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Abstract

Illumination estimation is the essential step of computational color constancy,

one of the core parts of various image processing pipelines of modern digital

cameras. Having an accurate and reliable illumination estimation is important

for reducing the illumination influence on the image colors. To motivate the

generation of new ideas and the development of new algorithms in this field,

two challenges on illumination estimation were conducted. The main advan-

tage of testing a method on a challenge over testing it on some of the known

datasets is the fact that the ground-truth illuminations for the challenge test

images are unknown up until the results have been submitted, which prevents

any potential hyperparameter tuning that may be biased. The First illumina-

tion estimation challenge (IEC#1) had only a single task, global illumination

estimation. The second illumination estimation challenge (IEC#2) was

enriched with two additional tracks that encompassed indoor and two-illumi-

nant illumination estimation. Other main features of it are a new large dataset

of images (about 5000) taken with the same camera sensor model, a manual

markup accompanying each image, diverse content with scenes taken in

numerous countries under a huge variety of illuminations extracted by using

the SpyderCube calibration object, and a contest-like markup for the images

from the Cube++ dataset. This article focuses on the description of the past

two challenges, algorithms which won in each track, and the conclusions that

were drawn based on the results obtained during the first and second chal-

lenge that can be useful for similar future developments.
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1 | INTRODUCTION

In the modern world of technology, a lot of devices, includ-
ing mobile phones, tablets, and laptops are equipped with
digital cameras. One of the essential parts of the image
processing pipelines of these cameras is to remove the
influence of the scene illumination on the image colors.
For that to be done properly, it is first required to perform
an accurate illumination estimation in an image or a video,
and then using this information for the actual color correc-
tion step.1 Human color perception system performs a sim-
ilar task by means of a feature known as color constancy2

that allows it to recognize object coloration regardless of
the scene illumination. While the mechanism of color con-
stancy in human color perception is not fully understood,
there are numerous proposed implementations of the anal-
ogous feature in digital cameras known as auto white bal-
ance (AWB), which is supposed to achieve computational
color constancy. Some of the simplest illumination estima-
tion methods such as max-RGB3-5 or Gray-World6 and its
upgrades7,8 are based on simple image statistics and their
main advantages are their speed and simplicity of imple-
mentation. Over time, the best accuracy used to be
achieved by learning-based methods such as Bayesian
learning,9 spatio-spectral learning,10 illumination solution
space restriction,11-13 using color moments,14 regression

trees with simple features from color distribution
statistics,15 spatial localizations,16,17 convolutional neural
networks,18-21 genetic algorithms,22 etc. Thousands of other
scientific papers about the problem of illumination estima-
tion have been written, but it is still not solved to a satisfac-
tory level due to the following reasons:

• Volumes of publicly available scientific datasets are
not large enough to cover all various cases of
illumination.

• Images in existing datasets have ground-truth scene
illumination, but information about the scene is usu-
ally not provided. This excludes or complicates the pro-
cess of a deeper study of the problem and its division
into subtasks. For example, an efficient illumination
estimation process can vary considerably at different
times of the day (Figure 1).

• Considering oversimplified formulation by evaluating
only a single dominant light source (there are only few
publicly available datasets with multiple light sources).
The uniform illumination assumption is true for
images taken on a cloudy day, or in a room with a sin-
gle lamp and white walls. However, this assumption is
not valid on a sunny day when there are at least two
light sources: the sun and the sky. Another example
includes a street at night and a closed room.

