequences. For each domain, we perform a selection of recent methods, we highlight their
commonalities and differences, and describe their unique approaches. We also report and analyze
the datasets involved in the development of such methods, in order to reveal additional peculiarities
of each domain, such as the representation used for the ground truth saliency information (scanpaths,
saliency maps, or salient object regions). We define domain-specific evaluation measures, and provide
quantitative comparisons on the basis of common datasets and evaluation criteria, highlighting
the different impact of existing approaches on each domain. We conclude by synthesizing the
emerging directions for research in the specialized literature, which include novel representations for
omnidirectional images, inter- and intra- image saliency decomposition for co-saliency, and saliency
shift for video saliency estimation.
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1. Introduction

Visual saliency is defined as a property of a scene in relation to an observer. This follows from a
commonly-accepted interpretation [1–3] that defines it as the set of subjective and perceptual attributes
that make certain items stand out from their surroundings, and therefore grab the viewer’s attention.

In the vision system of human beings and other animals, two components typically contribute to
the overall saliency: bottom-up and top-down factors [4]. Bottom-up saliency is driven by low-level
activations in the vision system, based for example on pre-attentive computational mechanisms in the
primary visual cortex [5], and does not depend on specific tasks and objectives. Conversely, top-down
saliency is defined as being goal-directed [6], and as such it is highly dependent on the intrinsic biases
of the observer, and correlated to the semantics of the depicted elements. Scientific literature reviews for
automatic visual saliency estimation often adopt these two categories to classify existing methods [2].
For example, deep learning solutions are rightfully labeled as top-down approaches due to their
intrinsic ability to extract and exploit semantic pieces of information [7], whereas hand-crafted methods
tend to rely on lower-level features such as contrasting patterns, and are therefore categorized as
bottom-up solutions. In practice, though, multiple interacting factors (both top-down and bottom-up)
are considered to determine which parts of the scenes are further processed by the attentional process
of the biological vision system [8].

Properly modeling visual saliency means emulating the widest set of factors that influence the
evaluation of saliency as performed by a human being. This goal has been pursued by many authors,
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both in the neuroscience community and, more recently, in the computer vision and image processing
communities. Due to the different levels of involved complexity, bottom-up saliency estimation
methods are generally faster than top-down methods [9], and thus useful in applications where
real-time feedback is considered more important than reaching higher accuracy. For example, in a live
augmented reality scenario, fast saliency estimation would locate image regions deemed important for
further localized computer vision analysis, and would provide precious information to avoid covering
areas of potential interest with the rendering of augmentation elements. Conversely, top-down saliency
estimation methods tend to be more robust, at the cost of a higher demand for computational resources.
These are therefore typically employed in applications with looser time constraints, and which
benefit from semantic interpretation. For example, a system for storing and organizing personal
photos could exploit saliency estimation to detect objects of interests based on visual composition,
and their reoccurring presence in multiple photos. In general, visual saliency estimation has been
successfully employed in multiple tasks, such as image retargeting [10], video summarization [11],
and photo-collage creation [12]. It has also been adopted as an intermediate pre-processing step
for other computer-vision problems, such as scene recognition [13], object detection [14] and
segmentation [15]. Since the advent and diffusion of deep-learning, many of these problems have been
reformulated in an end-to-end fashion that does not rely on explicitly estimating the salient component,
as proven by state of the art solutions in each field [16–18]. There exist, however, problems that
remain directly related to the evaluation of saliency information such as advertisement assessment [19],
and domains where its explicit computation is particularly relevant, for example in reducing the
computational effort for analysis of large quantities of data (such as video sequences, or high-resolution
panoramic images exploited in the virtual reality domain).

By analyzing the recent scientific literature on saliency estimation, in fact, specific topics emerged
as persistently reoccurring amidst works dedicated to saliency on regular images, due to a combination
of the excellent results already reached by the scientific community, and the paradigm shift in solving
certain problems without explicitly modeling general-purpose saliency. Such trending topics are,
namely, saliency in omnidirectional images, and multiple-input scenarios, which include co-saliency
and video saliency estimation. Although visual saliency has been studied in other fields as well (such
as light field and hyper-spectral imaging) most of the current domain-specific research happens to
converge on the three mentioned topics, while the literature does not offer enough material to produce
a valuable review of recent solutions related to other less widespread domains. Our goal is therefore
to highlight the recent trends of research in these fields, providing a concise yet exhaustive insight into
each analyzed method, and summarizing the similarities and differences across different solutions.
The investigated domains are either very recent, or have lived a particularly dynamic evolution.
As a consequence, different methods are typically evaluated and/or optimized on different datasets,
making comparative evaluations extremely challenging. Nonetheless, we conduct an analysis on the
joint occurrence of methods and datasets, and we benchmark solutions that are directly comparable as
they were evaluated in equivalent conditions.

Accompanying the development of research into visual saliency estimation through the years,
the scientific literature has periodically offered different benchmarks and surveys, typically concerning
general-purpose saliency. Borji et al. (2012) [20] provide an in-depth comparison of 35 state of
the art methods for saliency estimation, over both synthetic and natural images. A second work
by Borji et al. (2015) [9] conduct a similar benchmark including newly developed solutions,
the most recent of which, however, was released in the year 2014. A more recent review is
presented by Wang et al. (2019) [21], offering an in-depth survey over methods for salient object
detection specifically based on deep learning approaches. Concerning domain-specific analyses,
Cong et al. (2019-I) [22] cover methods for saliency detection that rely on so-called “comprehensive
information”, such as depth cues, inter-image correspondence (equivalent to co-saliency), and multiple
frames. Zhang et al. (2018) [23] review the concepts, applications, and challenges intrinsic into
co-saliency detection, whereas Riche et al. (2016) [24] focus on video saliency estimation approaches
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based on a bottom-up interpretation. With the current survey, our goal is to inform on up-to-date
developments in the fields of domain-specific visual saliency estimation. To the best of our knowledge,
there are currently no surveys that specifically focus on saliency estimation in omnidirectional images,
which is the most recent domain-specific development in the field.

The main contributions of this paper are the following:

• We highlight domains that naturally emerged from a literature review as being particularly timely
and relevant.

• Through a systematic analysis of the methods in each domain, we show their commonalities
and differences.

• We provide clear information regarding the targeted ground truth representation, as well as the
output that each method can explicitly generate.

• We conduct, where deemed fair, a quantitative comparison of the selected methods, and provide
some insights on the basis of such comparison.

• We report an in-depth analysis of the most common datasets for the analyzed domains, including
the representation used for the ground truth saliency information.

• We present the commonly used evaluation measures, which can be either domain-specific or
general-purpose.

• We conclude by synthesizing the emerging directions for research in the specialized literature.

The rest of the paper is structured as follows: Section 2 presents the systematic approach that led
to the selection of works in this review. Section 3 introduces the three domains of interest and their
peculiarities, followed by the description of different interpretations and representations commonly
adopted for visual saliency, and an overview of existing metrics and measures used to assess saliency
estimation algorithms. The subsequent sections present methods, datasets, and measures for each
domain of interest: Section 4 focuses on omnidirectional images, Section 5 relates to co-saliency
estimation, and finally, Section 6 presents developments in the field of video saliency.

2. Methodology for Literature Review

The selection of literature works included in this review paper has been determined through a
systematic approach, which is described in the following.

The initial prompt was to observe and highlight the current trends in visual saliency estimation.
With this objective, we performed a keyword-based search on the academic search engine Google
Scholar, using the terms: “visual saliency”, “saliency estimation”, “salient object detection”. Given the
time-sensitive nature of our goal, we restricted the results to works published no earlier than 2017.
For each resulting paper, we retrieved the following information:

• Title
• Year of publication
• Author list
• Venue (the specific journal or conference)
• Abstract
• Number of citations

For the years 2018 and 2017, we restricted the number of results to those having collected at
least one citation at the time of the review, intending to focus on the dissemination of works that
are considered relevant by the scientific community. Based on the title and abstract analysis, then,
we excluded some further results:

• Works that do not fit in the field of visual saliency (retrieved due to the unreliability of
keyword-based search alone);
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• Works that focus on extremely narrow tasks (e.g., saliency estimation for skin lesions, or for
comic strips).

Works related to datasets and surveys have also been isolated and used as a reference for the
corresponding sections. We annotated the remaining results in terms of domains of application, and the
most recurring themes emerged as being: saliency estimation for omnidirectional images, co-saliency
estimation, and saliency estimation for video sequences. We therefore focused on these domains to
provide the scientific community with an analysis of relevant and recent developments. For each of the
selected works, domain-specific and cross-domain characteristics have been collected through careful
study of the corresponding manuscripts.

