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We present a novel Convolutional Neural Network that exploits the Laplacian decomposition technique,
which is typically used in traditional image processing, to restore videos compressed with the High-Efficiency
Video Coding (HEVC) algorithm. The proposed method decomposes the compressed frames into multi-
scale frequency bands using the Laplacian decomposition, it restores each band using the ad-hoc designed
Multi-frame Residual Laplacian Network (MRLN), and finally recomposes the restored bands to obtain the
restored frames. By leveraging the multi-scale frequency representation of compressed frames provided by the
Laplacian decomposition, MRLN can effectively reduce the compression artifacts and restore the image details
with a reduced computational cost. In addition, our method can be easily instantiated in various versions
to control the tradeoff between efficiency and effectiveness, representing a versatile solution for scenarios
with constrained computational resources. Experimental results on the MFQEv2 benchmark dataset show
that our method achieves the state-of-the-art performance in HEVC-compressed video restoration with a
lower model complexity and shorter runtime with respect to existing methods. The project page is available at
https://github.com/claudiom4sir/LaplacianVCAR.
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1 Introduction
With the increasing popularity of video content, the need for video compression techniques has
become more significant. The massive quantity of video content produced and consumed by users
every day makes it fundamental to limit memory occupation and to efficiently use the transmission
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bandwidth in video streaming applications. In recent years, the High-Efficiency Video Coding
(HEVC) [33] standard has emerged as a prominent video compression approach due to its ability
to provide improved compression efficiency compared to its predecessors [28]. However, one
significant drawback is the presence of compression artifacts in HEVC-compressed videos, such
as blocking and ringing effects, due to lossy quantization and block-based coding, which severely
degrade theQuality of Experience (QoE) [37]. In addition, it was noticed that HEVC compression
introduces quality fluctuation [44] due to the different frame coding configurations, which also
negatively impacts the QoE [17]. Therefore, designing methods for the restoration of compressed
videos can provide added value to the sharing and consumption of digital videos.

Recently, Convolutional Neural Networks (CNNs) have shown significant progress in video
restoration tasks, such as denoising [6, 38], deblurring [23, 46], and super-resolution [1, 24]. In
the context of HEVC-compressed video restoration, early works mainly focused on single-frame
restoration [26, 42]. Due to the lack of proper mechanisms for taking advantage of information from
multiple frames, their performance was limited. Other works exploited multiple frames to obtain
better restoration results and reduce the quality fluctuation [10, 12, 27]. Despite the advancements
in this field, there are still limitations that must be addressed. Existing methods receive a sequence
of compressed frames as input, and use a CNN to exploit the complementary information contained
in multiple frames to restore the target. However, these methods do not discriminate the various
frequency components within compressed frames, and instead treat them equally, thus failing to
remove the artifacts at specific frequency bands, and failing to correctly restore image details.
In addition, they typically require a considerable amount of computational resources and long
runtime, which makes them impractical to be used in scenarios where efficiency is crucial, such as
video streaming and conferencing.
In this work, we present a method for the restoration of HEVC-compressed videos addressing

the existing limitations. We design our method to leverage the explicit multi-scale frequency band
representation provided by the Laplacian decomposition technique [5] and the complex pattern
understanding capability of CNNs. Specifically, we first decompose the compressed frames into
multi-scale frequency bands using the Laplacian decomposition. Then, we restore each band us-
ing a CNN, namedMulti-frame Residual Laplacian Network (MRLN), which progressively
removes the compression artifacts from each frequency band to restore the uncompressed signal.
Finally, we recompose the restored bands to obtain the restored frames. Compared to previous
works that implicitly learn the multi-scale representation of compressed frames, we explicitly
use the frequency representation provided by the Laplacian decomposition [10, 20, 47]. As a con-
sequence, we can use a simpler CNN architecture design to reduce the compression artifacts in
each band and restore frame details with a reduced computational cost. The design of our method
is based on the intuition that decomposing the compressed frames into multi-scale frequency
bands using the Laplacian decomposition provides three key advantages: (1) it creates a robust and
structured representation of compressed frames, simplifying the detection and removal of com-
pression artifacts; (2) it enables frequency-specific restoration, where each band can be processed
according to the effect of the compression on the different frequencies; and (3) it introduces a
negligible overhead for its computation, as it relies on simple operations like Gaussian filtering and
subtractions.
Inspired by the principles of model scaling [36], we design our method to be parametrically

scalable, so that it can be adapted to various scenarios where the computational resources may
vary. We can instantiate different versions of our method with increasing complexity and better
restoration performance by controlling only a few parameters, allowing to tune the tradeoff between
efficiency and effectiveness. As shown in Figure 1, the different versions of our method can process
frames at 416×240 pixel resolution in a range from 30 to 54 Frames per Second (FPS) on an NVidia
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Fig. 1. Comparison between the proposed method and state-of-the-art methods for HEVC-compressed video
restoration in terms of ΔPSNR and runtime (FPS). The different versions of our method (green bubbles) lie in
the Pareto front of optimality when compared to the other methods. Here, runtime is computed at 416 × 240
pixel resolution on an NVidia GeForce GTX 1080 GPU. FPS, Frames per Second.

GeForce GTX 1080 GPU. In addition, they lie on the Pareto front of optimality when compared to
other state-of-the-art methods for HEVC-compressed video restoration [9, 10, 12, 29, 47].
The main contributions of this work are the following: (1) we propose a method to restore

HEVC-compressed videos that explicitly leverages the robust multi-scale frequency representation
provided by the Laplacian decomposition, enabling a more precise artifact removal and enhanced
preservation of details; (2) instead of restoring the entire frame, we show that specializing a CNN in
restoring its decomposition into frequency bands allows considerably improving the performance
adding a negligible overhead and without increasing the model complexity; (3) we present a
parametrically scalable design for our method, which allows easily instantiating it in different
versions to control the tradeoff between efficiency and effectiveness. This makes our method
versatile and suitable for applications where computational requirements vary; (4) we conduct
extensive experiments on the MFQEv2 benchmark dataset to show that the proposed method
achieves state-of-the-art performance in HEVC-compressed video restoration while using fewer
network parameters and requiring a shorter runtime compared to existing methods.
The remainder of the article is organized as follows: Section 2 presents an overview of related

works concerning single-frame and multi-frame methods for compressed video restoration; Section
3 provides motivations and describes the proposed multi-frame method for compressed video
restoration; Section 4 reports experimental results on theMFQEv2 benchmark dataset [12], including
qualitative and quantitative comparisons of the proposed method with state-of-the-art methods;
Section 5 concludes this article outlining future research directions.