FIGURE 1 Ideas of second illumination estimation challenge illustration
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To take a step forward toward overcoming these three
obstacles, two challenges for the task of illumination esti-
mation were organized. The First Illumination Estima-
tion Challenge (IEC#1) was organized as a part of the
11th International Symposium on Image and Signal
Processing and Analysis (ISPA 2019, September 23-25,
2019, Dubrovnik, Croatia). A year later, the Second Illu-
mination Estimation Challenge (IEC#2) was organized as
a part of the 13th International Conference on Machine
Vision (ICMV 2020, November 2-6, 2020, Rome, Italy). A
large illumination estimation dataset was created as
a key component of the challenges. The dataset contains
around 5000 images captured with two Canon cameras
(Canon 600D and Canon 550D), which share the same
image sensor model. For each image, ground-truth illu-
minations with up to two light sources per image were
extracted. Additionally, various information about the
scene content was provided for each image. Later col-
lected images have been additionally filtered, processed,
and finally published as Cube++ dataset.23

For both challenges, the ground-truth illuminations for
the images from the test set were made publicly available
only after the authors have submitted their solutions. This
was done in order to prevent possible hyperparameter tun-
ing that could compromise the testing fairness. Such testing
with previously unknown ground-truth illumination can
be seen as a potential advantage over testing on publicly
available datasets.

The article is structured as follows: Section 2 describes
IEC#1, Section 3 describes IEC#2, Section 4 gives an over-
view of the obtained challenge results, the results and the
conclusions that were drawn based on them are discussed
in Section 5.

2 | THE FIRST ILLUMINATION
ESTIMATION CHALLENGE

As a new checkpoint in experimental results in the field
of illumination estimation, the First Illumination esti-
mation challenge (IEC#1) was conducted as part of the
11th International Symposium on Image and Signal
Processing and Analysis (ISPA 2019) that was held in
Dubrovnik, Croatia. The challenge gave the opportunity
to researchers to benchmark new or existing illumina-
tion estimation methods on a newly created image
dataset for which the ground-truth illumination would
be released only after the challenge. The goal was to
check the performance of various methods when the
ground-truth for the test set was not available immedi-
ately. The participants were assigned the task to esti-
mate a vector representing the color of the dominant
illumination source in the new given dataset.

The challenge dataset was split into train and test
parts. For method training, the participants were pro-
vided with the publicly available Cube+ dataset,24 which
includes both images and corresponding ground-truth
illuminations. The test set consisted of 363 images taken
with the same camera that was used to capture images of
the Cube+ dataset. The images in the test data were
made public on the last day of the challenge by providing
the password to decrypt the test archive that was already
available earlier. The ground-truth illuminations
corresponding to the images in the test set were made
public in a similar manner after the challenge ended. By
hiding the test set until the end of the challenge, it was
intended to prevent or significantly reduce problems such
as potential data manipulation and method overfitting.

The quality of a solution was based on the reproduc-
tion angular error,25 which is defined as

R g,að Þ¼ arccos 1,
g�a
g�ak k

� �
, ð1Þ

where g and a are three-dimensional vectors representing
ground truth and estimated illumination, respectively, 1
is the vector of perfectly corrected white color, that is,
1¼ 1ffiffi

3
p 1,1,1ð Þ , � denotes element-wise division, h�i

denotes the scalar product of two vectors, and k�k denotes
the Euclidean norm.

Nine solutions were submitted and the final ranking
is shown in Table 1. For the sake of transparency the sub-
mitted illumination estimations were also made available
on the challenge website.*,† Submitted solutions were
evaluated in terms of three averages: the arithmetic
mean, the median, and the trimean (the arithmetic mean
of the two quartiles and the median, wherein the
median's influence is doubled). These three statistical
average measures were selected on the basis of their ubiq-
uity in the color constancy literature, and the median
was selected as the measure by which submitted solu-
tions were to be ranked.

Upon reflection, using the median as the primary
evaluation metric for this task may be suboptimal. The
median is a robust average measure, in that it is invariant
to extremely large or small inputs. Indeed, the median of
a set of errors is just a function of 1 (or 2) of those constit-
uent errors, and as such is extremely sensitive to the per-
formance of the “average” image but is entirely invariant
to performance on “difficult” images. Since the majority
of images in any given dataset are, by definition, com-
mon, the median is much more likely to reflect perfor-
mance on “easy” images than hard images. Thus, the
winning method of IEC#1, after hyperparameter optimi-
zation, ignored the 20% of the worst and only 1% of the
best mini-batch samples on every training step.26 Hence,
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the method achieved a good median error, while simulta-
neously not paying attention to the worst errors, which
may be detrimental for the overall performance and the
worst-case performance.

