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a b s t r a c t 

Digital raindrop removal is a branch of image restoration that aims at identifying adherent droplets on 

a glass surface and replacing them with plausible content. When successfully performed, raindrop re- 

moval was proven in the past to positively affect both the perceived appearance of the scene, and the 

performance of computer vision tasks such as semantic segmentation and object detection. In this paper, 

we design and implement a new encoder-decoder neural network for supervised raindrop removal. Our 

network, given a rainy input image, produces as output the Laplacian pyramid of a rain-free version of 

the input, making it possible to handle the variety of appearances of rain droplets by processing differ- 

ent frequency bands independently. To this end, we define and experimentally prove the effectiveness 

of a custom loss function that combines the errors of the different Laplacian frequency bands. We test 

our model for raindrop removal on a standard dataset, using multiple objective metrics to provide a de- 

tailed analysis of its performance. We confirm the superiority of our proposal in a comparison with other 

methods from the state of the art. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Adverse weather conditions negatively impact the perceived 

isibility of a scene. In a street-driving scenario, for example, rain 

roplets adhering to the glass surface of a car windshield might 

cclude crucial elements such as obstacles, pedestrians, or traf- 

c signs, and are generally distracting to the driving experience. 

n addition to hindering human vision, rain-induced artifacts are 

lso found to affect computer vision: several works in the scien- 

ific literature quantify the benefits of digital rain removal on a 

ide variety of tasks, ranging from object detection [1] , to seman- 

ic segmentation [2] , to optical character recognition [3] . The prob- 

em of image regression, in its most general formulation, has been 

ddressed with a wide variety of approaches through the years: 

rom handcrafted solutions [4] , to the more recent exploitation of 

onvolutional Neural Networks (CNN) [5] . The latter has involved 

eneral-purpose methods for image-to-image translation [6] , as 

ell as domain-specific architectures such as the ones described in 

ection 2 . Compared to other artifacts such as rain streaks and rain 

ist, rain droplets impose a significant and specific set of chal- 

enges, such as large occlusion areas and a wide variety of appear- 

nces, as we show in Section 3 . In this work we specifically fo-

us on raindrop removal by designing a Laplacian encoder-decoder 
∗ Corresponding author. 
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eural network. Our solution allows us to control the image re- 

onstruction process by producing the different levels of a Lapla- 

ian pyramid decomposition of the expected clear (i.e. rain-free) 

mage. This approach avoids relying on commonly-used attention 

aps which are inherently limited by misalignements between the 

ainy and clear image, a phenomenon observed in Alletto et al. [7] . 

ur model is trained with multiple losses, evaluating the partial 

econstruction at each level of the pyramid. In the training proce- 

ure, we modify the derivation tree in order to prevent redundant 

radient flow for pyramid levels that impact more than one loss 

omponent. This novel formulation, and its integration with the 

aplacian decomposition, was found to be optimal after compar- 

tive evaluation with several other alternatives, as reported in the 

xperimental results. Future developments of the proposed method 

re also suggested based on an in-depth analysis of the relation- 

hip between Laplacian levels and rain removal. 

. Related works 

The digital removal of rain-induced artifacts has been actively 

tudied through the years, resulting in an extensive scientific pro- 

uction. A recent review by Yang et al. [8] presented a comprehen- 

ive analysis, ranging from solutions based on explicit raindrop- 

ppearance models [9–11] , to data-driven ones typically relying on 

eep learning [12,13] . Wang et al. [14] produced a similar overview 

f existing approaches, with particular attention to rain removal 

n video sequences, providing direct links to papers, source codes, 

https://doi.org/10.1016/j.patrec.2022.04.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2022.04.016&domain=pdf
mailto:s.zini1@campus.unimib.it
mailto:marco.buzzelli@unimib.it
https://doi.org/10.1016/j.patrec.2022.04.016
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roject pages, datasets, and metrics. In this paper, we focus on 

ingle-shot rain removal. Rain-related artifacts can be organized in 

hree macro categories according to [1] : rain droplets, rain streaks, 

nd rain mist. An image is said to be affected by “rain droplets”