2 Related Works
2.1 Single-frame Video Restoration
In the context of HEVC-compressed video restoration, various works focused on restoring single
frames [15, 26, 40, 42, 43]. Wang et al. [40] introduced the Deep CNN-based Auto Decoder, a neural
network exploiting frame spatial information to reduce the distortions of compressed videos. Yang
et al. [43] proposed the Decoder-side Scalable CNN, which was later improved by Yang et al.
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[42]. He et al. [15] exploited some prior knowledge about the HEVC algorithm to guide the video
restoration process. Lin et al. [26] proposed an adaptive switching mechanism to select a specific
model depending on both video contents and the distortions to be restored.

Since these methods only process single frames, they ignore temporal information reaching only
limited performance [30].

2.2 Multi-frame Video Restoration
Based on the observation that frames in a limited temporal interval are likely to represent the same
objects in the scene, other works exploit temporal information from multiple frames to obtain
better restoration performance [9, 10, 12, 18–20, 25, 27, 44, 47]. Yang et al. [44] observed that HEVC-
compression introduces quality fluctuation within compressed frames, and consequently developed
a method, namedMulti-frameQuality Enhancement (MFQE), that exploits peak-quality frames,
i.e. frames with lower compression, to improve the quality of the others. Guan et al. [12] later
proposed MFQE2.0, which improves MFQE under different aspects, such as peak-quality frame
detection and quality enhancement approach. Deng et al. [9] developed the first method applying
Deformable Convolutional Networks (DCN) [8] in both spatial and temporal dimensions. Their
method, named Spatio-temporal Deformable Fusion (STDF), first aligns frames using DCN
and then uses a sequence of stacked convolutions for frame restoration. Zhao et al. [47] further
improved STDF by proposing a more sophisticated method, called Recurrent Fusion Deformable
Attention (RFDA), which combines a recurrent architecture with the attention mechanism [13].
Huo et al. [20] proposed a recurrent method that avoids the use of optical flow for frame alignment
and computes attention maps to impose more attention on the edges and textures of compressed
frames. Huang et al. [18] developed a method specifically designed to be applied to compressed
animation and game videos with a time-domain information cross-fusion module and a detail
recovery module based on the attention mechanism. Ding et al. [10] proposed the Patch-wise
Spatial-Temporal Quality Enhancement (PSTQE), a network that first extracts spatial and
temporal features from a sequence of input frames and then uses an attention mechanism [13]
to distill relevant information. Luo et al. [27] designed a method, called Spatio-temporal Detail
Retrieval (STDR), that integrates the alignment features of different receptive fields for more
accurate deformable offsets, leading to a better use of temporal information. Schiopu and Munteanu
[31] developed Attention-based Shared weights Quality Enhancement CNN by incorporating three
key elements: the attention mechanism [13] for feature map refinement, the weight sharing concept
to reduce model complexity, and multi-scale processing for better feature fusion. Motivated by the
need for efficient processing, Chen et al. [7] presented MFQE (Fast-MFQE) integrating an image
pre-processing module to minimize redundant information, a spatio-temporal fusion attention
module for effectively merging information across video frames, and a feature reconstruction
module designed to enhance frame quality efficiently. Jiang et al. [21] proposed Spatial-Temporal
Attention-guided Enhancement Network (STAGE-Net), which uses dynamic filter processing
instead of optical flow estimation to reduce the overall computational complexity. In addition, they
adopted a self-attention mechanism [39] to improve the visual quality of enhanced video frames
with bitrate constraints. Huang et al. [19] proposed FastCNN to achieve fast video restoration,
using an efficient alignment module and prior compression information. Recently, Qu et al. [29]
proposed a lightweight and fast method called Spatio-temporal Look-up table VideoQuality
Enhancement (STLVQE) for online video quality enhancement tasks. Using look-up tables,
STLVQE can extract spatio-temporal information from the video with reduced time consumption.
Zhang et al. [45] proposed Hierarchical Frequency-based Upsampling and Refining neural network,
which uses an implicit frequency upsampling module and hierarchical and iterative refinement
module: the first module uses DCT-domain prior to accurately reconstructs the DCT-domain loss,
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whereas the second module is used to refine the feature maps improving the visual quality of
the final output. Ehrlich et al. [11] proposed leveraging the bitstream structure of compressed
videos, such as motion estimation vectors and peak-quality frame information, and integrating this
information into a CNN. Li et al. [25] proposed Enhanced Compressed Video Super-Resolution to
perform super-resolution of compressed videos enhanced using a single model.