This is in contrast to the standard practice among
camera manufacturers, where the primary goal is to
avoid large errors, under the assumption that a grossly
incorrect white balance is objectionable to a photogra-
pher or a viewer, but that small errors are often not
noticeable. That is, it is acceptable if the subject of a
photo is rendered slightly warmer or cooler than the
objective true color, but it is unacceptable to render grass
as white or the ocean as red. These priorities can be
observed in the documentation for the DxOMark bench-
mark (the independent image quality assessment com-
monly used to evaluate and rank cameras). To quote the
DxOMark website‡: “good and acceptable color manifests
on a continuum rather than having a single fixed value.”
DxOMark therefore explicitly adopts a scoring system in
which small or modest errors have little to no signifi-
cance, and large errors are penalized. This priority can
also be observed in recent academic publications, such as
the work from Liba et al27 documenting the technology
behind Google's low-light photography systems on the
Pixel smartphones. The measure white balance perfor-
mance using the mean of the 25% largest errors in the
benchmark — a metric that is so heavily focused on large
errors that it is completely insensitive to both the median
and the quartiles of the errors. Therefore, in the second
iteration of our challenge, during evaluation we shifted
our emphasis to metrics that more strongly reflect perfor-
mance on difficult images, such as the aforementioned
“mean 25%” metric. We also use mean squared error in
future challenges, which functionally emphasizes larger
errors more than smaller errors in comparison to “mean
error”.

3 | THE SECOND ILLUMINATION
ESTIMATION CHALLENGE

3.1 | Dataset

For the Second Illumination Estimation Challenge, the
new dataset Cube++23 was used. This dataset is the exten-
sion of the Cube+24 dataset, which was used as a train set
in IEC#1. The Cube++ provides a lot of new images cap-
tured in various conditions, including indoor images and
images with two illumination sources present in the scene.
Such a dataset sets the ground for a broader range of illu-
mination estimations research as indicated with multiple
tracks of IEC#2. To make the Cube++ compliant with its
predecessor Cube+, the same camera sensor model and
calibration object were used during the image acquisition.

For ground-truth illumination extraction, the
SpyderCube color target was used. Due to its cuboid
shape, ground-truth illuminations can be extracted from
two different directions. This is beneficial in two ways.
First, by comparing such two ground-truths, it can be
verified whether the scene illumination is uniform. Sec-
ond, when needed, the ground-truth for two-illuminant
estimation can be extracted.

Along with the ground-truth illuminations, each
image in the dataset is also accompanied by the metadata
related to the conditions during image capturing proce-
dure (ISO, exposure time, etc.), and manually labeled
semantic information such as whether the image is cap-
tured indoor or outdoor, at what time of day was the
image captured, is the image sharp, etc. Manually labeled
semantic data was not available for the test set during the
time of the challenge.

The dataset contains files of three types: JPG images for
preview; PNG images for illumination estimation; ground-
truth illuminations and metadata in JSON format.§

TABLE 1 The results of the first

illumination estimation challenge

ranked by the median of the

reproduction angular errors calculated

from the illumination estimations

reported by the authors for the test

images; the error statistics are reported

in degrees (∘) and a lower error is

equivalent to better estimation

performance

Authors Median Mean Trimean

Alex Savchik, Egor Ershov, and Simon
Karpenko

1.513 2.652 1.649

Jonathan T. Barron and Yun-Ta Tsai 1.590 2.489 1.731

Yanlin Qian, Ke Chen, and Huanglin Yu 1.638 2.934 1.773

Ke Chen, Huanglin Yu, and Yanlin Qian 1.692 2.611 1.843

Yanlin Qian, Ke Chen, and Huanglin Yu 1.709 2.491 1.763

Yanlin Qian, Ke Chen, and Huanglin Yu 2.096 6.869 2.495

Viktor Vuk and V. N. Karazin 2.142 3.338 2.327

Simon Karpenko, Egor Ershov, and Alex
Savchik

4.577 6.683 5.071

Hassan Ahmed Sial and Maria Vanrell I
Martorell

5.906 7.289 6.180
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3.2 | Tracks