also referred to as raindrops) when the scene is observed through 

et glass: typically, a car windshield right after it rained. This par- 

icular interpretation of the problem is the one addressed in this 

aper, therefore an analysis of corresponding state of the art so- 

utions is provided in the current section. The term “rain streaks”

efers instead to the visual artifacts of a scene directly observed 

hen rain is currently pouring [15–17] . In this case, the terminal 

elocity of falling rain produces motion-blurred rain streaks over- 

mposed to the image. Finally, the task of rain-streak removal is 

ften treated in conjunction with the correction of “rain-induced 

ist”: in the same scenario, in fact, rain streaks that are far away 

rom the camera are not individually discernible, and produce a 

lobal appearance equivalent to that of airborne water [18] . Addi- 

ionally, some recent works have focused on the digital removal of 

now flakes, training regression models either through adversarial 

echniques [19] , or more traditional learning procedures [20] . 

The specific field of raindrop removal is relatively recent, com- 

ared to rain streak and mist removal. Wu et al. [4] developed an 

andcrafted approach to the problem: they focused on droplet de- 

ection, by analyzing colour, texture, and shape statistics of rain- 

rop images. Based on these features, their solution is to produce 

 first set of candidate raindrop regions, which is subsequently 

runed through a learning-based verification algorithm. The au- 

hors then resorted to existing image inpainting solutions in order 

o restore the selected image areas. A relevant contribution to the 

eld has then been given by Qian et al. [21] , who in 2018 pub-

ished a high-quality dataset that has since become the de facto 

tandard for this area of research. The authors also introduced a 

o-called “attentive generative network”, trained in an adversar- 

al configuration. They injected a visual-attention map to both the 

enerative and discriminative component of the network, in order 

o focus the image processing mainly on corrupted areas. How- 

ver, whenever attention maps are designed to target explicit rain- 

rop masks (a function of the difference between rainy image and 

lear reference), they are inherently limited by misalignements be- 

ween the two images and moving objects, as observed by Al- 

etto et al. [7] . They consequently developed a physically-accurate 

omputer-graphics engine to augment images with artificial rain- 

rops. Such technique allowed them to exploit existing datasets 

nrelated to rain removal, in order to train a model that is able 

o simultaneously locate and remove raindrops in a self-supervised 

anner. Their solution, based on a conditional generative adversar- 

al network, is mainly developed for application to video sequences 

y exploiting motion cues. Quan et al. [22] devised a so-called 

double attention mechanism” to guide the learning and inference 

f a Convolutional Neural Network in the task of raindrop removal. 

heir approach relies upon the generation of a shape-driven atten- 

ion map, to locate raindrops based on a-priori knowledge on their 

hape properties. Such attention map was applied using a channel 

ecalibration mechanism, to properly weight the intermediate ac- 

ivations of their neural model. Hao et al. [23] released a dataset 

f images augmented with physics-based synthetic raindrops, as 

ell as the associated raindrop masks. They defined a neural net- 

ork for raindrop detection which explicitly models the refraction 

nd blurring components of the raindrop itself. Shao et al. [24] ex- 

licitly modelled the blur level of rain droplets using a soft mask 

opulated through an iterative procedure, and fuse it with the in- 

ut image through an attention mechanism. They also exploit the 

 multi-scale analysis based on the observation that different scale 

ersions of a rainy image have similar raindrop patterns. In devel- 

ping our final solution, we experimented with different strategies, 

nd eventually defined a neural network that while not relying on 
25 
ttention maps still produces competitive or even superior results 

hen compared to such methods. 