3 Methodology
3.1 Analysis of HEVC Compression on Frequency Bands
The main intuition for the proposed method emerges from the analysis of how HEVC compression
affects the frequency bands of video frames. HEVC introduces artifacts and degrades the quality of
the frames by altering their frequency content due to lossy quantization and block-based coding.This
degradation is not uniform across all frequency bands, but it differently affects certain bands causing
changes in their distribution and a significant loss in their energy. We demonstrate this by analyzing
the effect of the HEVC compression on frequency bands of frames from the MFQEv2 dataset [12]
compressed with HM16.5 under Low Delay P (LDP) at different Quantization Parameters
(QPs). Note that higher QPs indicate higher compression. We decompose each compressed frame
into high-, mid-, and low-frequency bands using the Laplacian decomposition and then compute
the ΔEnergy, i.e. the energy loss, of each frequency band. Given a specific frequency band, its
energy is obtained by summing up its squared values, and ΔEnergy refers to the percentage of
energy loss with respect to the uncompressed frames. Figure 2 shows the histograms of different
frequency bands considering two QPs. The distribution of high-frequency bands (top) is more
affected than those of mid- and low-frequency bands (bottom). The Standard Deviation (STD) of
the distribution of uncompressed frequency bands is higher than the one of compressed bands,
showing the loss of some frequency components. In addition, the frequency distribution is altered
more by compression with higher QPs (right).
We also show that not all frequency bands have the same importance in improving the frame

quality. We show this by replacing specific frequency bands of the compressed frames with the
ones of the uncompressed frames. Such an operation can be seen as the frequency band restoration
process performed by a CNN that restores from specific bands. The results reported in Table 1 show
that, at a given QP, the energy loss in high-frequency bands is considerably higher than in the other
frequency bands. Similarly, replacing the frequency bands that suffered higher energy loss leads to
obtaining the best improvement in video quality. These results suggest that the frequency bands
contained in the compressed frames should be processed differently. For these reasons, we propose
exploiting the decomposition into frequency bands provided by the Laplacian decomposition and
using a CNN to restore each band component by targeting the compression artifacts that can be
found within the considered band.

3.2 Overview of the Proposed Method

Given a sequence of 2# + 1 compressed frames �!&[C−# :C+# ] , the middle frame �
!&
C is the frame

to be restored, while the others represent its temporal neighborhood and are used to provide
spatio-temporal information during the restoration process of �!&C [30]. At the given timestep t, the
proposed method produces a restored frame �̂�&

C , which must be as close as possible to the original
uncompressed frame ��&

C .
The proposed method is shown in Figure 3. The compressed frame �!&C to be restored is first

decomposed into multi-scale frequency bands !%!&

C,[!−1:0] using the Laplacian decomposition. Then,
the MRLN uses the spatio-temporal information extracted from the sequence of compressed frames
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Fig. 2. Histograms of frequency bands of compressed and uncompressed frames. The standard deviation
of the distribution of compressed frequency bands (orange) is lower than the one of uncompressed bands
(blue), revealing the loss of some frequency components. The distributions of high-frequency bands are more
affected than the others. The distributions are altered more using higher QP values. The energy of a frequency
band is the sum of its squared values, while ΔEnergy is the percentage of energy loss with respect to the
uncompressed frames. This example is computed on frame 200 of BasketballDrive sequence [12].

�
!&

[C−# :C+# ] and the frequency bands !%!&

C,[!−1:0] of the compressed frame �!&C to produce the restored

frequency bands !̂%�&

C,[!−1:0] , i.e. the frequency bands of the restored frame �̂�&
C . Finally, the restored

frequency bands !̂%�&

[!−1:0] are recomposed to obtain the restored frame �̂�&
C using the Laplacian

reconstruction. By explicitly leveraging the multi-scale frequency representation provided by
the Laplacian decomposition, we can align the MRLN processing levels with the corresponding
Laplacian decomposition levels. This alignment enables frequency-specific processing, allowing
MRLN to apply distinct transformations to process each frequency band. As a result, the restoration
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Table 1. Analysis of the HEVC Compression Effect on Different Frequency Bands of Compressed Frames

QP 22 QP 27 QP 32
ΔEnergy ΔPSNR ΔSSIM ΔEnergy ΔPSNR ΔSSIM ΔEnergy ΔPSNR ΔSSIM

High freq. −8.71 7.48 0.036 −15.59 6.31 0.054 −24.00 5.41 0.078
Mid freq. −2.50 1.28 0.012 −5.23 1.54 0.023 −9.66 1.84 0.041
Low freq. −0.67 0.02 0.003 −1.38 0.46 0.007 −2.80 0.67 0.020

The quality improvement (ΔPSNR and ΔSSIM) is obtained by replacing a specific band of compressed frames with the
one of uncompressed frames. High-frequency bands suffer higher energy loss. Such energy loss increases as QP increases.
Replacing the frequency bands that suffered higher energy loss leads to the best quality improvement.

Restored frameCompressed frames

Feature
alignment
module

2N+1

D
ec
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po

si
tio

n R
econstruction

Multi-frame Residual
Laplacian Network

Frequency Band
Restoration

Module

Aligned
features

Fig. 3. Overview of the proposed method. The compressed frame �!&C is decomposed into frequency bands
!%

!&

C,[!:0] using the Laplacian decomposition. Then, the Multi-frame Residual Laplacian Network (MRLN)

removes the compression artifacts from !%
!&

C,[!:0] to obtain the restored frequency bands !̂%
�&

[!:0] . Finally,

!̂%
�&

[!:0] are recomposed to obtain the restored frame �̂�&
C using the Laplacian reconstruction. The compressed

frame �!&C to be restored is highlighted with a dashed border.

process becomes more effective, as each MRLN processing level adapts to the distinct characteristics
and patterns of compression artifacts that affect a specific frequency band.

3.3 Frequency Band Decomposition and Reconstruction
The Laplacian decomposition is a technique to decompose an image into multi-scale frequency
bands. It is based on the idea that images can be represented by a sum of frequency bands at different
resolution scales. We use the Laplacian decomposition of the compressed frames to perform an
analysis of the compression artifacts at multiple resolution scales.