The final selection of recent and relevant methods for saliency estimation has then been used as the
starting point to identify the associated evaluation measures and the associated datasets. Evaluation
measures have been classified as either general-purpose (presented in Section 3.3), or domain-specific
(presented in the corresponding Sections 4–6).

In virtue of the importance of data in training and assessing methods for visual saliency estimation,
we dedicated for each domain an in-depth analysis of the corresponding datasets. A matrix describing
the joint occurrences of datasets and methods has been defined and presented for all three domains.
At this stage, no explicit constraint on the release date has been imposed: the rationale is that if a
dataset is still widely adopted as a benchmark for new methods, it is to be considered relevant and
worth mentioning. Multiple instances of the same dataset being reported with different names have
been identified and merged. Conversely, whenever two or more saliency estimation methods refer
to the same dataset in different versions, this piece of information has been annotated and reported.
Finally, all datasets that were identified during the preliminary, keyword-based, search have been
found to be already present in the current selection. Detailed characteristics of the identified datasets
have been presented.

3. Visual Saliency Estimation

In this section, we describe the recently emerged domains for visual saliency, and provide
background information about the different types of saliency representation, as well as commonly
used evaluation measures.

3.1. Domains

The scientific literature on saliency estimation has witnessed the emergence of domain-specific
solutions, covering a wide range of topics that go beyond the traditional regular-image input.
Specifically, recent developments have shown several works in the domains of omnidirectional images,
image groups for co-saliency estimation, and video sequences, as exemplified in Figure 1. Other fields
of application, such as light field [25] and hyper-spectral imaging [26,27] have also caught the attention
of saliency-related research. Visual saliency estimation is, however, still at its early stages in such
domains, and a full review of related methods is therefore left as a future development.

(a) (b) (c)
Figure 1. Visualization of the three domains of interest for visual saliency estimation: omnidirectional
images (a), image groups for co-saliency (b), and clips for video saliency (c).

Another relevant domain of research is depth-assisted visual saliency estimation, which explores
the advantages of predicting saliency on so-called RGB-D images [28]. In this case, the additional
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knowledge associated to the distance between the camera and the depicted elements can improve
the separation of subjects from the background, providing a precious piece of information for better
saliency estimation. Despite the clear relevance of the topic, we chose not to explicitly discuss this
domain since such a wide field deserves a whole dedicated survey paper. Nonetheless, we found that
depth-assisted saliency estimation is sometimes included in the analyzed domains of omnidirectional
images [29], co-saliency [30], and video saliency [31]. We will, therefore, reference and discuss only
these works in the corresponding sections.

Omnidirectional images (ODIs) are panoramic representations of a scene, covering a 360◦solid
angle from a single viewpoint, typically employed in passive virtual reality. Virtual reality is the
experience of a simulated world, which can be navigated by the user to varying degrees of freedom [32].
In a passive virtual reality scenario, the spatial movements are predefined, and the virtual environment
is precomputed in a sequence of omnidirectional images. During fruition, the user only determines
the direction of viewing, i.e., the subpart of the ODI to visualize at any given time. Image cropping for
thumbnail selection is particularly valuable when operating on large omnidirectional images, depicting
wide sceneries in high-resolution [33]. Storing and transmitting these ODIs can then benefit from
perceptually-aware compression, i.e., reducing the represented detail over areas that are considered
“less-interesting” [34].

Image co-saliency refers to the problem of estimating the saliency from a group of images that
depict the same subject. The rationale behind this approach is to provide the saliency estimation model
with additional information, and thus partially compensate for the ill-posed nature of the problem.
Depending on the chosen level of abstraction, image groups for co-saliency estimation could either
represent exactly the same instance from multiple points of view, or different instances of the same
category, possibly characterized by slight variations in appearance.

Video saliency is the task of performing saliency estimation on a sequence of frames.
By considering the time component, in fact, estimation of visual saliency acquires additional value
in terms of understanding how people react to, and learn from images [35]. If we exclude the naive
frame-by-frame approach, multiple-frame analysis helps a given model gain a global view of the input,
in a fashion similar to what happens with co-saliency estimation. In addition, the annotated sequences
are expected to exhibit different patterns compared to single image saliency, as the vision of each single
video frame is both limited in time and highly influenced by the previous frames.

Cross-talk between domains is of course highly present, with approaches aiming at video saliency
estimation in omnidirectional images [36], as well as co-saliency estimation in video sequences [37].

3.2. Saliency Representation

Ground truth for visual saliency estimation is typically collected and distributed in one of three
possible representations: scanpaths, saliency maps, and salient object regions. These are visually
shown in Figure 2.

(a) (b) (c)
Figure 2. Different representations used for visual saliency ground truth: fixation points relative
to scanpaths (a), continuous saliency maps directly related to fixations (b), and sharp salient object
regions (c).
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3.2.1. Fixations and Scanpaths

Human eyes have been shown to explore a given scene in saccades, which are rapid movements
from a point of interest to another. Between saccades, a temporary pause, called a fixation, is spent
in the area of the point of interest [38]. The ordered sequence of fixations is called scanpath [39],
or gaze trajectory [33], and it is the first and most direct way to represent the salient areas of an image.
In some cases, such as omnidirectional images explored with virtual reality displays, gaze trajectory
is complemented with head trajectory [33,40,41], tracking the movement of the whole head of the
viewing subjects.

3.2.2. Fixation-Related Saliency Maps

Scanpaths can be processed by discretizing fixations coordinates to pixel coordinates. The result
is a scattered map of pixel saliency, which is typically convolved with a bidimensional Gaussian
kernel [41] in order to create a proper saliency map through kernel density estimation [42]. This type
of representation removes, by definition, the temporal relationship between fixations, which can be
considered non-necessary for specific tasks, such as thumbnail selection [33]. Mixed representations
have been proposed, such as saliency volumes [35], giving the possibility to produce both scanpaths
and saliency maps.

3.2.3. Salient Object Regions

Another commonly used representation for saliency information consists of pixel-precise binary
segmentation maps. This type of annotation can be generated by pre-segmenting each element of
the scene and subsequently selecting one, or more, segments that overlap with the largest amount of
fixations [43] or explicit selections [44]. Alternatively, one or multiple users can be asked to directly
provide a hand-drawn segmentation of the area they consider most relevant [45]. In the case of multiple
proposals, these are then reduced to one annotation with a predefined aggregation strategy.

Different representations are more suited to different applications. For example, temporally-aware
scanpaths can be useful to determine the optimal path of a virtual camera in an omnidirectional
video [46]. Continuous saliency maps can be employed for saliency-aware image compression,
specifically tuning non-uniform bit allocation as a function of the estimated local saliency [47],
while a sharp salient object estimation is typically used for automatic or semi-automatic object
segmentation in photo-manipulation tools [48]. There is no hard evidence that explicitly optimizing
for one representation may help improving performance on others, and methods tend to be
developed for clusters of datasets sharing the same type of salient representation, with a few isolated
exceptions [35,49].

3.3. Evaluation Measures

We provide a selection of the evaluation measures most commonly used by the saliency estimation
methods analyzed in this paper. An exhaustive review of evaluation measures for saliency models is
provided by Riche et al. [50]. Domain-specific measures will also be presented, when existing, in each of
the subsequent sections, regarding omnidirectional images, co-saliency, and video saliency estimation.

In the following, we categorize the selected evaluation measures on the basis of the involved
ground truth representation. We will refer to the predicted saliency map as P, and to the corresponding
ground truth as G. Some formulations will rely on the sum-normalized versions P′ and G′. X will be
the total number of image pixels, and F the total number of fixations.
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3.3.1. Measures for Fixations, Scanpaths, and Saliency Maps

The Pearson Correlation Coefficient (CC) [51] is a measure of the linear correlation between
prediction P and ground truth G considered as two statistical variables:

CC =
cov(P, G)

σPσG
(1)

where cov(·, ·) is the co-variance, σP and σG are the standard deviation values for, respectively,
the predicted saliency data and ground truth saliency data.

The Normalized Scanpath Saliency (NSS) [52] is used to compare a densely-estimated saliency
map with a fixation-based ground truth. Specifically, it is the average of the estimated saliency values
P in the locations indicated by eye fixations f :

NSS =
1
F

F

∑
f=1

P( f )− µP
σP

(2)

Note that the saliency estimation map is normalized to have zero mean and unitary standard
deviation through corresponding statistics µP and σP. In this scenario, a null NSS indicates a
correspondence between estimation and ground truth equivalent to random chance. Conversely,
very high or very low NSS suggests a high correspondence or anti-correspondence.