More specifically, our approach to the digital removal of rain 

roplets leverages a Laplacian decomposition of the input image, 

n order to address the problem at different scales. Decom posing 

he input image with various representations has been success- 

ully exploited in the past for rain streak removal while not for 

aindrop removal. Kang et al. [25] applied an image decomposi- 

ion based on morphological component analysis, specifically re- 

orting to bilateral filtering. They decomposed the image into a 

ow-frequency and high-frequency part, and focused on process- 

ng only the high-frequency component: they exploited dictionary 

earning and sparse coding to further decompose it into rain and 

on-rain components, in order to effectively remove the former. 

imilarly, Sun et al. [26] also devised an approach that relies on 

mage decomposition for dictionary-based removal of rain streaks, 

ut embedded and formulated the decomposition-basis selection 

s an optimization problem instead of exploiting bilateral filtering. 

u et al. [27] focused on reducing the computational complexity 

f Convolutional Neural Networks for rain streaks removal by rep- 

esenting the input image as a Gaussian-Laplacian pyramid, and 

y designing a so-called “Lightweight Pyramid Network” (LPNet) 

ased on a recursive and residual structure. 

To the best of our knowledge, this is the first time that image 

ecomposition is exploited for raindrop removal. In Sections 3 and 

ection 4.3 we show that this application is particularly suitable, as 

he various appearances of rain droplets can be individually han- 

led by exploiting the Laplacian decomposition. 

. Proposed method for raindrop removal 

Raindrops adhering to a transparent surface in front of the cam- 

ra (like a car windshield, or the camera lens itself) degrade the 

uality of the information contained in the picture to different ex- 

ents, depending on the camera focus: 

1. In-focus raindrops. The degradation appears as blur in sparse 

image areas, affecting low and high frequencies. 

2. Out-of-focus raindrops. We mainly identify two effects: 
• A degradation related to the refraction phenomena intro- 

duced by the convex shape of the drop, that affects the low- 

frequencies. 
• A drop contour degradation that is manifested as artifacts in 

the high frequencies. 

An example of in-focus and out-of-focus raindrops can be seen 

n the second row of Fig. 1 . To model the degradation distribution 

ver different frequencies of the input image, we exploit its Lapla- 

ian pyramid decomposition [28] , whose effect is also depicted in 

gure. 

.1. Laplacian-based image restoration 

Given an input image I rainy , our encoder-decoder network G is 

esigned and trained to generate the corresponding levels ˆ y i of its 

aplacian pyramid decomposition, free of rain artifacts: 

ˆ 
 = { ̂  y 1 , ̂  y 2 , . . . , ̂  y N } = G (I rainy ) (1) 

here ˆ y N is the tallest level of the Laplacian pyramid, correspond- 

ng to the low frequencies component. The final recomposed out- 

ut I derained is then computed as: 

 derained = L ˆ Y 
(1) (2) 

 Y ( j) = 

{
y N if j = N 

y j + upsample (L Y ( j + 1)) otherwise 
(3) 
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Fig. 1. Different kinds of raindrop and their impact on the overall image. The ones in camera focus tend to introduce artifacts related to the sharp edges of the single 

raindrops in combination with the refraction phenomenon. The ones out of focus tend to remove information where the drops are located, by blurring the corresponding 

image areas. 

Fig. 2. Architecture of the proposed Laplacian Raindrop Removal CNN. The number of features in output after the first convolution is set to f = 64 . The output of the 

different levels is combined by up-sampling the lower levels and summing them to the higher frequencies, in order to obtain the final output. 
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The proposed network architecture, depicted in Fig. 2 , is divided 

n two main components: an encoder for the input I drop , and a 

ovel decoder composed of multiple output branches, in relation 

o the specific formulation of Laplacian pyramid levels. 

The design of the encoder is partially inspired from the U-net 

odel [29] , with some relevant variations in the convolution and 

eneral structure. More specifically, the encoder is a sequence of 

wo CONV-lReLU-CONV-lReLU layers with a MaxPool operation, to 

xtract features and to reduce the spatial dimension. The activa- 

ions are not reduced to spatial dimensions 1 × 1 as in the original 

-Net architecture, but only reduced down by a factor of 4 (given 

y the presence of the two MaxPooling operation), to avoid losing 

patial information in the encoded features, which serves an im- 

ortant role in image restoration. 