The second illumination estimation challenge was orga-
nized in three tracks: general, indoor, and two-illumi-
nant. For each track different metrics, appropriate for the
given task, were used, but all based on the reproduction
angular error.25 For reproducibility, the source code for
each metrics was made public. During the challenge, the
reproduction angular error was mistakenly calculated
with the wrong order of arguments,¶ resulting in a slight
difference in results, but nevertheless with the same
ranking of methods in the challenge. All tables related to
IEC#2 in this article are recalculated with the corrected
metrics (Figure 2).

3.2.1 | General track

Usually, the quality of an illumination estimation algo-
rithm is measured using a statistic of an error measure
computed for all images in the test dataset. Very often,
including IEC#1, the median of per image angular error
values is used, which is reasonable in the case when the
dataset itself has errors in markup. Nevertheless, as it
was mentioned before, it is much more important not to
have extremely wrong illumination estimations than
to have the best values for only a single statistic.

Moreover, the problem of errors in markup should be
solved not by metric selection, but by careful data label-
ing. Therefore, the general track of the challenge was
devoted to robust illumination estimation algorithms.

For the general track dataset, all images with angular
difference less than 2∘ between the ground-truth chroma-
ticities extracted from the left and right SpyderCube gray
faces were selected from Cube++. For each image, the
dominant light source was chosen manually.

The metric for the general track was the mean of the
25% largest reproduction angular errors (1).

In Table 2, the leaderboard for the general track
is shown. The first place was achieved by Z. Li
from Nanjing University with the CAUnet algorithm.
This algorithm achieved the lowest mean reproduc-
tion error of the 25% of the worst estimations,
which was 4.087∘.

3.2.2 | Indoor track

One of the stand-alone photography categories is indoor
photography. Very often, in indoor conditions, the illumina-
tion in the scene is quite complicated. In different places of
the scene there may be various sources of illumination such
as light coming through the window, incandescent lamps,
LED lamps, etc. Under these conditions, the determination

FIGURE 2 Examples of general track images
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of the dominant light source in the scene may turn out to be
a rather difficult task, mostly because of inter-reflections.

The indoor track dataset contains exclusively images
for which it was manually determined that they are cap-
tured in indoor spaces. Additionally, the angle between
ground-truth illuminations extracted from SpyderCube's
left and right gray faces had to be less than 2∘ to include
an image into the dataset (Figure 3).

As a metric for the indoor track, the mean reproduc-
tion error given in (1) was used.

In Table 3, the final indoor track ranking is shown.
The first place was achieved by Y. Qian from Huawei
Multimedia Team with an algorithm sde-awb which
achieved the mean reproduction error of 2.511∘.

3.2.3 | Two-illuminant track

In everyday life, there are rarely situations where there is
really only one source of illumination in the scene. Even
during the daytime, it is customary to divide the illumi-
nation into two sources—the sun and sky. The main
question of this track is whether it is possible to reliably
extract more information about illumination using a sin-
gle image. For these purposes, a dataset was assembled
using a volumetric color target (SpyderCube) whose faces
are illuminated by different sources (Figure 4).

Two-illuminant track dataset includes images for
which the angle between ground-truth illuminations
extracted from SpyderCube's left and right gray faces is
greater than or equal to 2∘. This helps to ensure that illu-
minations that are reflected from SpyderCube's faces are
different enough to considered them originating from two

different light sources. In this track, it was required to esti-
mate two vectors, each representing one light (Table 4).

The first place was achieved by Y. Qian (Huawei Mul-
tiMedia Team) with the sde-awb algorithm. The final
squared sum of two angular reproduction errors was
31.026217 for this algorithm.