The Kullback–Leibler (KL) [53] divergence between two saliency maps considered as probability
density functions, is computed as:

KL =
X

∑
x=1

G′(x) · log
(

G′(x)
P′(x) + γ

+ γ

)
(3)

where γ is a protection constant.
The SIMilarity measure (SIM) [54], also called histogram intersection, compares two different

saliency maps when viewed as normalized distributions:

SIM =
X

∑
x=1

min
(

P′(x), G′(x)
)

(4)

The Earth Mover’s Distance (EMD) [55] quantifies the minimal cost to transform probability
distribution P into G:

EMD = (min
fij

∑
i,j

fijdij) + |∑
i

Gi −∑
j

Pj|max
i,j

dij (5)

with:

∑
i,j

fij = min(∑
i

Gi −∑
j

Pj) (6)

where dij represents the difference between bin i in G and bin j in P.

3.3.2. Measures for Salient Object Regions

The Precision/Recall curve is computed by varying a binarization threshold on the continuous
saliency estimation map P, and computing at each level the precision PR and recall RE components:

PR =
TP

TP + FP
(7)

RE =
TP

TP + FN
(8)
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where TP is the number of True Positive pixels, FP False Positives, and FN False Negatives, obtained
by comparing predicted saliency P with ground truth map G.

The F-measure (Fβ) [56] corresponds to the weighted harmonic mean between precision PR and
recall RE:

Fβ =

(
1 + β2)PR · RE

β2PR + RE
(9)

In this case, the continuous-valued saliency estimation can be binarized with different techniques
before effectively computing precision and recall. Furthermore, it is common practice [9] to give more
weight to the precision component (considered more important than recall for the saliency estimation
task), by setting parameter β2 to 0.3.

The Mean Absolute Error (MAE) is computed directly on the prediction, without any
threshold, as:

MAE =
1
X

X

∑
x=1
|P(x)− G(x)| (10)

The Structure measure (Sα) [57], inspired by the structure similarity (SSIM) from image quality
assessment, is the weighted mean between region-aware structural similarity Sr and object-aware
structural similarity So:

Sα = α · So + (1− α) · Sr (11)

where Sr covers the object-part similarity with the ground truth, while So accounts for the global
similarity based on sharp estimation contrast and uniform distribution.

The enhanced-alignment measure (Q) [58] captures both pixel-level matching and image-level
statistics as:

Q =
1
X

X

∑
x=1

1
4
(1 + ξ(x))2 (12)

where:
ξ =

2ϕG ◦ ϕP
ϕG ◦ ϕG + ϕP ◦ ϕP

(13)

Bias matrix ϕ{G,P} is the distance between each value of the binary map (G or P) and its global
mean, and the two matrices are compared through the Hadamard product (◦).

3.3.3. Representation-Independent Measures

Area Under Curve (AUC) is the area under the Receiver Operating Characteristic (ROC) curve.
The latter is computed by varying the binarization threshold and plotting False Positive Rate (FPR)
against True Positive Rate (TPR):

TPR = RE =
TP

TP + FN
(14)

FPR =
FP

FP + TN
(15)

Variants of the general concept of AUC take into consideration data distribution at various
levels, in order to normalize the evaluation of estimated saliency. These include AUC-Judd [54],
AUC-Borji [20], AUC-Zhao [59] and AUC-Li [60]. The AUC measure has been used to evaluate saliency
estimation under different representations: from fixations, scanpaths, and saliency maps [34,36,61–66]
to salient object regions [67–70].

4. Omnidirectional Images

Omnidirectional images, also known as 360◦ images, or panoramic images, present a set of
domain-specific peculiarities. An omnidirectional image is digitally stored in equirectangular format,
projecting a spherical surface into a planar and rectangular one. Any such projection inevitably
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introduces distortions in the representation, as a direct consequence of the Theorema Egregium [71,72],
therefore saliency estimation methods for regular images would behave sub-optimally without a
proper adaptation. For this reason, several methods specifically aimed at omnidirectional images focus
on producing an alternative projection or transformation, that fully exploits existing approaches for
classical image saliency estimation [35,36,73].

When a user explores an omnidirectional image, he/she normally uses a head-mounted display
to freely navigate the scene. In this case, only a portion of it is shown at any given time, under a
so-called Normal Field of View (NFoV), which introduces less-noticeable distortions. The starting
point of view, a non-ODI thumbnail, and a suggested exploration pattern can all be optimized for the
best user experience by exploiting saliency estimation.

Saliency maps related to several omnidirectional datasets have been observed to exhibit a bias
in fixations close to the equator line of view [33,34,41]. This bias has been exploited by different
methods [62,63] to produce more accurate estimations.

4.1. Methods for Omnidirectional Images

Table 1 presents a synthetic overview of recent methods for saliency estimation in omnidirectional
images. All analyzed methods target a ground truth in the form of fixation saliency maps. They all
produce a continuous saliency map output related to fixation data, whereas only a limited subset also
explicitly predicts scanpath trajectories [34,35].

Table 1. Characteristics of recent methods for visual saliency estimation in omnidirectional images.
The “Target” column indicates the nature of the ground truth used to train or develop the methods,
while “Output” describes what data they are explicitly able to generate (FM = Fixation maps,
SP = Scanpaths).

Method 2D-to-ODI
Adaptation

Custom
Representation

Backbone
CNN

Deep
Learning

Hand-
Crafted Target Output

Battisti 2019 [29] (none) X FM FM
Sitzmann 2018 [33] X (none) X FM FM
Monroy 2018 [61] X VGG_CNN_M X FM FM
Ling 2018 [62] (none) X FM FM
Lebreton 2018 [63] X (none) X FM FM
Cheng 2018 [36] X ResNet-50/VGG-16 X FM FM
Fang 2018 [64] (none) X FM FM
De Abreu 2017 [34] X (none) X FM FM, SP
Assens 2017 [35] X VGG-16 X FM, SP FM, SP
Maugey 2017 [73] X X (none) X FM FM

Part of the research in this field consists of evaluating the transferability of existing methods
originally designed for classical images [33,34,61,63,73]. Sitzmann et al. [33] initially collected the
SVR (Saliency in Virtual Reality) dataset. Through observations on the extensive and diverse set of
acquisitions, they acquired knowledge about fixation bias, which they used to improve upon existing
saliency estimation solutions when applied in the field of omnidirectional images. They applied the
developed method to a wide range of use cases, including automatic montage and summarization of
videos, thumbnail extraction, and video compression. De Abreu et al. [34] gathered data only relative
to the whole head movement, instead of tracking the viewers’ eyes, when collecting their own dataset.
The authors first proposed a method to convert this information into saliency maps. They then observed
a fixation bias as well, which is addressed using the proposed Fused Saliency Maps (FSM) method,
operating on existing saliency estimation solutions. Monroy et al. [61] presented an architectural
extension that can be applied to any existing neural network for saliency estimation, in order to
fine-tune it to the specific domain of omnidirectional images. The underlying idea is the extraction of
six undistorted patches of the panoramic view, their independent evaluation, and subsequent fusion.

As previously mentioned, some methods devised specific representations of the input data,
that allow for full exploitation of the domain, but without suffering from its intrinsic disadvantages
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(namely, image distortions) [36,39,73]. Assens et al. [35] propose a novel representation, called saliency
volume, to extract saliency information that can be adapted to different forms: from the
time-independent saliency maps, to the ordered scanpaths (extracted through specific sampling
strategies), to a hybrid representation, which consists in temporally weighted saliency maps.
Cheng et al. [36], who also collected the Wild-360 dataset, presented a weakly-supervised training
for a spatial-temporal neural network architecture. They also proposed working on a six-face cube
projection, in order to mitigate the heavy distortions of equirectangular projection, and implemented
so-called cube padding to hide the discontinuities of representation to the neural network processing.
Maugey et al. [73] proposed an aggregation technique for the application of existing saliency estimation
methods to different map projections. They mitigate the discontinuities introduced at the edge of 2D
representations by performing a double cube projection, the results of which are eventually merged.
They also proposed the automation of a navigation pattern that maximizes exposition to estimated
salient areas.