Figure 4 shows the Laplacian decomposition and the respective reconstruction process using ! = 4
levels. During the decomposition process, shown in Figure 4(a), the input image is progressively
decomposed into frequency bands. The Gaussian pyramid GP is computed first: the input image
is blurred using a low-pass filter (e.g., a Gaussian filter) and downscaled to half of the resolution.
This process is repeated for a given number of iterations (three in the figure). With this operation,
high-frequency components are progressively separated from the image, leaving a lower resolution
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Fig. 4. Overview of the Laplacian decomposition and reconstruction process. The decomposition process
decomposes the input image into multi-scale frequency bands. The reconstruction process recomposes the
bands to obtain the input image. The input image is reported with dashed borders.

image representation that retains only the coarse structures. Once the Gaussian pyramid GP is
obtained, the Laplacian pyramid LP can be constructed as follows. The lowest level of the Laplacian
pyramid !%0 corresponds to the lowest level of the Gaussian pyramid�%0. Then, the upper level
of the Laplacian pyramid !%1 is obtained by upscaling �%0 and subtracting it from �%1. This
process is repeated for the same number of iterations as for the Gaussian pyramid. At the end
of the decomposition process, the Laplacian pyramid LP is obtained. During the reconstruction
process, illustrated in Figure 4(b), the frequency bands contained in the Laplacian pyramid LP are
progressively recomposed to obtain the original input image. The first reconstruction level �0 is
represented by the lowest level of the Laplacian pyramid !%0. Then, the upper reconstruction level
�1 is obtained by upscaling �0 and adding it to !%1. This process is repeated for each level l in the
Laplacian pyramid LP until the input image is reconstructed.
In the proposed method, the Laplacian decomposition (Figure 4(a)) is used on the compressed

frame �!&C to obtain the frequency bands !%!&

C,[!−1:0] , while the Laplacian reconstruction (Figure

4(b)) is used on the restored frequency bands !̂%�&

C,[!−1:0] to gradually recompose them and obtain
the restored frame �̂�&

C .

3.4 MRLN
The MRLN is ad-hoc designed to produce the restored frequency bands !̂%�&

C,[!−1:0] by analyzing the
sequence of compressed frames �!&[C−# :C+# ] and the frequency bands !%!&

C,[!−1:0] of the compressed
frame �!&C to be restored. MRLN is composed of two modules: the Frame Alignment module and
the Frequency Band Restoration Module (FbRm).
The Frame Alignment module receives the sequence of compressed frames �!&[C−# :C+# ] as input

and produces the corresponding aligned feature maps as output. It exploits the STDF module [9],
which uses an encoder–decoder architecture followed by a deformable convolutional layer [8] to
perform the alignment. Readers can refer to the work by Deng et al. [9] for further details about
this module.

The FbRm receives the aligned feature maps and the frequency bands !%!&

C,[!−1:0] of the compressed

frame �!&C to be restored as input and produces the restored frequency bands !̂%�&

C,[!−1:0] as output.
As shown in Figure 5, the FbRm is implemented using an encoder–decoder architecture composed
of multi-scale processing levels. Each level contains a tunable number of convolutional units. Each
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Fig. 5. The Frequency band Restoration module. The different levels are highlighted by colors: the higher
the darker. Each unit is composed of a convolutional layer and a ReLU activation. The dotted units are
convolutional layers to convert features into frequency residuals, thus they do not have any activation.
Downscaling is performed using strided convolutions, while upscaling is achieved either using upconvolutions
or bicubic interpolation.

convolutional unit contains a convolutional layer followed by the ReLU activation, except for the
convolutional units to convert features into frequency residuals (dotted borders in the figure) that do
not have any activation. Downscaling is performed using strided convolutions, while upscaling can
be achieved by using either upconvolutions or bicubic interpolation (we discuss this in Section 3.6).
The level l analyzes and progressively refines the aligned feature maps to remove the compression
artifacts at its resolution scale to obtain the corresponding restored frequency bands !̂%�&

C,; .
Given the frequency bands !%!&

C,[!−1:0] of the compressed frame �!&C , the FbRm computes the

residual representation of the restored frequency bands !̂%�&

C,[!−1:0] as follows:

!̂%
�&

C,; = !%
!&

C,;
+ FbRmC,; (1)

where FbRmC,; is the output of FbRm at level l when restoring the compressed frame �!&C .

3.5 Loss Function
We aim to specialize each processing level of the MRLN in removing the compression artifacts at its
corresponding resolution scale. Given the frequency bands !%�&

C,[!−1:0] of the original uncompressed

frame ��&
C and the frequency bands !̂%�&

C,[!−1:0] of the restored frame �̂�&
C produced by MRLN using

the sequence of compressed frames �!&[C :#,C+# ] , we progressively recompose the frequency bands
using the Laplacian reconstruction and compute a loss function between each reconstruction level
�̂
�&

C,;
and ��&

C,;
[48]. The resulting loss function L, which we refer to as Laplacian loss, is defined as:

L =
1
!

!−1∑
;=0

‖��&

C,;
− �̂

�&

C,;
‖22 (2)

where L is the number of processing levels, ��&

C,;
is the reconstruction at level l of the original

uncompressed frame ��&
C , �̂�&

C,;
is the reconstruction at level l of the restored frame �̂�&

C , and ‖ · ‖22
is the MSE. Note that �̂�&

C,!
= �̂

�&
C , i.e. the highest level in the Laplacian reconstruction corresponds

to the restored frame. Thus, when ; = ! − 1, the Laplacian loss computes the MSE between the
restored and the uncompressed frames, which corresponds to the standard reconstruction loss.
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Table 2. Configuration Details of the Different Versions of the Proposed Method

Name Frame Alignment module Frequency band Restoration module Params Orientation
Conv. kernels Conv. kernels Conv. layers Upscaling method

XS 24 24 2 Bicubic interp. 213K Efficiency
S 24 32 2 Bicubic interp. 278K Efficiency
M 32 48 2 Upconvolutions 654K Balance
L 32 64 2 Upconvolutions 1,000K Effectiveness
XL 32 64 6 Upconvolutions 1,517K Effectiveness

The convolutional kernels and the number of convolutions refer to each level in the multi-frame residual Laplacian
network.

Applying the loss to the Laplacian reconstruction levels, as opposed to the frequency band
representation, allows considering the whole frame content during the comparison since each
reconstruction level represents an approximation of the restored frame. Consequently, it avoids
tuning the weights for the contribution of the frequency bands at each scale. It also helps the
network discriminate the distortions introduced by compression artifacts from the structures of
the actual frame content.