As a metric, the sum of squared reproduction angu-
lar errors:

E g1,g2,a1,a2ð Þ¼min R2 g1,a1ð ÞþR2 g2,a2ð Þ,R2 g1,a2ð Þ�
þR2 g2,a1ð ÞÞ,

ð2Þ

where g1, g2 are ground-truth chromaticity vectors and
a1, a2 are algorithm estimations. Such a strong metric
allows to penalize an algorithm with a single answer for
two close estimations.

3.3 | Challenge rules for all tracks

Registration for the challenge was held up to 13:00
(GMT + 3) on July 31, 2020. Participants were required
to list both names and affiliations for all team members.

For each track, a corresponding dataset was prepared.
Each team could have submitted up to three solutions for
each track resulting in up to nine submissions in total for
three tracks. Participants were required to run their model
on the test part and to submit their prediction files. Submis-
sion was available until 13:00 (GMT + 3) on 31 July 2020.

The test dataset was published a 2 weeks before submis-
sion day in an encrypted archive, the SpyderCube instance

TABLE 2 The results of the second illumination estimation challenge general track; the error statistics are reported in degrees (∘) and a

lower error is equivalent to better estimation performance

Team Algorithm Mean (worst 25%) Worst RE Mean Median Trimean

Z. Li CAUnet 4.087 16.571 1.606 0.969 1.085

Z. Li CAUnet 4.334 18.307 1.727 1.073 1.207

X. Xing et al AL-AWB (sub. # 2) 4.413 17.838 1.82 1.192 1.32

X. Xing et al AL-AWB (sub. # 1) 4.646 17.838 1.887 1.236 1.349

Y. Qian sde-awb 4.944 18.81 1.906 1.169 1.27

Y. Qian sde-awb 5.097 18.019 1.948 1.15 1.298

Y. Qian sde-awb 5.351 26.692 2.028 1.15 1.285

J. Qiu et al illumGAN 10.327 26.359 4.766 3.635 3.914

BASELINE GreyWorld 10.565 24.223 4.539 3.312 3.575

BASELINE Constant 15.871 35.427 6.704 3.881 5.062

J. Qiu et al illGAN1.0 20.905 41.987 17.536 17.138 17.186

J. Qiu et al illGAN1.0 21.104 47.809 17.615 17.132 17.177

J. Qiu et al illGAN1.0 21.469 54.426 17.666 17.146 17.247
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was masked out from the image scenes, the identifiers were
shuffled to avoid finding similarities in close images with
close identifiers, and there were no ground-truth illumina-
tions nor manually annotated properties given.

4 | METHOD DESCRIPTION

4.1 | CAUnet

We utilize an encoder-decoder based Unet28 combining
global illumination with white patches as our primary
model. The network's deep features are usually too generic

so that it is clear that some channel features are more sig-
nificant than others in different scenes. In order to make
the Unet pay more attention to these crucial channels, we
employ channel attention-convolutions (CA-Convs) blocks
inherited from W-Net29 to specify the various scenes'
response. CA-Convs block first uses global pooling to
extract spatial information from convolutional features,
and then transforms them via fully connected layers (FC),
ReLU, and sigmoid. At last, it multiplies the convolutional
features with sigmoid's output, which represented the
channel attention's weights. CA-Convs significantly
enhances the network's robustness by paying attention to
different channel features in diverse scenes. The whole

FIGURE 3 Examples of indoor track images

TABLE 3 The results of the second illumination estimation challenge indoor track; the error statistics are reported in degrees (∘) and a