Despite the clear dominance of machine learning approaches to saliency estimation (and,
specifically, deep learning approaches), a good deal of recent methods for omnidirectional
saliency are based on hand-crafted design and combination of visual features [29,33,34,62–64,73].
Ling et al. [62] defined a hand-crafted approach to saliency estimation for omnidirectional images.
Their color-dictionary sparse representation (CDSR) is applied in conjunction with multi-patch analysis
to simulate human color perception. Fixation bias is also taken into consideration for the specific
characteristics of the domain. Lebreton et al. [63] extended existing solutions to the estimation of
saliency in omnidirectional images, namely Boolean Map Saliency (BMS) and Graph-Based Visual
Saliency (GBVS). They then defined a novel framework, called Projected Saliency, to adapt existing
estimation models with a simple mechanism, which allowed extensive analysis of features interaction
in computational saliency models. Fang et al. [64] developed a hand-crafted solution based on the
fusion of feature contrast and boundary connectivity, leaning on the figure-ground law from Gestalt
Theory. Boundary connectivity is designed to describe the spatial layout of the image region with
an upper and a lower boundary. Feature contrast is based on luminance and color features from the
CIE Lab color space. Battisti et al. [29] presented a hand-crafted approach based on low-level image
descriptors, such as edges and texture features. They also exploit a depth description of the image
itself, to produce a more robust estimation of image saliency, which is evaluated using metrics such as
the Kullback–Leibler divergence, and the correlation coefficient.

Methods based on deep learning [35,36,61] are built on the basis of existing Convolutional Neural
Network (CNN) backbones, such as the VGG_CNN_M [74] and VGG-16 [75] architectures (from the
Visual Geometry Group), and the residual-learning-based ResNet-50 [76] architecture.

4.2. Datasets for Omnidirectional Images

Table 2 presents a synthetic overview describing the adoption of different datasets by different
methods for visual saliency estimation in omnidirectional images. The most frequently adopted dataset
is the one published with the Salient360! challenge [41], in some cases based on an old version of the
same set [40]. The iSUN dataset [77] (interactive Scene UNderstanding) was used by Assens et al. [35]
to pre-train their solution, but does not involve omnidirectional images. The MIT dataset [78] from
Massachusetts Institute of Technology was adopted for evaluation by Maugey et al. [73], but does not
contain saliency ground truth information.

A detailed description of all the relevant datasets is consequently presented in Table 3. These can
be differentiated first and foremost by the stimuli characteristics, ranging from image resolution (when
stored in equirectangular format), to duration of the exposition to the stimulus itself. The display
device is typically either a head-mounted display such as Oculus Discovery Kit 2 (DK2), or a classical
computer screen. In the latter case, the image is visualized in Normal Field of View, allowing the user
to navigate the whole panorama with the use of mouse and keyboard.
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Table 2. Dataset/method matrix for visual saliency estimation in omnidirectional images.

Method Battisti Sitzmann Monroy Ling Lebreton Cheng Fang De Abreu Assens MaugeyDataset 2019 [29] 2018 [33] 2018 [61] 2018 [62] 2018 [63] 2018 [36] 2018 [64] 2017 [34] 2017 [35] 2017 [73]

Salient360!
(2017) [40]
(2018) [41]

X X
X X X X X

SVR [33] X
Wild-360 [36] X
LAY [34] X
iSUN [77] X
MIT [78] X

Table 3. Datasets for visual saliency in omnidirectional images and related characteristics (FM = Fixation maps, SP = Scanpaths).

Stimuli Devices

Dataset Video/Image CGI/Real Resolution (Pixels) Duration (Seconds) Conditions Display Eye Tracker

Salient360! [41] Mixed Mixed 3000 × 1500 ÷ 18,332 × 9166 25 Seated Oculus DK2 SMI

SVR [33] Image CGI 8192 × 4096 30 Seated, standing
Oculus DK2,
PC screen

Pupil-labs,
Tobii EyeX

Wild-360 [36] Video Real 1920 × 960 ∼20 (length) N/A PC screen (none)
LAY [34] Image Real 4096 × 2048 10, 20 N/A Oculus DK2 (none)

Cardinalities Responses

Dataset Input Data Users Acquisitions FM/SP Head/Eyes Project Page

Salient360! [41] 85 images/19 videos 63 ≤32 maps/paths per stimulus FM, SP Head, eyes [79]
SVR [33] 22 images 169 1980 maps/paths FM, SP Head, eyes [80]
Wild-360 [36] 85 videos (29 ann.) 30 12,926 maps FM (manual) [81]
LAY [34] 21 images 32 704 paths SP Head [82]
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All analyzed datasets provide a ground truth in terms of either scanpaths (for eyes and head
movement) or fixations-related saliency maps, i.e., without precisely-annotated salient object regions,
possibly due to the intrinsic difficulty in segmenting equirectangular projection images.

The Salient360! [41] dataset was created for the Grand Challenge “Salient360!” organized in
conjunction with ICME 2017 (International Conference on Multimedia and Expo). The dataset has
been updated through the years [40], with the last edition also including a set of omnidirectional video
clips. It is supplied with a script toolbox for the evaluation of predicted scanpaths and saliency maps.

The SVR [33] (Saliency in Virtual Reality) dataset is a collection of both head and eye
orientation data (scanpaths), coming from the observation of 22 stereoscopic omnidirectional images.
The environmental condition of the stimuli include combinations of users being seated or standing,
with or without a head-mounted display. In all conditions, an eye tracking device was used.

Wild-360 [36] is an exclusively video-based dataset for omnidirectional saliency. The original clips
were retrieved from YouTube using specific keywords such as “nature”, “wildlife”, and “animals”,
in order to collect a dataset with heterogeneous and dynamic contents. The video sequences were
manually annotated by multiple users, without any head- or eye- tracking device.

LAY [34] (Look Around You) was built with the objective of developing saliency estimation
methods without the support for an eye tracking device for data collection. Specifically, the head
orientation of the viewers (called Viewport Center Trajectory) is used as a proxy ground truth for the
generation of saliency maps. Different experiments have been conducted by varying the viewing time
of each stimulus.

4.3. Evaluation of Saliency for Omnidirectional Images

Methods for saliency estimation in omnidirectional images are evaluated with a variety of
measures, most of which are common to visual saliency in traditional images, such as the Pearson
correlation coefficient CC ([29,33,36,61–64]), and the area under the ROC curve AUC ([34,36,61–64]).

The Salient360! benchmark[41] introduced, among other criteria, an evaluation based on the
Kullback–Leibler divergence (KL). Although not specifically designed for omnidirectional images,
this has been widely adopted as an evaluation measure[29,61–64] thanks to Salient360! being the
de-facto reference for saliency in omnidirectional images.

Regarding domain-specific evaluation, the same benchmark also introduced the evaluation of
scanpaths based on the comparison metric by Jarodzka et al. [83] properly adjusted to incorporate
orthodromic distances in 360◦ instead of Euclidean distances. The original metric is based on a
comparison between each fixation from the prediction with all the fixations from the provided ground
truth. Such comparison is applied on the basis of multiple elements, namely the spatial proximity of
starting points, the difference in direction and magnitude of the saccades, and the temporal proximity
of saccade midpoints.

Based on the dataset/method matrix in Table 2, the Salient360! dataset is the best candidate
benchmark to compare the largest subset of selected methods. Results are presented in Table 4
according to four different metrics reported in the corresponding publications. The VGG-based model
by Assens et al. [35] has been excluded as it does not report performance on metrics comparable
with other methods. Ling et al. [62] generates in absolute terms the best results across all considered
measures, while the second-best is the model by Fang et al. [64], according to three measures out
of four. Both solutions are based on hand-crafted algorithms with a specific focus on emulating the
color perception in human vision. Omnidirectional images, therefore, would appear to represent
a domain where manually-defined criteria still outperform machine learning, possibly due to the
stronger positional bias, and to image distortions that are uncommon in large datasets used for neural
network pre-training [84].
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Table 4. Quantitative comparison of selected methods for saliency estimation in omnidirectional
images, on the Salient360! challenge dataset. Best results are highlighted in boldface.

Method CC ↑ KL ↓ NSS ↑ AUC ↑
Monroy 2018 [61] 0.536 0.487 0.757 0.702
Ling 2018 [62] 0.550 0.477 0.939 0.736
Lebreton 2018 [63] 0.527 0.698 0.851 0.714
Fang 2018 [64] 0.538 0.508 0.910 0.736

5. Co-Saliency

The concept of co-saliency was first introduced by Toshev et al. [85] to address the problem of
image matching, exploiting local point feature correspondence and region segmentation. By its original
definition, therefore, co-saliency estimation refers to determining the common element from two or
more instances of exactly the same subject. A more general interpretation would extend the concept
to groups of images depicting different instances of the same category [86–88] (e.g., many images of
different lions). Regardless of the specific definition, the presence of multiple images can provide a
useful constraint in the otherwise ill-posed problem of saliency estimation, thanks to the assumption
that all images (or a subgroup [89]) contain the same salient element.