The deepest part is a sequence of two CONV-lReLU blocks and 

our CONV-lReLU blocks with dilation [30] : these last six blocks of 

ayers have been added with respect to the original U-Net encoder 

tructure, to increase the model receptive field without reducing 

urther the spatial feature dimensionality. The dilation spacing in- 

reases as a power of two from the first layer to the last one (2,

, 8, 16). The depth of output features after the first convolution 

s set to f = 64 , and the following ones are derived as indicated in

ig. 2 . 

The decoder, which addresses the actual restoration of the in- 

ormation at different frequency bands, has been designed in re- 

ation to the number N of levels of the Laplacian pyramid which 

e intend to reconstruct. The following description is provided for 

 general number of levels N, although we set N = 3 on the ba-

is of preliminary experiments. Given the dimension of the images 

sed in training and the memory limitations of our hardware con- 

guration, we adopted N = 3 , to not reduce too much the spatial
 o

26
imensions of the images in higher levels of the laplacian pyra- 

id and to not increase the model occupation in memory. The 

ecoder is composed of branches of two types: one dedicated to 

estoration of low-frequencies, two dedicated to high-frequencies. 

he low-frequencies branch is a concatenation of six CONV-lReLU 

ith a final CONV(1 × 1) layer with a Sigmoid activation function 

o map from the features space to the RGB colour space. The out- 

ut of this branch corresponds to the deepest level of the Laplacian 

yramid, which is a low-resolution version of the rain-free image, 

nd which will be combined with the highest levels generated by 

he model according to Eq. (1) . The high-frequencies branches are 

esigned to restore the details and the fine structures in the im- 

ge. The corresponding Laplacian pyramid levels all share common 

haracteristics: values centered around zero and a general appear- 

nce that is not as intelligible as that of the lower frequencies. For 

his reason, the structure of this part of the model is composed 

f multiple sub-branches that incrementally enhance the features 

rom the deepest to the highest level of the laplacian pyramid. 

ach higher branch is an extension with respect to the previous 

evel in the Laplacian pyramid, i.e. it takes the features decoded 

y the preceding level to restore its own. The decoder blocks are 

omposed of four CONV-lReLU layers plus a transposed convolu- 

ion, to upsample the features for the higher Laplacian level, and a 

ONV(1 × 1) with a Tanh activation function to map from feature 

pace to RGB colour space. 

.2. Laplacian loss function 

Given a target rain-free image I clear , we extract the correspond- 

ng Laplacian pyramid levels Y for comparison with the restored 

utput ˆ Y . Our loss function Loss reconstructs the restored image 
d 
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Table 1 

Study on the training configuration: results achieved training the proposed model 

using the different loss function configurations. Evaluation performed on test _ a 

from the dataset by Qian et al. [21] . Best result in bold. 

Training configuration PSNR SSIM 

a : One loss per image, classical encoder-decoder 30.14 0.9198 

b: One loss per image, reconstructed image 29.76 0.9200 

c: One loss per level, pyramid levels 30.56 0.9252 

d: One loss per level, reconstructed levels 31.12 0.9297 
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p to each level, and compares it with the corresponding recon- 

tructed target using the L1 norm ( || · || 1 ): 

oss d = 

N ∑ 

i =1 

|| L Y (i ) − L ˆ Y 
(i ) || 1 (4) 

Instead of directly comparing the generated frequencies with 

he target ones, we reconstruct the image up to the specific level 

t which the comparison takes place. This strategy, experimentally 

alidated in Section 4.2 , is motivated by two purposes: 

• Levels balance: the comparison at each branch is always per- 

formed on complete RGB images. This guarantees a magnitude 

of error similar between the different branches, without the ne- 

cessity to re-weight to the different components of the loss for 

regularization purposes. 
• Reconstruction context: instead of comparing images composed 

only of details taken out of their original context, the compar- 

ison using the reconstructed level can highlight differences in 

relation to the context in which the details are located. This is 

expected to help the training in detecting structures introduced 

by raindrops, in contrast to the ones coming from elements of 

the actual scene. 