lower error is equivalent to better estimation performance

Team Algorithm Mean Median Trimean Mean (worst 5%) Worst RE

X. Xing et al AL-AWB (sub. # 2) 2.511 2.251 2.208 12.369 12.369

Y. Qian sde-awb 2.512 1.74 1.922 10.31 10.31

X. Xing et al AL-AWB (sub. # 1) 2.85 2.251 2.403 13.318 13.318

M. Buzzelli et al MCGAN 3.185 2.354 2.349 18.125 18.125

J. Qiu et al illumGAN 3.239 2.623 2.649 12.672 12.672

M. Buzzelli et al PCGAN 3.272 2.354 2.39 18.125 18.125

BASELINE GreyWorld 4.098 3.681 3.594 15.769 15.769

BASELINE Constant 13.872 13.532 14.108 26.586 26.586

ERSHOV ET AL. 7



network is shown in Figure 5. All activation functions are
implemented with 0.2 negative slope's parametric rectified
linear units (PReLU).30 We normalize the global average
pooling's output to one at the output layer, which is the
same as the white balance coefficient's constraint.

We design our model using Pytorch and train it with
4 NVIDIA V100 GPUs. We use Adam with a learning rate
of 5e-5 as our optimizer. The CA-Unet was trained for
30 epochs with batch size 96. And then, we use the pla-
teau scheduler to auto reduce the learning rate. For more
details of CAUnet, see our article.31

4.2 | Sde-awb

For the sake of robust performance in all three tracks
in IEC 2, sde-awb is designed with portable modules,

easy-to-follow structure and plain training strategy.
Shown in Figure 6, A pre-trained Squeeze-Net back-
bone is firstly applied as baseline model (can be cas-
caded up to three times), with a differential 2D chroma
histogram layer stacked to boost further the perfor-
mance. The first offers semantic feature while the latter
describes the distribution of the visible color. A shal-
low MLP is then added to accommodate image captur-
ing metadata (eg, exposure, shutter) contained in Exif.
On top of model A, following,32 three SqueezeNets are
cascaded in order to realize a coarse-to-fine illumina-
tion regression.

Adam optimizer is adopted in our net to minimize
the mean reproduction angular error. Validated on three
challenge tracks, all proposed modules show their effec-
tiveness, making sde-awb a top-one or top-two solution
in varying use cases (Figure 7).

FIGURE 4 Examples of two-illuminant track images

TABLE 4 The results of the second

illumination estimation challenge two-

illuminant track; the error statistics are

reported in degrees (∘) and a lower error

is equivalent to better estimation

performance

Team Algorithm Mean squared Mean Median Trimean

Y. Qian sde-awb (sub. # 1) 31.801 2.764 2.284 2.312

Y. Qian sde-awb (sub. # 2) 32.009 2.727 2.206 2.327

X. Xing et al AL-AWB (sub. # 2) 32.157 2.64 1.876 2.101

Y. Liu et al 3du-awb 36.071 2.827 2.494 2.477

X. Xing et al AL-AWB (sub. # 1) 42.34 2.925 2.121 2.323

BASELINE GreyWorld 83.143 4.153 3.506 3.675

BASELINE Constant 128.531 5.053 3.362 3.727

8 ERSHOV ET AL.



In our solution we demonstrate a generic illumina-
tion estimation—sde-awb, can perform well for general,
indoor and two-illuminant tracks. With specific module
design and combination, it obtains first place in both
indoor (mean error 1.763) and two-illuminant (mean
error 2.751) tracks and second place in general track
(mean error 1.914). Our used modules, Squeeze-Net back-
bone, differential 2D chroma histogram layer and a shal-
low MLP show their effectiveness on a cross-validated
ablation study. Our future plan is to explore more elegant
architecture to merge cross-domain information like Exif
metadata. For more details of sde-awb, see our article.33

4.3 | PCGAN, MCGAN

The Predicted-Consensus Generative Adversarial Net-
work (PCGAN) and Median-Consensus Generative

Adversarial Network (MCGAN) are based on the concept
of generating a spatially-varying illumination map from
the input image, and subsequently reducing this map to
three RGB coefficients.

The overall process is illustrated in Figure 8: starting
from an input image, its color-balanced version is directly
created through a generative model. Then, the pixel-by-
pixel ratio between the input image and the generated
image is computed, in order to obtain a first proposal for
a spatially varying illuminant map. From this, a properly-
defined consensus strategy is eventually applied, with the
goal of deriving a global-estimation illuminant, which
follows the von Kries model.