Co-saliency estimation is often encountered along with other related tasks, namely co-segmentation [90]
and co-localization [91]. While the output of a method for co-saliency is a continuous map, representing the
probability of each pixel being salient, the output of a method for co-segmentation is typically a binary mask,
that precisely separates the foreground from the background. Following a similar abstraction, co-localization
refers to generating a bounding-box over common elements in multiple images.

5.1. Methods for Co-Saliency

Table 5 presents a selection of recent methods for co-saliency estimation that were well received
by the scientific community. All presented methods target a binary salient object region ground truth.
The output of these methods is a continuous-valued saliency map, which is, however, optimized to be
as sharp as possible. In some cases [37,68,69,92], the methods also produce a segmentation-oriented
binary mask.

Table 5. Characteristics of the analyzed methods for co-saliency estimation. The “Target” column
indicates the nature of the ground truth used to train or develop the methods, while “Output” describes
what data they are explicitly able to generate (OR = Object Regions, SM = Sharp saliency Maps,
BM = Binary Masks).

Method Early
Fusion

Late
Fusion Backbone CNN Deep

Learning
Deep

Features
Hand-

Crafted Target Output

Cong 2019-II [93] X X (none) X OR SM
Zhang 2019 [67] X FCN (VGG-16) X OR SM
Jerripothula 2018 [92] X (none) X OR SM, BM
Hsu 2018 [94] X ResNet-50 + FCN (VGG-16) X OR SM
Tsai 2018 [68] X X CNN-S X X OR SM, BM
Jeong 2018 [69] X X DeepLab (VGG-16) X OR SM, BM
Zheng 2018 [95] X FCN-32s (VGG-16) X OR SM
Cong 2018 [96] X X VGG-16 X X OR SM
Wang 2017-I [37] X X (none) X OR SM, BM
Wei 2017 [70] X FCN (VGG-16) X OR SM
Yao 2017 [89] X (none) X X OR SM

The co-saliency domain involves, by definition, the analysis of multiple images. How these are
handled can help in differentiating among different methods for co-saliency estimation. Early-fusion
techniques [70,89] initially extract a global representation of all the images in the input group, capturing
relationships between different images. Conversely, late-fusion techniques [67,92,94,95] are designed
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to estimate single-image saliency from each input individually, and reciprocally update them in a
second phase, based on the extracted information.

Joining the efforts of early and late fusion techniques, are methods that exploit both approaches
by extracting so-called “intra-image saliency” (i.e., from each individual image) as well as “inter-image
saliency” (as the correspondence among multiple images), to eventually combine them [37,68,69,96].
Cong et al. (2018)[96] proposed computing intra-saliency maps exploiting the depth information
associated with each image, and calculating the inter-saliency maps based on multi-constraint feature
matching to improve the overall performance. A cross-label-propagation scheme was adopted to
optimize and refine both maps in a cross-way, eventually integrated into a final co-saliency map.
In a subsequent work, Cong et al. (2019-II) [93] formulated the inter-image correspondence as a
hierarchical sparsity reconstruction framework. They addressed image-pairs correspondences through
a set of pairwise dictionaries, and global image group characteristics through a ranking-scheme-based
common dictionary. A three-term energy function refinement model is introduced in order to improve
the intra-image smoothness and inter-image consistency. Wang et al. [37] extended the concept of
co-saliency from images to videos, and as such operate on multiple input video sequences. They took
into consideration both inter-video foreground correspondences and intra-video saliency stimuli,
with the objective of ignoring background distraction elements and concurrently emphasizing salient
foreground regions. Tsai et al. [68] observed that the auxiliary task of co-segmentation improves
object boundaries in co-saliency detection, and proposed a joint optimization of the two tasks by
solving an energy minimization problem over a graph. The resulting model iteratively transfers
useful information in both directions, to improve the prediction of both domains. The solution by
Jeong et al. [69] produces an initial set of co-saliency maps, which are then refined on object boundaries.
The authors then introduced a seed-propagation step over an integrated multilayer graph, aimed at
detecting regions missed by lower-level descriptors. Such descriptors are pooled both within-segment
and within-group, in order to handle input images having different sizes.

Another possible criterion to discriminate among different approaches, is the distinction
between deep-learning solutions, and those based on hand-crafted design and traditional techniques.
Methods in the deep learning group [67,70,94,95] typically benefit from end-to-end learning, therefore
optimizing the final objective of co-saliency estimation regardless of the adopted early-fusion or
late-fusion approach. Many are based on the Fully-Convolutional Network (FCN) by Long et al. [97]
or DeepLab by Chen et al. [18], both leveraging the VGG backbone [75]. Other adopted neural
architectures include the “Slow” CNN-S model by Chatfield et al. [74]. Zhang et al. [67] presented
a coarse-to-fine framework for co-saliency detection: they first generate an initial proposal using
a mask-guided fully convolutional network, based on the high-level feature response maps of a
pre-trained VGG network [75]. They then defined a multi-scale label smoothing model to refine
the prediction, optimizing both the label smoothness of pixels and superpixels. Wei et al. [70]
presented an end-to-end co-saliency estimation neural network. The model adopts an early-fusion
approach by extracting high-level descriptions of the input images, and capturing the group-wise
interaction information for group images. It was proven to be able to learn the collaborative
relationships between single-image features and group-wise features. Hsu et al. [94] presented an
original unsupervised approach to co-saliency estimation, addressed in a graphical model based on
two losses: the single-image saliency (SIS) loss, acting as the unary term, and the Co-occurrence
(COOC) loss, acting as the pairwise term. The authors also presented two refining extensions, namely
boundary preservation and map sharpening. Zheng et al. [95] presented FASS: a feature-adaptive
semi-supervised framework for co-saliency estimation. The proposed solution addresses and exploits
the difference in efficacy of image features, by a joint formulation of element-level feature selection
and view-level feature weighting. It optimizes co-saliency label prorogation over both labeled and
unlabeled image regions.

The purely hand-crafted methods include the aforementioned video co-saliency solution by
Wang et al. [37], and the more recent work by Jerripothula et al. [92]. Specifically, the latter focuses on
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predicting the saliency map for one selected key image, and subsequently extending the prediction to
other images in the group. The authors proposed fusing individual saliency maps using the “dense
correspondence” technique, and evaluating a no-reference concentration-based saliency quality to
decide whether the fused saliency map improves upon the original one.

Finally, crossing the gap between deep learning solutions, and purely hand-crafted ones, are all
those traditional methods that exploit the extraction of high-level deep features from a pre-trained
model, as a descriptor to be used in combination with other pieces of information for co-saliency
estimation [68,89,96]. A notable example is represented by Yao et al. [89], who generalized the problem
of co-saliency estimation to the case where multiple object categories are present in the input image
group. The task has been therefore decomposed into two sub-problems: automatically identifying
subgroups of images, based on multi-view spectral rotation co-clustering, and subsequently extracting
the co-saliency information from such groups.

5.2. Datasets for Co-Saliency

Table 6 presents the combination of methods and datasets used in the corresponding experiments
for training and evaluation. The most frequently adopted datasets are iCoseg [98] and various versions
of the MSRC from Microsoft Research [86]. The latter is particularly old, the first version going back to
2005 as it was originally collected for a different purpose than saliency estimation. Different updates
of the dataset have been released through the years, and the specific version is indicated in Table 6 by
specifying the number of input image groups.

The number of image groups is also one of the discriminating elements reported in Table 7 along
with other cardinality-related information. The stimuli are described in terms of data and content type.
For most reported datasets, the resolution is extremely heterogeneous across images, and it is therefore
reported as a minimum-maximum side pair. The “same subject” column indicates whether each
image group depicts exactly the same instance of the subject from different points of view, or multiple
instances of the same category. All the reported co-saliency datasets provide a binary salient object
region annotation, i.e., none have been collected with the aid of eye tracking devices for scanpath
acquisition, relying instead on manual annotation of the contours of salient objects.

RGBD Coseg183 [30] is a dataset developed for those co-saliency estimation methods that exploit
the depth information associated with the input RGB image. It is partially composed of images from
the RGBD Scenes Dataset [99], which were acquired using a prototype PrimeSense RGB-D camera and
a firewire camera from Point Grey Research.

RGBD Cosal150 [96] is a selection of images and depth maps originally coming from the RGBD
NJU-1985 dataset [100] (Nanjing University), which are augmented with co-saliency pixel-level
annotations. The depth information in the original dataset comes from mixed sources: either from the
Kinect device used for acquisition, or inferred through an optical-flow-based method [101]. This dataset
has been presented in the previously discussed method by Cong et al. (2018).

iCoseg [98] was collected using the “Group“ functionality in the Flickr photography platform,
in order to collect groups of images belonging to the same category (and sometimes, the same
photographer), which includes various wild animals, popular landmarks, and sports teams.
The authors also made available for public download the developed interface that was used to
interactively annotate the dataset.