It should be noted that, with the formulation expressed in 

q. (4) , the evaluation of every Laplacian level impacts all the 
ig. 3. We analyzed different training configurations for our encoder-decoder network: (a)

b) comparison between the reconstructed output and the target, (c) comparison between

econstructed level of the pyramid and the corresponding target. 

27 
ower levels during the gradient back-propagation. Therefore, 

igher levels effectively influence the learning process multiple 

imes. In order to prevent this phenomenon, the flow of gradients 

uring the training process has been modified, by inhibiting the 

ack-propagation on the lower branches, and maintaining it only 

or the current branch. 

. Experiments 

.1. Experimental setup 

To train and test our model for raindrop removal, we adopted 

he dataset and metodology presented by Qian et al. [21] . This 

ataset was collected by placing a glass panel in front of a camera, 

nd taking pictures before and after spraying the glass with water. 

he dataset contains a total 1119 pairs of different outdoor scenes. 

he dataset is divided into three main folders: the train folder, con- 

aining 861 pairs of images, and two test folders: test _ b (249 image 

airs) and test _ a (58 image pairs, a subset of well-aligned images 

rom test _ b). The folder test _ a is commonly used for methods as- 

essment and comparisons [21–23,31,32] . The folder test _ b (with- 

ut the images contained in test _ a ) is commonly used for internal 

alidation. 

We trained our encoder-decoder network with images from 

he train folder, cropped at dimension 256 × 256 pixels. The crops 

ave been collected using a sliding window with overlap equal to 

28 pixels, generating a total 20,664 training samples. To further 

ugment the dataset we randomly applied online flipping and rota- 

ion ( 90 ◦, 180 ◦, 270 ◦) to the images at training time. For validation

nd test, we used respectively test _ b and test _ a folders [21–23] . 

ur model is written in PyTorch v1.4.0, trained using an NVIDIA 

itan V GPU with 12 GB of RAM. We adopted the Adam opti- 

izer [33] with β1 = 0 . 9 , β2 = 0 . 999 with a starting learning rate

r = 2 × 10 −5 decreased by a factor 10 × after 300 epochs of train- 

ng, and weight decay set to 10 −8 . 
 comparison between the output of a classic encoder-decoder model and the target, 

 each level output and the corresponding target level, (d) comparison between each 
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Table 2 

Effect of replacing each Laplacian level with its perfect ground truth version. For the “Rainy”

columns, “base images” refers to the original images in test _ a from Qian et al. [21] . For “De- 

rained”, “base images” refers to the output of our rain removal network. 

Rainy Derained 

PSNR SSIM PSNR SSIM 

Base images 24.10 0.8511 31.12 0.9297 

Perfect level 1 24.61 ( + 2.1%) 0.9181 ( + 7.9%) 32.12 ( + 3.2%) 0.9781 ( + 5.2%) 

Perfect level 2 24.60 ( + 2.1%) 0.8749 ( + 2.8%) 31.22 ( + 0.3%) 0.9402 ( + 1.1%) 

Perfect level 3 28.95 ( + 20.1%) 0.8885 ( + 4.4%) 33.92 ( + 9.0%) 0.9389 ( + 1.0%) 

Fig. 4. SSIM and PSNR distributions corresponding to replacing each Laplacian level of our derained images (“base images”) with a perfect version from the ground truth. 

The comparison is always performed with the full ground truth. Kernel Density Estimation [37] is applied to the distributions to facilitate interpretability. 

Table 3 

Quantitative evaluation of methods for raindrop removal on test _ a and test _ b from 

the dataset by Qian et al. [21] . Results on test _ b are reported from [24] . Best result 

in bold, second-best underlined (excluding models trained with different training 

data). 