3.6 Model Complexity Control
Controlling the model complexity is fundamental to balancing the tradeoff between efficiency
and effectiveness when deploying deep learning-based methods in application scenarios having
different needs and varying resource availability. Inspired by [36], in the proposed method, we
balance this tradeoff by controlling: (1) the number of convolutional units within each level of the
MRLN; (2) the number of kernels in each convolutional unit; and (3) the approach used for the
upscaling operation (e.g., bicubic interpolation or learnable upconvolutions).

In this way, we can keep the main structure of the network fixed, and instantiate various versions
by simply changing these three parameters. Some proposed model configurations are reported
in Table 2. For simplicity, we give different names to these models depending on the resulting
number of parameters. The eXtra-Small (XS) and Small (S) configurations are efficiency-oriented
and characterized by a low computational complexity. The Medium (M) configuration represents
a balanced tradeoff between efficiency and effectiveness. Finally, the Large (L) and eXtra-Large
(XL) configurations are effectiveness-oriented, as they are more complex and can learn better
transformations to separate the frequency bands to better remove the compression artifacts, leading
to better restoration results.

4 Experiments
4.1 Setup
We conduct all the experiments using a machine equipped with Ubuntu 22.04 LTS, Intel(R) Core(TM)
i7-7700 CPU @ 3.60 GHz, 32 GB of RAM, and an NVidia GeForce GTX 1080 GPU.

4.1.1 Dataset. Following previous works [10, 12, 27, 47], we conduct the experiments on the
MFQEv2 dataset [12], which contains 108 training sequences and 18 test sequences coming from
the datasets of Xiph.org,1 Video Quality Experts Group (VQEG),2 and Joint Collaborative Team on
Video Coding (JCT-VC) [3]. The video sequences have different resolutions, ranging from 352× 240
pixels to 2,560×1,600 pixels. In particular, the test sequences are divided into five classes depending
1Xiph.org. Xiph.org video test media. https://media.xiph.org/video/derf.
2VQEG. VideoQuality Experts Group. https://vqeg.org/video-datasets-and-organizations.aspx.
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on the respective resolution: Class A (2,650 × 1,600), Class B (1,920 × 1,080), Class C (832 × 480),
Class D (416 × 240), and Class E (1,280 × 720). We apply HEVC compression to the videos using
HM16.5 [33] under LDP configuration at five different QPs, i.e. 22, 27, 32, 37, and 42.

4.1.2 Network Settings. As reported in Table 2, we design five different model configurations.
For efficiency-oriented models, i.e. XS and S, we use plain bicubic interpolation as the upsampling
method because it allows considerably reducing the inference time. Conversely, for balance-oriented
and effectiveness-oriented models, i.e. M, L and XL, we adopt upconvolutions as they demonstrate
better restoration performance in our experiments. We set the number of levels in the MRLN to
4 for all the models. The exploration of other cardinalities is reported in the ablation study in
Section 4.5.

4.1.3 Training Details. We train all our models for a total of 1,000 epochs. We set the batch size
to 8 and use the Adam optimizer [22] with V1 = 0.9 and V2 = 0.999. The initial learning rate is set
to 1e-4, and it is decreased by a factor of 10 after 400 and 800 epochs, respectively. We increase the
number of training samples by using randomly cropping patches of size 64 × 64 pixels, augmented
with random horizontal and vertical flipping. The temporal window size is set to 7 (i.e., three
previous and three subsequent frames are used). The optimization process is guided using the
Laplacian loss function described in Equation (2). We train the models at QP 37 from scratch and
fine-tune the models obtained after 600 epochs on the other QPs for the remaining 400 epochs.

4.1.4 Evaluation Metrics. Following previous works [9, 12, 44], we evaluate the restoration
quality using ΔPSNR and ΔSSIM, which measure the increase in Peak Signal-to-Noise Ratio
(PSNR) [16] and in Structural Similarity Index (SSIM) [41] of the restored frames with respect
to the compressed frames. ΔPSNR is computed as PSNR(�̂�& , ��& ) − PSNR(�!& , ��& ), where �!&
is the compressed frame, �̂�& is the restored frame, and ��& is the original uncompressed frame.
ΔSSIM is computed accordingly. We use Bjontegaard Delta Rate (BD-Rate) [2] reduction to
evaluate the rate-distortion performance, which is computed using HEVC as a reference. For the
quality fluctuation assessment, we use the Peak-Valley Difference (PVD) [44] of the frame-level
PSNR, which computes the average difference between peak values and their nearest valley values,
and the frame-level PSNR STD [44]. We compute these metrics on the luminance component (Y
channel) in YUV/YCbCr space.

We evaluate the efficiency performance using FLOating Point operations (FLOPs), model pa-
rameters, and runtime, which is measured in terms of milliseconds required to restore a
single frame.

4.2 Contribution of Frequency Band Restoration on the RestorationQuality
We investigate the impact of restoring specific frequency bands of the compressed frames on the
restoration quality. In this experiment, we consider the results obtained by our XS model on the
MFQEv2 [12] testset compressed at QP 37. The distributions of the obtained ΔPSNR and ΔSSIM
values, defined in Section 4.1.4 and filtered through Kernel Density Estimation [32], are shown in
Figure 6.

In Figure 6(a), we report the results obtained by restoring the frequency bands at individual levels
of the Laplacian pyramid. The restoration of the frequency bands at the lowest level, i.e. level 0,
leads to a quality improvement of 0.11 and 0.067 in ΔPSNR and ΔSSIM, respectively. Restoring the
frequency bands at higher levels leads to better quality improvement. The best quality improvement
is achieved by restoring the frequency bands at the highest level, i.e. level 3, improving the metrics
by 0.4 and 0.8, respectively.
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(a)

(b)

Fig. 6. Distribution of ΔPSNR and ΔSSIM (×10−2) values obtained when specific frequency bands are restored
by our XS model. In (a), the frequency bands at a specific level of the Laplacian pyramid are restored. In (b),
the frequency bands at specific levels of the Laplacian pyramid are progressively restored, starting from the
highest level. The dotted lines represent the mean value of the distribution.