The generative model is based on the pix2pix
architecture,35 trained with a set of input-target image
pairs. Specifically, the input is the raw-unbalanced
image, from which the black level is first subtracted.
The target is the balanced image, obtained dividing the

FIGURE 5 Channel attention (CA)-Unet's architecture

FIGURE 6 The architecture of sde-awb (model A). “LayerName-x-y” denotes a 2D layer with x input channels and y output channels

where the layer is either a standard convolution layer, a backbone network (eg, SqueezeNet) or a 2D LSTM. “Upsampling” does the
upsampling to match the spatial dimensions of the output of SqueezeNet backbone. “Channel concat” concatenates three features maps

along the feature channel axis. y is the illumination color vector after the last ReLU layer. Model B has the similar architecture without the

Diff-Histogram and the Exif-MLP sub-brunches

ERSHOV ET AL. 9



input image channel-by-channel by the provided gro-
und truth illuminants. This configuration was deter-
mined after preliminary experiments against alternative
representations, including a fixed white balancing pre-
processing, and a de-linearization of the input images.

At inference time, a consensus strategy is applied in
order to map the spatially-varying illuminant into a
global estimated illuminant. Several alternatives were
investigated:

• Mean: each channel of the spatially-varying illuminant
map is independently averaged.

• Median: the median is computed for each channel, as
a more-robust statistic with respect to outliers.

• Weighted mean: each pixel is weighted in the overall
average as a function of its luminance, penalizing low
luminance for numerical instability, and high lumi-
nance due to sensor non-linearities.

• Meta strategy: a neural network is trained to predict
the best consensus strategy for each image, thus
treated as an image classification problem.

All solutions were trained on the Cube+ dataset, orig-
inally composed of 1707 images collected with the same
Canon 550D camera used for part of the challenge
images. Developmental experiments were validated on
the challenge training set, specifically the “indoor” track,
and lead to the eventual submission of two

configurations for the challenge: PCGAN (Predicted-
Consensus GAN, based on the meta strategy) and
MCGAN (Median-Consensus GAN). These solutions
were fine-tuned on the challenge training set after the
initial Cube+ training. For more details of PCGAN and
MCGAN see our article.36

5 | DISCUSSION

The main goal for a participant in the described chal-
lenges was to create an algorithm that predicts the
ground-truth value for each image with the least error.
Thus, the best algorithm is the one that most accurately
predicts the answer proposed by the organizers. However,
would such an algorithm be the best one for estimating
the illumination in a scene? The answer to this question
is decidedly negative.

Firstly, when using this type of datasets, the task is
implicitly substituted from “Estimate illumination
parameters in the scene” to “Predict the color of the
white patch in the scene.” Considering that the color of a
white flat object in the scene changes significantly with
a change in its orientation, it turns out that the winning
algorithm solves the problem of predicting the color of a
white reference object in some way located better than
others. In other words, the winning algorithm is good at
predicting one of many averaged illumination estimation

FIGURE 7 The architecture of sde-awb (model C). “Color correction” takes the predicted illumination vector from the layer above and

do color correction on the input image, resulting into a color-corrected image. Note that model A takes 2 inputs while model B takes only

1 input

InferenceGenera�ve 
model ÷

Spa�ally-varying 
illuminant

Consensus
Global

illuminant 
(es�mated)

Input image

Generated image

FIGURE 8 Schematic

representation of the PCGAN/MCGAN

solution for illuminant estimation. The

global estimation is defined as the

consensus over the spatially-varying

illuminant coming from a generative

model. Illuminant distributions are

visualized in Angle-Retaining

Chromaticity34
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in the scene, but not all of them and it may not be the
best one. The experience gained from the two-illuminant
track suggests that even in simple daytime scenes where
the only light source is the sun, the difference in chroma-
ticity between different sides of the SpyderCube can go
up to more than 10∘. In that context, the statement “Algo-
rithm X works with an accuracy of less than 1∘00 becomes
negligible, since the scatter of estimates of correct
answers in some images can be even 10 times greater.