test _ a test _ b

Method PSNR SSIM PSNR SSIM 

Eigen et al. [38] 28.59 0.6726 – –

Pix2pix - Isola et al. [6] 30.14 0.8299 23.50 0.7150 

AttentiveGAN - Qian et al. [21] 31.57 0.9023 24.92 0.8090 

Peng et al. [31] 30.72 0.9262 – –

Quan et al. [22] 31.44 0.9263 – –

Hao et al. [23] 30.17 0.9128 – –

Porav et al. [32] 31.55 0.9020 – –

Alletto et al. [7] ∗ 31.94 ∗ 0.9450 ∗ – –

DURN - Liu et al. [39] 31.24 0.9259 25.32 0.8173 

Shao et al. [24] 31.47 0.9235 25.35 0.8197 

Ours 31.12 0.9297 25.40 0.8185 

∗ Solution trained on a different training set. 
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Quantitative evaluation is performed using two full- 

eference quality assessment metrics: Peak Signal-to-Noise Ratio 

PSNR) [34] and Structural Similarity Index Measure (SSIM) [35] , 

oth computed on the luminance channel of images in the YCbCr 

olour space. To be noted that SSIM was proven to be better 

orrelated with human opinion scores, compared to PSNR [36] . 

.2. Evaluation of alternative training configurations 

We compared the Laplacian loss function Loss d defined in 

ection 3.2 based on our encoder-decoder network, with a base- 
28 
ine devoid of any Laplacian decomposition, and with two alterna- 

ive loss functions that do exploit the decomposition, but combine 

he resulting levels in different ways. All four configurations, de- 

icted in Fig. 3 , exploit the L1 norm to perform the output-target 

omparisons, and are described in the following: 

• Configuration a . We exclude our Laplacian decomposition in or- 

der to provide an experimental baseline. The loss function com- 

pares the target with the output of a classical encoder-decoder 

model. Here the decoder defined in Section 3 is completely re- 

placed with a specular version of our encoder. 
• Configuration b. We exploit our Laplacian encoder-decoder. The 

loss function only compares the final fully-reconstructed output 

L ˆ Y 
(1) with the target image L Y (1) : 

Loss b = || L Y (1) − L ˆ Y 
(1) || 1 (5) 

• Configuration c. We exploit our Laplacian encoder-decoder. The 

loss function evaluates the output of each level i individually, 

and sums all the contributions. The comparison between target 

and output is performed directly on pyramid levels, without re- 

constructing the image. 

Loss c = 

N ∑ 

i =1 

|| y i − ˆ y i || 1 (6) 

• Configuration d. We exploit our Laplacian encoder-decoder. The 

loss function evaluates the output of each level individually, 

and sums all the contributions. For each level i , an intermedi- 

ate image L ˆ Y 
(i ) is reconstructed for comparison with the cor- 
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Fig. 5. PSNR-SSIM comparison of the state-of-the-art-models and our proposed method on test_a and test_b from Qian et al. [21] . A higher value means better visual results. 
∗: Solution trained on a different training set. 

Table 4 

Comparison of average inference time for different methods. The reported models have been 

evaluated on an NVIDIA Titan V GPU. 

Pix2Pix [6] AttentiveGAN [21] DURN [39] Quan et al. [22] Ours 

Time (s) 0.010 0.253 0.0165 0.206 0.054 
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responding target. This is our definitive configuration, relying 

upon Eq. (4) . 

Table 1 reports the results of the correspondingly-trained mod- 

ls in terms of PSNR and SSIM. It is possible to observe how the 

se of a loss function that is aware only of the final result (con- 

guration b), is not enough to fully exploit the power of the Lapla- 

ian decomposition. Such a model, without a control on the output 

f the single levels, obtains worse results with respect to a sin- 

le encoder-decoder trained with the same distance function and 

ith no Laplacian decomposition (configuration a ). Configuration c

ompares the results of each branch with the corresponding target 

ersion, but without the Laplacian reconstruction step for the cor- 

esponding levels. In this case, we obtained an improvement with 

espect to both single-loss configurations a and b. In this config- 

ration, the training of each branch is directly related to the re- 

onstruction of a certain frequency band: each level is thus fo- 

used on the restoration of certain details, without considering the 

ther branches’ contribution to the final restored image. However, 

ue to the different nature of the images generated at the differ- 

nt branches (low frequencies and high frequencies), the magni- 

ude of the loss evaluated at each level during training is different. 