MSRC [86] (from Microsoft Research) is the oldest dataset commonly used for training and
evaluation of co-saliency algorithms, although originally collected for applications related to image
classification. Multiple versions of the dataset exist, with the number of image groups ranging from 7
to 23. Table 7 reports information regarding the 14-groups version of the dataset.
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Table 6. Dataset/method matrix for co-saliency estimation. The number in parentheses indicates the version of the MSRC dataset identified by the number of image
groups.

Method Cong Zhang Jerripothula Hsu Tsai Jeong Zheng Cong Wang Wei YaoDataset 2019-II [93] 2019 [67] 2018 [92] 2018 [94] 2018 [68] 2018 [69] 2018 [95] 2018 [96] 2017-I [37] 2017 [70] 2017 [89]

RGBD Coseg183 [30] X X
RGBD Cosal150 [96] X X
iCoseg [98] X X X X X X X X
MSRC [86] X(8) X(14) X(7) X(14) X(8) X(7) X(23) X(7)
Cosal2015 [87] X X X X X
Coseg-Rep [88] X
Internet Images [102] X
Image-Pair [103] X
Safari [104] X
Vicosegment [37] X

Table 7. Selected datasets for co-saliency estimation with corresponding characteristics (OR = Object Regions).

Stimuli Cardinalities

Dataset Video/
Image

CGI/
Real

Resolution
(Pixels)

Same
Subject Groups Images

Per Group
Total
Images Responses Project

Page

RGBD Coseg183 [30] Image Real 640 × 480 Yes 16 6 ÷ 18 183 OR [105]
RGBD Cosal150 [96] Image Mixed 303 ÷ 1177 Mixed 21 2 ÷ 20 150 OR [106]
iCoseg [98] Image Real 333 ÷ 500 Mixed 38 4 ÷ 41 643 OR [107]
MSRC [86] Image Real 320 × 213 No 14 24 ÷ 32 418 OR [108]
Cosal2015 [87] Image Real 93 ÷ 3008 No 50 26 ÷ 52 2015 OR [109]
Coseg-Rep [88] Image Real 137 ÷ 1280 No 22+1 9 ÷ 49 (+116) 572 OR [110]
Internet Images [102] Image Real 107 ÷ 340 No 3 561 ÷ 1306 2746 OR [111]
Image-Pair [103] Image Real 66 ÷ 500 Mixed 105 2 210 OR [112]
Safari [104] Video Real 270 ÷ 640 Yes 9 20 ÷ 50 415 OR [113]
Vicosegment [37] Video Real 216 ÷ 480 Yes 10+38 18 ÷ 40 743 OR [114]
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Authors of the Cosal2015 [87] dataset gathered images in challenging scenarios from the YouTube
video set [115] and the ILSVRC2014 detection set [84] (ImageNet Large Scale Visual Recognition
Competition), observing that images belonging to the same group often involve similar backgrounds,
leading to potentially wrong co-saliency estimations. The dataset has been annotated by 20 different
users, whereas most of the other reported datasets involve one human annotation per image.

Coseg-Rep [88] is a dataset for co-segmentation and co-sketch, the objective being to automatically
infer a common pattern from instances of the same subject. It is composed of 22 categories of different
flowers and animals, plus a special “repetitive” category, which contains images with repeating
patterns aimed at inter-image co-segmentation and co-saliency.

Internet Images [102], also known as Internet Datasets, is composed of only three image groups
(car, horse, and airplane), characterized however by high cardinality inside each group. It presents
a total of 15,270 images, out of which 2746 are provided with a segmentation ground truth that was
acquired using both the LabelMe annotation toolbox [116] and Amazon Mechanical Turk.

The Safari dataset [104] is a video-based collection of annotated sequences for object
co-segmentation, partially built upon the existing MOViCS dataset [117] (Multi-Object Video
Co-Segmentation). It is composed of nine videos of five animal classes: for each class, there is one
video sequence containing only that specific class, plus one or more videos of the class in conjunction
with other classes.

Vicosegment [37] is another, more recent, video dataset for co-segmentation and co-saliency. It is
composed of 10 category groups containing similar foreground objects, and a total of 38 videos with
cardinality ranging between 18 frames and 40 frames. This dataset was presented in conjunction with
the already presented method by Wang et al. based on inter-video foreground correspondence and
intra-video saliency stimuli.

The Image-Pair [103] dataset contains groups of only two images, depicting (at least) one common
object on two different background scenes. It is composed of image pairs collected from the dataset
from Hochbaum et al. [118], the Caltech-256 Object Categories database [119], and the PASCAL Visual
Object Challenge dataset [120].

5.3. Evaluation of Co-Saliency

Although not specifically designed for co-saliency estimation with image groups, the Average
Precision score AP is often applied for evaluation in this specific domain ([67–69,89,94,95]). It is
proportional to the area under the Precision/Recall curve, generated as defined in Section 3.3.

Other measures commonly used for co-saliency evaluation are the Fβ ([37,67–70,89,94–96]) and
the area under the ROC curve AUC ([67–70]).

The dataset/method matrix for co-saliency estimation presented in Table 6 suggests using either
iCoseg [98] or MSRC [86] as a comparison benchmark. We decided to focus on iCoseg, due to the
extreme variability of MSRC versions adopted by different methods. Results are reported in Table 8: the
overall best performance is reached by Zheng et al. [95], followed by Zhang et al. [67] and Hsu et al. [94]
for Fβ and Average Precision (AP).

Table 8. Quantitative comparison of selected methods for co-saliency estimation on the iCoseg dataset.
Best results are highlighted in boldface.

Method Fβ ↑ AP ↑ AUC ↑

Zhang 2019 [67] 0.855 0.906 0.974
Hsu 2018 [94] 0.850 0.911 -
Tsai 2018 [68] 0.820 0.878 0.968
Jeong 2018 [69] 0.823 0.896 0.979
Zheng 2018 [95] 0.873 * 0.920 * -
Yao 2017 [89] 0.810 0.868 -

* Values inferred from graphs in the corresponding publication.
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All these solutions are VGG-16-based neural networks, adopting a late-fusion approach.
This common pattern can be justified as semantic interpretation is particularly relevant in a domain
that requires finding common elements across different images. At the same time, the recent
inter-saliency/intra-saliency paradigm, although promising in the context of the corresponding
publications, is possibly not yet mature enough. In this specific evaluation setup, in fact, the work by
Yao et al. [89] presents the lowest performance. It should be noted, however, that the corresponding
solution performs the selection of image groups in a completely unsupervised manner, while all other
methods rely on existing annotated clusters.

6. Video Saliency

Saliency estimation in video sequences presents a specific set of advantages as well as original
challenges. In the same spirit as co-saliency, the availability of multiple images (i.e., frames) imposes
useful constraints on the ill-posed problem of saliency estimation. Unlike co-saliency datasets,
video saliency ones are sometimes collected with the use of an eye tracking device, instead of manually
segmenting the elements of interest in each frame. One effect of this approach is the high variability
in the ground truth saliency maps across different frames: Li et al. [43] and Fan et al. [49] recently
proposed to explicitly consider the phenomenon of saliency shift, where the viewer’s attention can
briefly change due to distracting elements, or even transfer indefinitely to a whole different salient
object. Furthermore, as noted by Ullah et al. [121], saliency estimation in videos can prove to be
particularly difficult when the salient object is in motion, it is small, it changes shape, and it is
embedded in a context where the whole camera is moving.

6.1. Methods for Video Saliency

Table 9 enumerates recent solutions for saliency estimation in video sequences, along with
additional pieces of information. Particular attention should be paid in differentiating methods that
target salient object region annotations, and those who target fixations-related saliency maps [65,66].
Specifically for the former category, some of the described solutions are tested against datasets that
were originally annotated for video segmentation [122–124], and in some cases the method itself is
described as addressing “saliency-based video segmentation” [121,125,126], showing once again the
correlation between such tasks.

Table 9. Methods for video saliency. The temporal window is indicated in relation to the underlying
technique: OF (Optical Flow), LSTM (Long-Short Term Memory), CNN (Convolutional Neural
Network), GRU (Gated Recurrent Unit). The “Target” column indicates the nature of the ground
truth used to train or develop the methods, while “Output” describes what data they explicitly
generate (OR = Object Regions, SM = Sharp Maps, BM = Binary Masks, FM = Fixation Maps).