In Figure 6(b), we report the results obtained by progressively restoring the frequency bands until
a specific level of the Laplacian pyramid, starting from the highest level, i.e. level 3. Concerning
ΔPSNR, restoring only the frequency bands at level 3 contributes by 51% to the average improvement
obtained by restoring the frequency bands at all the levels. Restoring also the frequency bands at
level 2 increases the contribution by 25%, and further restoring level 1 increases it by 13%. The
remaining 11% is given by restoring also level 0. Instead, for ΔSSIM, restoring only the frequency
bands at level 3 contributes by 57% to the average improvement, while restoring the other lower
levels increases it by 30% and 10%, respectively. Here, level 0 only contributes by 3%.

4.3 Performance of the Different Versions of Our Method
We compare the performance of the different versions of our method, as described in Sections 3.6
and 4.1.2, in terms of restoration quality and efficiency performance. The results are reported in
Table 3. We can observe that the restoration quality increases as the number of model parameters
increases, at the expense of efficiency. The S model has only 65 K more parameters than the XS
model (i.e., 31% more parameters), while their efficiency is very similar. The S model obtains a
considerable improvement in restoration quality with respect to the XS model: 0.04 in both ΔPSNR
and ΔSSIM, on average, considering all the QPs. Instead, comparing the L and XL models, with the
latter having 517 K more parameters than the former (i.e., 51.7% more parameters), we can observe
an improvement in restoration quality of only 0.02 in both ΔPSNR and ΔSSIM. This suggests that
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Scalable Residual Laplacian Network for HEVC-compressed Video Restoration 164:13

Table 3. Performance of the Different Versions of Our Method

Quantization parameter (QP) Resolution
Name Params

QP 22 QP 27 QP 32 QP 37 QP 42 416× 240 832× 480 1,280× 720 1,920× 1,080 2,560× 1,600

GFLOPs Runtime GFLOPs Runtime GFLOPs Runtime GFLOPs Runtime GLOPs Runtime

XS 213K 0.62/0.38 0.70/0.62 0.74/0.95 0.77/ 1.41 0.78/1.98 8.41 19 45.00 73 100.94 174 227.11 423 448.60 950
S 278K 0.66/0.40 0.75/0.65 0.79/1.00 0.80/1.45 0.82/2.04 10.52 20 56.29 77 126.26 183 284.08 448 561.15 1,016
M 654K 0.72/0.44 0.81/0.71 0.86/1.09 0.87/1.55 0.86/2.16 21.32 24 104.05 96 255.82 228 575.59 547 1136.97 1,200
L 1,000K 0.75/0.45 0.85/0.74 0.89/1.12 0.89/1.60 0.88/2.21 31.70 27 169.58 107 380.37 254 855.84 608 1690.55 1,330
XL 1,517K 0.77/0.46 0.87/0.76 0.92/1.16 0.92/1.64 0.90/2.23 46.73 33 249.99 132 560.73 313 1261.65 750 2091.34 1,642

Restoration performance is reported as ΔPSNR/ΔSSIM (×10−2). The higher the better. Efficiency is reported as model
parameters, GFLOPs, and runtime. Runtime is expressed in milliseconds.

further increasing the complexity of the model may not bring any significant improvement in
restoration quality. As shown, the M model represents a balanced tradeoff between effectiveness
and efficiency.

4.4 Comparison with State-of-the-Art Methods
We compare the proposed method with state-of-the-art methods for HEVC-compressed video
restoration. In particular, we use MFQE2.0 [12], PSTQE [10], STDF [9], Fast-MFQE [7], STLVQE
[29], MFQE [44], STDF-R3L [9], RFDA [47], STDR [27], and STAGE-Net [21]. We divide these
methods into two groups depending on the number of parameters. The low-complexity group
includes MFQE2.0 [12], PSTQE [10], STDF [9], Fast-MFQE [7], STLVQE [29], and our XS model. The
number of parameters of these models ranges from about 200 K to 450 K. The high-complexity group
includes MFQE [44], STDF-R3L [9], RFDA [47], STDR [27], and our XL model, having a number of
parameters ranging from 1,200 K to 1,500 K. We include STAGE-Net [21] in the high-complexity
group, even though its number of parameters, which is 6,990 K, is considerably higher than the
other methods in this group.

4.4.1 Restoration Quality. The frame restoration quality results are reported in Table 4.
Following previous works [9, 12, 44], for each method, we report the detailed performance

obtained on each sequence of the MFQEv2 [12] testset compressed at QP 37, and the average
performance for the other QPs obtained by averaging the results of all the sequences at a given QP.
The QP is reported in the first column of the table.

Considering the average performance of the methods within the low-complexity group, we can
see that our XS model outperforms all the others. More in detail, at QP 37, our XS model obtains the
best ΔPSNR value on 13 out of 18 sequences, while in the case of ΔSSIM, this number increases to
17. It obtains an average quality improvement of 0.04 and 0.09 in ΔPSNR and ΔSSIM, respectively,
compared to STDF [9], which represents the second-best method. In addition, the performance
degradation of our XS model as QP decreases from 42 to 22 is less abrupt than those of other
methods.

Regarding the high-complexity group, STDR [27] is the best-performing method. We can see that
our XL model is, on average, the second-best method in terms of ΔPSNR, outperforming STDR [27]
on two sequences, i.e. Kimono and RaceHorses. Considering ΔSSIM, our XL model achieves superior
performance than STAGE-Net [21] at QP 37. On average, our XL model outperforms RFDA [47].
We can notice that RFDA [47] obtains good results at QP 37, but shows a considerable performance
degradation when evaluated on other QPs. In contrast, the performance of our XL model is more
stable as QP varies.