ithout any weighting-based regularization, therefore, this config- 

ration is potentially suboptimal. The final version (configuration 

) evaluates the results of each branch, with respect to the lower 

evels results. Instead of simply comparing the branches’ output, 
29 
e first reconstruct the image up to the interested level, and only 

hen the loss is calculated. In this way, we are able to compare 

he results of each layer with the corresponding targets, and at the 

ame time, the losses at the different levels have similar magni- 

ude. Moreover, with this kind of image evaluation the details in- 

roduced by each branch are compared with the target in relation 

o the general context of the image in which they are located, in- 

tead of comparing only the map of details modified by the neu- 

al network. This helps the neural network to better identify the 

resence of raindrops that must be removed, in comparison with 

extures coming from the original scene. 

.3. Laplacian decomposition assessment 

We assess the impact of Laplacian decomposition on rain re- 

oval, by decomposing test _ a rainy images and replacing each 

evel independently with the corresponding ground truth. 

We then compare each resulting version with the full ground 

ruth. We use PSNR and SSIM metrics in order to adhere to the 

e-facto standard practice adopted by the specialized literature, 

lso noting that SSIM is known to be well-correlated with human 

udgement [36] . Results are shown as “Rainy” in Table 2 . 

PSNR reports the greatest potential advantage when resolving 

he problem at low frequencies (level 3). Conversely, the higher 

requencies (level 1) have potentially the greatest impact on SSIM, 

hich was in fact specifically designed to capture structural simi- 
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Fig. 6. Visual comparison of methods for raindrop removal. Our proposed model correctly restores information on uniform areas and near edges coming from the original 

scene. Zoomed crops and the corresponding SSIM maps are reported to facilitate the results interpretation. 
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F

arity. To be noted that the upper bound of SSIM is 1, while PSNR 

as no upper bound. This first evaluation provides an indication of 

ow different errors are distributed across multiple levels. We can 

lso observe that our solution, reported as the “Derained” columns 

or the base images, outperforms all the individual level replace- 

ents for the rainy images, showing that it effectively brings an 

mprovement at more than one level. 
30 
We can then quantify the upper bound of improving our cur- 

ent solution one level at a time, i.e. we determine the potential 

mpact of perfectly restoring either of the levels from our derained 

mages. We do so, once again, by replacing each level individually 

ith the corresponding one from the ground truth images. The re- 

ults are shown in Table 2 , with the “Derained” columns, and in 

ig. 4 for a view of the entire distribution. For SSIM, the largest 
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Fig. 7. Visual comparison of methods for raindrop removal on heavily-textured areas. Our model correctly reconstructs some of the complex structures occluded by out-of- 

focus raindrops. Zoomed crops and the corresponding SSIM maps are reported to facilitate the results interpretation. 
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ossibility for improvement still appears to be working on level 

 (high frequencies). Interestingly enough, for PSNR we observe a 

arge potential improvement by working both on level 3 and level 

. In general, this suggests to focus on details at high frequencies, 

hich would have a positive impact on both evaluation metrics, 

nd which is left as a direction for future research. 

.4. Comparison with the state of the art 

In order to analyze the performance of the proposed solution, 

e compared it with state of the art approaches specifically de- 

igned for single-image raindrop removal. We selected an image- 

o-image general purpose method named Pix2Pix [6] , the method 

y Eigen et al. [38] which is the first attempt in raindrop removal 

rom a single image, AttentiveGAN by Qian et al. [21] which adopts 

enerative Adversarial Networks to address the restoration pro- 

ess, and methods by Quan et al. [22] , Hao et al. [23] , DURN by Liu
31 
t al. [39] , Peng et al. [31] , Shao et al. [24] , which represent the

atest attempts in raindrop removal, exploiting different types of 

ttention mechanisms and/or estimated raindrop maps. The com- 

arison, done in terms of standard measures PSNR and SSIM on 

est_a and test_b from Qian et al. [21] , is reported in Table 3 , while

ig. 5 presents a visualization in Cartesian representation. For both 

etrics, the higher, the better restoration. 