Method Saliency
Shift Temporal Window Optical

Flow Backbone CNN Deep
Learning

Hand-
Crafted Target Output

Fan 2019 [49] X ∞ (LSTM) ResNet-50 X OR SM
Li 2019 [127] 2 (OF) X ResNet-34/101 X OR SM
Yan 2019 [128] 4 (CNN) + ∞(GRU) X ResNet-50 X OR SM, BM
Cong 2019-III [129] 2 (OF) + ∞ (energy) X (none) X OR SM
Hu 2018 [125] 2 (OF) + ∞ (diffusion) X (none) X OR SM, BM
Zhou 2018 [130] 3 X (none) X OR SM
Ullah 2018 [121] 2 (OF) X (none) X OR SM, BM
Wang 2017-II [126] 5 (OF) X (none) X OR SM, BM
Chen 2017 [131] 4 ÷ 20 (diffusion) X (none) X OR SM

Min 2019 [65] 32 (CNN) S3D (inception) X FM FM
Gorji 2018 [66] X ∞ (LSTM) VGG-16 X FM FM

An inherent characteristic of video-based processing is the temporal window, i.e., the number
of frames that are jointly analyzed in order to exploit the time dimension. Methods indicated with
∞ are not constrained with an explicit limit in the temporal window, although the influence of other
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frames to the current one typically decreases with their distance. Other criteria useful in discriminating
among different methods include the type of representation involved (such as optical flow), and the
type of model involved. In this case, for deep learning methods, the backbone CNN is also reported.

In computer vision, optical flow can be defined as a displacement vector field that describes,
for each pixel in each frame, the direction and intensity movement from the previous frame (or
frames). Solutions for video saliency estimation based on optical flow [18,21,66,121,125,127,128,130]
demonstrate that explicitly and compactly representing the time-wise variations provide a
valuable piece of information for accurate detection of salient objects in video sequences.
Cong et al. (2019-III) [129] designed a single-frame saliency model based on sparsity-based
reconstruction, and an inter-frame saliency map based on progressive sparsity-based propagation.
The two maps are then incorporated in a global consistency energy formulation to achieve
spatio-temporal smoothness. Hu et al. [125] framed the problem at hand as an “unsupervised video
segmentation” task. They exploited edge-aware features and the optical flow representation to develop
a novel diffusion technique based on a neighborhood graph. With this approach, they were able to
eventually produce a generic object segmentation based on the propagation of estimated saliency
information. Zhou et al. [130] developed a three-step framework. A set of localized estimation
models, generated through a random forest regressor, can be first used to create a temporary saliency
map. This is then improved through a spatio-temporal refinement step, based on appearance and
motion information. The resulting map is finally used to provide saliency cues for the following frame
estimation. Ullah et al. [121] presented an approach for so-called “unconstrained video segmentation”.
They first generate an initial set of saliency regions through a novel saliency measure. They then
compute a homography over optical flow information to retrieve motion cues that are robust to
background motion. The two pieces of information can be eventually combined, expanded and
refined. Wang et al. [126] developed a super-pixel-based technique that initially produces a prior map
for pixel-wise labeling, exploiting a geodesic distance. They then formulated the task as an energy
minimization problem, operating on foreground-background models and dynamic location models as
unary terms, as well as label smoothness potentials as pairwise terms. Chen et al. [131] designed a
method for video saliency detection based on spatio-temporal fusion and low-rank coherency guided
diffusion. They first segment the input video into batches, where motion clues are internally diffused.
Interbatch saliency priors are then taken into account for a low-level saliency fusion. These clues are
eventually used to guide a saliency diffusion step.

Similarly to what has been observed with co-saliency and saliency in omnidirectional images,
recent methods in the domain of video saliency are also equally spread among hand-crafted
solutions [121,125,126,130,131], and those based on a deep-learning approach [49,65,66,127,128].
Belonging to the latter category, Fan et al. [49] collected and annotated the DAVSOD dataset (Densely
Annotated Video Salient Object Detection), and proposed a neural-network-based approach to video
saliency detection that explicitly addresses the problem of “saliency-shift” (the phenomenon where
human attention switches from one element to another during the stimulus). Their solution is based
on convolutional LSTM (Long-short term memory) modules. Li et al. [127] designed a multi-task
neural network for salient object detection in video sequences. The first task, accomplished by the
first sub-network, consists of still-image saliency estimation. The second task aims at motion saliency
detection based on optical flow images. The two sub-networks were trained end-to-end with the
integration of specifically-designed motion-guided attention modules. Yan et al. [128] proposed
a solution for video saliency estimation that does not rely on densely-annotated video sequences.
They first developed a technique to generate pixel-level pseudo- ground truths from sparsely annotated
video frames, based on a neural network operating on optical flow images. They then trained a
neural model composed of a spatial refinement network and a spatio-temporal module on their
artificially-augmented training data.

As mentioned, some solutions target a different representation of video saliency information,
namely fixation-related saliency maps. Gorji et al. [66] focused on the concept of attentional push:
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a family of saliency cues that include following the gaze of depicted subjects, accounting for the
salient element leaving the scene, and for abrupt scene changes in general. They exploited these
concepts to augment a static saliency estimation with the objective of minimizing the relative
entropy between estimated and expected fixation patterns. Min et al. [65] presented TASED-Net:
a Temporally-Aggregating Spatial Encoder-Decoder neural architecture based on the S3D [132] model
(and, consequently, on the Inception model [133]), that produces an estimation of saliency for a
single frame based on a finite number of previous frames. In order to produce a continuous saliency
estimation, the developed network can be applied in a temporal-sliding-window fashion over the
whole input sequence.

6.2. Datasets for Video Saliency

Table 10 illustrates the datasets that were involved in the experiments of each analyzed method
for video saliency estimation, with the objective of highlighting the relevant benchmarks for recent
developments in this field. We separate the datasets related to methods that target different types
of ground truth data, highlighting how UCFSports [134] is in fact used by solutions belonging
to both worlds. Regarding methods aimed at salient object regions, it can be observed that the
most frequently-adopted datasets are FBMS [122] (Freiburg–Berkeley Motion Segmentation) and
SegTrackV2 [123]. Despite not being very recent (both were released in the year 2013), they are
described in-depth in the following, due to their high relevance. Conversely, datasets that are
particularly old, and which have been tested against only by one or a few methods, are no
further analyzed.

Table 11 therefore presents detailed information for the selected datasets, reporting information
on both the stimuli and the user responses. As indicated, some saliency datasets that are specific
for the video domain are exclusively annotated with salient object regions [43,122–124]. Others are
collected with an eye tracking device, thus producing saliency maps based on user fixations [134,135].
Finally, the very recent DAVSOD [49] provides both types of annotation, thus highlighting the existing
relationship between these different representations.

DAVSOD [49] (Densely Annotated Video Salient Object Detection) is built upon the stimuli from
the DHF1K [135] (Dynamic Human Fixation 1000) eye tracking dataset, manually trimmed into short
video clips. The scenes are enriched with additional annotations, which include: timestamp of the shift
in visual attention, category labeling into 7 classes and 70 sub-classes, and conversion of the fixation
records into hand-drawn object segmentation masks, performed per-frame by multiple annotators.

FBMS [122] (Freiburg–Berkeley Motion Segmentation) is a dataset composed from existing sources
(Brox et al. [136] and the Hopkins 155 [137]) as well as new sequences, for a total of 59 video clips.
The videos have been specifically collected aiming at high variation in image resolution and motion
types, and have been manually annotated every 20th frame, thus providing a sparse ground truth.

SegTrack [138] and SegTrackV2 [123] are among the most tested-against datasets for video saliency
estimation, despite being originally addressed at video segmentation. Both versions were collected
with particular attention at equally representing challenging aspects, namely: color overlap between
foreground and background, inter-frame motion, and changing target shape. The second version of
the dataset introduces additional sequences and annotations.

VOS [43] (Video Object Segmentation) is composed of videos collected from internet sources as
well as personal collections, divided into an easy and a difficult subset. One keyframe every 15 frames
has been segmented at the object-level by a pool of four subjects. A different set of subjects have been
asked to free-view the videos, in order to collect their eye tracking data, which are eventually used to
unambiguously define and annotate the salient objects.
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Table 10. Dataset/method matrix for video saliency estimation. The number in parentheses identifies the version of the dataset through the corresponding cardinality
of video sequences.