We present in Figure 7 a qualitative comparison among our XS and XL models and the state-of-
the-art methods using some frames from the sequences BQMall, BasketballDrill, and RaceHorses
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HEVC
MFQE2.0

[12]
PSTQE

[10]
STDF

[9]
Ours (XS)

RFDA
[47]

Ours (XL) Raw Raw sequence

Fig. 7. Qualitative comparison with state-of-the-art methods on sequences compressed at QP 37. Frames
from BQMall (first row), BasketballDrill (first row), and RaceHorses (third row). Zoom-in for a better view.

compressed at QP 37. The artifacts introduced by HEVC can be observed in the first column of
the figure. We can see that MFQE2.0 [12] and PSTQE [10] do not properly restore the compressed
frames, leaving them with notable artifacts, while STDF [9] fails in restoring textured regions. Our
XS model produces sharper results, and it is better at restoring textures. Our XL model further
improves these results, restoring frames better than RFDA [47].

4.4.2 Rate-Distortion Performance. The results related to the rate-distortion performance mea-
sured using BD-Rate [2] reduction with HEVC as a reference are shown in Table 5. In the low-
complexity group, our XS model achieves an average 19.07% BD-Rate reduction, considerably
outperforming the other methods. More in detail, it performs better on 14 out of 18 sequences.
Instead, in the high-complexity group, STDR [27] is the best-performing method, while our XL
model obtains the second-best performance by a close margin (2.32) compared to STDR [27],
outperforming the latter on two sequences.
Figure 8 provides examples of rate-distortion curves on Kimono, BasketballDrive, and Traffic

sequences. We can see that our XL model obtains better PSNR at a given bitrate than the other
methods, immediately followed by our XS model.

4.4.3 Quality Fluctuation. Table 6 reports the results of the quality fluctuation assessment. All
the analyzed methods reduce the quality fluctuation introduced by HEVC. Our XS model achieves
better performance both in terms of PVD [44] and STD [44] compared to the other methods in the
low-complexity group, which means that it produces more stable results. Instead, in the context of
high-complexity methods, our XL model performs worse than RFDA [47] and STDR [27] at QP 27
and QP 32, it obtains the same PVD results as RFDA [47] at QP 37, and it outperforms RFDA [47] at
QP 42.

Figure 9 shows an example of the quality fluctuation of two sequences compressed at QP 42 and
restored by MFQE2.0 [12], PSTQE [10], and STDF [9], our XS and XL models. In both the sequences,
our XL model places above the others, showing better restoration quality and reduced fluctuation,
immediately followed by our XS model.

4.4.4 Efficiency Performance. The comparison of the efficiency performance is shown in Table
7. Within the low-complexity group, our XS model is the most lightweight method, relying on
only 213 K parameters. We can also see that it has the lowest GFLOP count considering each tested
resolution. Regarding the runtime, the fastest method is MFQE2.0 [12], which however has the
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Table 5. Rate-Distortion Performance Comparison with State-of-the-Art Methods in Terms of BD-Rate
Reduction (%) on the Test Sequences with HEVC as a Reference

Class Sequence
Low-complexity High-complexity

MFQE2.0
[12]

PSTQE
[10]

STDF
[9] Ours (XS)

MFQE
[44]

STDF-R3L
[9]

RFDA
[47]

STDR
[27] Ours (XL)

A Traffic 16.98 18.57 18.92 20.32 14.56 21.19 22.70 25.96 22.95
PeopleOnStreet 15.08 17.80 17.26 18.80 13.71 17.42 21.22 22.77 21.88

B

Kimono 13.34 16.20 19.09 21.95 12.60 17.96 22.32 23.47 24.99
ParkScene 13.66 15.89 17.08 18.76 12.04 18.10 19.85 23.21 21.33
Cactus 14.84 18.37 20.03 21.37 12.78 21.54 21.78 25.54 24.32

BQTerrace 14.72 19.73 20.36 22.26 10.95 24.71 24.41 32.21 26.89
BasketballDrive 11.85 15.31 16.86 18.15 10.54 16.75 20.24 22.68 22.86

C

RaceHorses 9.61 9.24 10.37 11.21 8.83 15.62 14.29 14.14 15.17
BQMall 13.50 15.73 19.11 19.56 11.11 21.12 21.62 26.08 24.06

PartyScene 11.28 16.49 17.52 17.62 6.67 22.24 21.22 25.98 21.20
BasketballDrill 12.63 15.20 14.80 15.26 10.47 15.94 18.06 19.65 18.71

D

RaceHorses 11.55 12.97 10.37 11.21 10.41 15.26 17.57 19.25 19.14
BQSquare 11.00 23.72 24.20 23.74 2.72 33.36 31.65 39.94 29.97

BlowingBubbles 15.20 18.57 19.52 19.62 10.73 23.54 22.89 26.73 22.44
BasketballPass 13.43 16.01 17.36 17.57 11.70 18.42 20.42 22.32 21.82

E
FourPeople 17.50 20.75 19.94 20.46 14.89 22.91 22.84 26.70 23.44
Johnny 18.57 21.34 21.52 22.36 15.94 24.55 23.87 29.22 25.26

KristenAndSara 18.34 18.40 21.98 23.02 15.06 23.64 24.47 28.68 26.26

Average 14.06 17.24 18.13 19.07 11.41 20.79 21.75 25.25 22.93

For each row, best results per complexity group in bold, second-best results underlined. The higher the better.