As it can be seen in Table 3 , our method outperforms the 

tate of the art solutions on the standard test set test _ a in terms 

f SSIM, and achieves comparable performance for PSNR. Alletto 

t al. [7] report the results of their method on the test_a set of the

ame dataset in terms of PSNR and SSIM values as 31.94 and 0.945 

espectively, thus obtaining extremely good performance. However, 

ince their solution was trained on different data, the results are in 

ur opinion not directly comparable. To further analyze the perfor- 

ance of the proposed model on a larger dataset, we also evalu- 

te our solution on the test_b set from Qian et al. [21] , comparing
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Fig. 8. Results of rain removal on out-of-dataset images acquired with a car dash camera during a storm. Our model is able to restore images from a real-world scenario, 

removing raindrops and restoring details and structures corrupted by the presence of raindrops. Image credit Eli Christman. 
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t with the results from other methods as reported by Shao et al. 

24] . As can be seen in Table 3 , our model outperforms the state

f the art in terms of PSNR, while the SSIM index reaches com- 

arable results with the model by Shao et al. [24] . Furthermore, it 

s interesting to notice the performance drop of AttentiveGAN [21] , 

hich can be associated with sub-optimal generalization effective- 

ess, observed when testing the model with a higher number of 

mages. In this sense, our proposed solution shows a more stable 

ehaviour, being capable to better generalize, and perform gener- 

lly better than the best performing ones on the smaller set test _ a .

An additional term for comparison is to account for the average 

unning time during the inference phase. In Table 4 we report the 

verage inference time on test _ a of our model compared with var- 

ous methods of which the inference code is available. All of the 

odels have been tested using an NVIDIA Titan V GPU. It is possi- 

le to observe that our proposed solution is faster than the method 

y Qian et al. [21] , Quan et al. [22] , while being in the same order

f magnitude as the other compared methods. 

Concerning a visual comparison of the models, we report some 

rocessed images from the test _ a set in Figs. 6 and 7 . The com-

arison was performed against the methods lying on the Pareto 

ront of Fig. 5 (determined without Alletto et al. [7] ) and restrict- 

ng the choice to those whose code and models are publicly avail- 

ble: AttentiveGAN [21] and Quan et al. [22] The images were se- 

ected in order to highlight a variety of scene and droplet types. It 

s possible to observe that our encoder-decoder network produces 

 satisfactory restoration of homogeneous areas, as well as regions 

ccluded by large out-of-focus droplets, while maintaining little- 

o-no artifacts related to refraction phenomena. To further prove 

he effectiveness of the proposed solution, we tested the model on 

n out-of-dataset scenario. In Fig. 8 we report two frames from a 
32 
ideo sequence captured using a car dash camera during a storm, 

omparing once again our approach with AttentiveGAN [21] and 

uan et al. [22] . As can be seen, the proposed solution is able to

emove raindrops from the input images, which is particularly ev- 

dent in the second reported frame, at the same time preserving 

etails (trees from the first image) and avoiding the introduction 

f colour artifacts (trees from the second image). 

. Conclusions 

We presented an encoder-decoder neural network for adherent 

aindrop removal, motivated by the perspective of improving the 

isibility of an acquired scene. Our neural architecture takes ad- 

antage of image decomposition, by generating the Laplacian pyra- 

id levels of a rain-free version of the input image. This formu- 

ation deconstructs a problem that is inherently characterized by 

 variety of appearances, and allows our model to address each 

requency band with a different strategy. We designed a loss func- 

ion that takes into account the different nature of each Laplacian 

evel, and we showed its suitability in a comparison against other 

ossible loss functions. The effectiveness of this solution was also 

emonstrated with respect to existing state of the art methods for 

aindrop removal. 

To direct future research, we conducted investigative experi- 

ents to understand what components of the image offer the 

reater chances at improving the model performance. The conclu- 

ion is that both SSIM and PSNR measures would benefit signif- 

cantly by focusing on the lowest level of the Laplacian pyramid, 

.e. by improving the reconstruction of high frequencies. The same 

nalysis could be extended to include other metrics, either aiming 
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