Secondly, the errors in the dataset cannot be
neglected. In the first challenge, the median of errors was
used to overcome this. In this case, large error values
induced by incorrectly labeled data have less effect on the
final accuracy. However, as shown by the results of
the challenge, such an error allows the solution to be for-
given for too many gross errors, which, combined with
the specific structure of the dataset (more than half of the
images were taken outdoors during the day), will lead to
inadequate ranking of algorithms. For this reason, in the
second challenge, much stricter metrics were used, and
the data was marked up and processed with special
attention.

These arguments have led us to a logical question:
“What is the best way to measure accuracy using such
datasets?” According to the organizers of the challenge,
the answer to this question is not trivial, and it depends
on the ultimate goal for which a technical solution is
being developed. In the case of the physical task of esti-
mating illumination parameters in a scene, it is worth
noting that the type of datasets used is not the best
one: even a three-dimensional achromatic calibration
object (gray ball) allows collecting a very small amount
of information about the lighting in the scene. This is
probably why in 2020, scientists from Simon Fraser
University published a new dataset37 in which the illu-
mination for one scene was determined at once at
many different points using flying drone. In the tasks
of forming digital photographs, where white balancing
algorithms are still used, the stability of the algorithm
is much more important than the average accuracy of
its operation. Thus, in this problem, it is more appropri-
ate to use the mean of the angular error over some per-
centage (1%, 5%, etc.) of the worst responses. On the
one hand, this kind of metric still allows operating with
angular values, on the other hand, to control the worst
cases of the algorithm, which is critical from the point
of view of the end user.

ACKNOWLEDGMENTS
The work under data collection was supported by the
Croatian Science Foundation under Project IP-
06-2016-2092, and the work under data processing was
supported by Russian Science Foundation under Grant

20-61-47089. Authors also grateful to Irina Zhdanova for
helping in preparing beautiful illustrations.

ENDNOTES
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leaderboard

† https://archive.is/CE8WH
‡ https://www.dxomark.com/dxomark-selfie-how-we-test-
smartphone-front-camera-still-image-quality/

§ Detailed description of the dataset is available on GitHub https://
github.com/Visillect/CubePlusPlus and IEC# 2 website http://
chromaticity.iitp.ru

¶ See commit https://github.com/Visillect/CubePlusPlus/commit/
eb37e9fe7b17eeb8bdb8fa71cb109febe92630a7
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[13] Bani�c N, Lončari�c S. Color Dog: Guiding the Global Illumina-
tion Estimation to Better Accuracy. VISAPP; 2015:129-135.

[14] Finlayson GD. Corrected-moment illuminant estimation.
Paper presented at: Proceedings of the IEEE International
Conference on Computer Vision; 2013:1904-1911.

[15] Cheng D, Price B, Cohen S, Brown MS. Effective learning-
based illuminant estimation using simple features. Paper pres-
ented at: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition; 2015:1000-1008.

[16] Barron JT. Convolutional Color Constancy. Paper presented
at: Proceedings of the IEEE International Conference on Com-
puter Vision; 2015:379-387.

[17] Barron JT, Tsai YT. Fast Fourier color constancy. Paper pres-
ented at: IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. CVPR; 2017. Vol. 1. IEEE.

[18] Bianco S, Cusano C, Schettini R. Color constancy using CNNs.
Paper presented at: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops; 2015:
81-89.

[19] Shi W, Loy CC, Tang X. Deep specialized network for illumi-
nant estimation. Paper presented at: European Conference on
Computer Vision; Springer; 2016:371-387.

[20] Hu Y, Wang B, Lin S. FC4: Fully convolutional color con-
stancy with confidence-weighted pooling. Paper presented at:
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition; 2017:4085-4094.

[21] Oh SW, Kim SJ. Approaching the computational color
constancy as a classification problem through deep learning.
Pattern Recogn. 2017;61:405-416.
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