Method Fan 2019 Li 2019 Yan 2019 Cong 2019-III Hu 2018 Zhou 2018 Ullah 2018 Wang 2017-II Chen 2017 Min 2019 Gorji 2018Dataset [49] [127] [128] [129] [125] [130] [121] [126] [131] [65] [66]

DAVSOD [49] X
FBMS [122] X(30) X X(59) X(59) X(59) X(26)
ViSal [139] X X X
MCL [140] X

SegTrack
v1 [138]
v2 [123]

X X X X
X(13) X(14) X(14) X(14) X(14) X(10)

UVSD [141] X
VOS [43] X X
DAVIS [124] X X X X X
I2R [142] X
Wallflower [143] X
MOViCS [117] X
DS [144] X

UCFSports [134,145] X X X X

DHF1K [135] X
Hollywood-2 [134,146] X X
DIEM [147] X
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Table 11. Selected datasets for video saliency estimation, with related features (SP = Scanpaths, FX = Fixations only, FM = Fixation maps, OR = Object Regions).

Stimuli Characteristics Devices Users

Dataset Resolution
(pixels) FPS Display Eye Tracker Users

(Fixations)
Users
(Objects)

DAVSOD [49] 640 × 360 30 N/A SMI RED 250 17 (1/video) 20
FBMS [122] 288 ÷ 960 30 N/A (none) (none) N/A
SegTrack v2 [123] <640 × 360 N/A N/A (none) (none) N/A
VOS [43] 800 × 448 30 1680 × 1050 SMI RED 500 23 4
DAVIS [124] 1920 × 1080 24 N/A (none) (none) N/A

UCFSports [134] <720 × 480 10 22” 1280 × 1024
SMI iView X
HiSpeed 1250 16 (none)

DHF1K [135] 640 × 360 30 19′′ 1440 × 900 SMI RED 250 17 (1/video) (none)

Cardinalities Responses

Dataset Total
Videos Total Frames Frames

Per Video SP/FX/FM/OR Project
Page

DAVSOD [49] 187 23,938 ∼128 FX, FM, OR [148]
FBMS [122] 59 13,860 (720 annotated) ∼235 (∼12 annotated) OR [149]
SegTrack v2 [123] 14 1066 ∼76 OR [150]
VOS [43] 200 114,421 (7467 annotated) ∼722 (∼37 annotated) OR [151]
DAVIS [124] 50 3455 ∼69 OR [152]
UCFSports [134] 150 9578 ∼64 SP [153]
DHF1K [135] 1000 582,605 ∼583 FX, FM [154]
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DAVIS [124] (Densely Annotated VIdeo Segmentation) comprises high-resolution short sequences
that are manually annotated for pixel-accurate segmentation. Each clip depicts up to two
spatially-connected objects, aiming at constraining the problem to a controlled and limited domain.
Finally, all sequences are labeled with multiple attributes covering challenging aspects such as clutter,
blur, appearance change, and many others.

UCFsports [134] was built upon the pre-existing large scale video dataset of the same name by
Rodriguez et al. [145] from the University of Central Florida, originally published for human action
recognition. This collection is composed of high-resolution recordings from television shows, covering
nine sport action classes. Nineteen human subjects were divided into three groups and tasked with
different objectives, namely: action recognition, context recognition, and free-viewing. The same
procedure has been applied to build the Hollywood-2 saliency dataset, on top of the existing data from
the dataset by Marszalek et al. [146].

DHF1K [135] (Dynamic Human Fixation 1000) has been collected with YouTube videos retrieved
through 200 key search terms, following the principles of large scale and high quality, diverse content,
varied motion patterns, and various objects. Seventeen subjects were tasked with free-viewing
10 sessions of non-overlapping videos presented in random order. Furthermore, five subjects were
asked to provide an additional piece of annotation regarding the number of objects in each sequence.

6.3. Evaluation of Video Saliency

The analyzed methods for video saliency estimation introduce two domain-specific evaluation
measures, namely the Temporal stability (T ) [125], and the Per-frame pixel error rate (ε) [121]. Both are
based on a salient object region ground truth. Temporal stability T is computed as the distance between
the descriptors of the segmentation boundaries between two successive frames, in terms of shape
context descriptors [155]. Per-frame pixel error rate ε is computed as:

ε =
XOR(th(P), G)

N
(16)

where th(P) is a binary (thresholded) version of the predicted saliency map, G is the reference ground
truth, and N is the total number of frames in the input sequence.

Other general-purpose measures often used to evaluate saliency estimation in the
video domain include Fβ ([49,126–128,130,131]), the Precision/Recall curve ([126–128,130,131]),
and MAE ([49,126,127,130]).

The landscape defined by the dataset/method matrix for video saliency estimation in Table 10 is
particularly scattered. We report in Table 12 quantitative results for the frequently adopted SegTrack
v2 dataset, and for the DAVIS dataset. These two datasets are comparable in terms of video length
and type of annotations, with DAVIS being composed of about three times as many sequences, at a
higher resolution.

Table 12. Quantitative comparison of selected methods for video saliency estimation on the SegTrack
v2 and DAVIS datasets. Best results are highlighted in boldface.

Method SegTrack v2 DAVIS

maxFβ↑ MAE↓ maxFβ↑ MAE↓

Fan 2019 [49] 0.801 0.0230 - -
Li 2019 [127] - - 0.902 0.0220
Yan 2019 [128] - - 0.859 -
Cong 2019-III [129] - - 0.765 0.0588
Zhou 2018 [130] 0.899 * 0.0807 * 0.747 * 0.0636 *
Wang 2017-II [126] 0.890 * 0.0489 * - -
Chen 2017 [131] 0.810 * - - -

* Values inferred from graphs in the corresponding publication.
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We did not include an analysis of FBMS due to the wider variability of versions (subsets of video
sequences) used by different methods. Drawing any conclusions in the reported scenario is particularly
challenging: on the SegTrack v2 dataset, the hand-crafted method by Wang et al. [126] appears to
be the most well-balanced solution according to Fβ and MAE, while on DAVIS the best results are
obtained by Li et al. [127], which is a deep-learning model. At the same time, the best-Fβ method on
SegTrack, developed by Zhou et al. [130], reports worse performance on other metrics and datasets.
Fan et al. [49], which is based on the recently-introduced concept of saliency shift, reaches the best
result in terms of MAE, at the cost of penalizing Fβ-based evaluation. It is therefore ultimately not
clear whether one type of solution should be preferred against another, for saliency estimation in
video sequences.

7. Conclusions

We presented a survey on visual saliency estimation, by focusing on recent developments in
domains that are not restricted to the traditional single-image input. Adequately modeling the process
of visual saliency has been shown to be particularly useful and/or effective in specific cases, such as
omnidirectional images employed in virtual reality scenarios, image groups depicting the same subject
for co-saliency estimation, and finally video sequences for video saliency estimation.

Omnidirectional images, in particular, are the most recently-introduced domain for saliency.
Many different methods in the analyzed literature approached the problem by developing novel
representations of the input data, in a form that does not introduce, or that prevents, image distortions
which might negatively impact the saliency estimation process. An evaluation of methods that are
directly comparable showed that hand-crafted solutions present excellent results in this particular
domain. Co-saliency estimation exploits the concept of image groups to partially constrain the
ambiguous concept of visual saliency. Recent methods in this domain are focusing on the independent
estimation of intra-image saliency (the traditional concept of image saliency) and inter-image saliency
(finding common elements among images in the same group), and their subsequent combination.
Direct comparison showed the apparent superiority of deep learning solutions for this specific domain.
Video sequences offer yet another example of leveraging multiple pieces of input data to facilitate the
saliency estimation process. The nature of ground truth data is inherently different from that of the
traditional domain, as the viewer’s attention can move to different elements in the short or long term.
This phenomenon is called “saliency shift”, and it has been explicitly addressed by recent methods in
the field.

The ground truth information for visual saliency can be collected in different forms and
levels of abstraction: scanpaths (directly related to eye-gaze trajectories), continuous saliency maps,
and binary salient object regions. The datasets involved in recent methods for saliency estimation have
been described, among other criteria, in terms of their ground truth nature. Datasets composed
of omnidirectional images are provided with either scanpaths or saliency maps, i.e., no binary
segmentation masks are provided. Conversely, all analyzed datasets for co-saliency are manually
annotated in terms of binary salient objects, without the use of eye tracking devices. Finally, the domain
of video saliency offers a heterogeneous scenario, with many datasets offering ground truth data at all
levels of abstraction.

As a general observation that covers all analyzed domains, it is worth noting that a well-balanced
distribution persists, between traditional hand-crafted algorithms and deep learning methods,
among recent solutions for the problem of visual saliency estimation.

In conclusion, this work complements existing state of the art analyses that mainly focuses on
regular images. We integrated such studies with a review on saliency estimation for omnidirectional
images, image groups, and video sequences. A natural extension of this work is to develop a
thorough analysis of emerging topics such as light field saliency and hyper-spectral saliency, as well as
widely-explored domains such as depth-assisted visual saliency estimation.
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