Fig. 8. Rate-distortion curve comparison between HEVC, MFQE2.0 [12], PSTQE [10], STDF [9], and our XS
and XL models on Kimono (left), BasketballDrive (center), and Traffic (right). The higher the better. Zoom-in
for a better view.

worst effectiveness performance. Our method requires 92% and 18% less time than PSTQE [10] and
STDF [9], respectively, to restore a single frame at 1,920× 1,080 pixel resolution. Concerning the
high-complexity group, our XL model has 1,517 K parameters: 271 K fewer parameters than MFQE
[44] and 193 K more parameters than STDR [27]. The GFLOP count of our XL model is smaller than
STDF-R3L [9] and comparable with RFDA [47]. Nevertheless, it is about 43% faster than RFDA [47]
in restoring frames.
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Table 6. Quality Fluctuation Comparison with State-of-the-Art
Methods in Terms of Average PVD/STD

Method QP 27 QP 32 QP 37 QP 42

HEVC 1.07/0.83 1.38/0.82 1.42/0.79 1.21/0.74

MFQE2.0 [12] 0.77/0.74 0.98/0.70 0.96/0.67 0.74/0.62
PSTQE [10] 0.70/0.64 0.97/0.65 0.89/0.63 0.72/0.62
STDF [9] 0.68/0.63 0.96/0.62 0.75/0.61 0.60/0.59
Ours (XS) 0.64/0.63 0.94/0.61 0.75/0.60 0.58/0.59

MFQE [44] 0.84/0.81 1.00/0.77 1.05/0.73 0.82/0.69
RFDA [47] 0.59/0.45 0.77/0.41 0.71/0.39 0.64/0.36
STDR [27] 0.50/0.38 0.68/0.36 0.67/0.36 0.55/0.31
Ours (XL) 0.61/0.62 0.88/0.60 0.71/0.60 0.56/0.59

For each column, best results per complexity group in bold, second-best results
underlined. The lower the better. The first group of methods corresponds to the
low-complexity group, while the second one to the high-complexity group.

Fig. 9. PSNR curves showing the frame quality fluctuation of HEVC, MFQE2.0 [12], PSTQE [10], STDF [9],
and our XS and XL models on Kimono (top) and BQMall (bottom). The higher the better.

4.5 Ablation Study
We set up ablation experiments to understand the contribution of the different components of
the proposed method. The ablation results referring to our XS model, evaluated on sequences
compressed at QP 37, are reported in Table 8. In these experiments, the ablated model variants we
evaluate have almost the same number of parameters as our XS model (about −2 K/+6K parameters),
which is achieved by increasing/decreasing the number of kernels within the convolutional units.
Thus, the observed difference in performance is not dependent on this aspect. For a fair comparison,
we train all the ablated model variants from scratch, following the setup described in Section 4.1.3.
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Table 7. Efficiency Comparison with State-of-the-Art Methods in Terms of Model Parameters, GFLOPs,
and Runtime

Resolution

Method Params 416 × 240 832 × 480 1,280 × 720 1,920 × 1,080 2,650 × 1,600

GFLOPs Runtime GFLOPs Runtime GFLOPs Runtime GFLOPs Runtime GFLOPs Runtime

MFQE2.0 [12] 255 K 17.42 13 93.18 54 209.01 125 470.27 287 928.92 584
PSTQE [10] 217 K 57.46 172 307.19 692 689.02 1,589 1550.29 5,066 3062.30 15,191
STDF [9] 365 K 19.87 22 106.28 90 238.38 213 536.36 516 1059.48 1,146

Fast-MFQE [7] 243 K - - - - - - - - - -
STLVQE [29] 448 K 14.23 32 77.67 125 171.54 280 383.27 629 754.98 1,232
Ours (XS) 213K 8.41 19 45.00 73 100.94 174 227.11 423 448.60 950

MFQE [44] 1,788 K - - - - - - - - - -
STDF-R3L [9] 1,275 K 64.98 28 347.62 116 779.71 267 1754.34 629 3465.36 1,335
RFDA [47] 1,270 K 45.47 58 243.46 231 546.16 541 1229.05 1,275 2428.08 2,723
STDR [27] 1,324 K - - - - - - - - - -

STAGE-Net [21] 6,990 K - - - - - - - - - -
Ours (XL) 1,517K 46.73 33 249.99 132 560.73 313 1261.65 750 2091.34 1,642

Runtime is expressed in milliseconds. The first group of methods corresponds to the low-complexity group, while the
second one to the high-complexity group.

Table 8. Ablation Study on Network Design, Loss Function, and Number of Processing Levels

Exp. Network design for MRLN Loss function Proc. levels ΔPSNR ΔSSIM Params GFLOPs Runtime
Encoder-decoder Laplacian dec. MSE loss Laplacian loss

E1 Ø Ø 4 0.69 1.34 213K 225.48 418
E2 Ø Ø Ø 4 0.75 1.40 213K 227.11 423
E3 Ø Ø Ø 4 0.77 1.41 213K 227.11 423
E4 Ø Ø Ø 3 0.76 1.38 211K 250.34 433
E5 Ø Ø Ø 5 0.74 1.37 219K 215.63 419

The results refer to variants of our XS model applied to sequences compressed at QP 37. Restoration performance is reported
as ΔPSNR/ΔSSIM (×10−2). The higher the better. Efficiency is reported as model parameters, GFLOPs, and runtime. GFLOPs
and runtime are computed at 1,920 ×  1,080 frame resolution. Runtime is expressed in milliseconds. E3 corresponds to our
XS model configuration.

The baseline model (E1) is represented by an encoder–decoder model that directly produces the
restored frames and is trained using a plain MSE loss function, which is applied to the highest level
of the decoder.

In E2, we evaluate the contribution of exploiting the different processing levels of the decoder to
produce the frequency bands of the restored frames, which are then recomposed using the Laplacian
reconstruction. We achieve this by computing the Laplacian decomposition of the compressed target
frame and using the processing levels of the decoder to compute the residual representation of the
restored frequency bands. Compared to directly producing the restored frames (E1), producing the
restored frequency bands and recomposing them leads to a reconstruction quality improvement of
0.06 in both ΔPSNR and ΔSSIM values. This experiment shows the advantage of introducing the
Laplacian decomposition in the restoration process, which enables a considerable improvement
in performance with a small impact on model complexity (+0.72% GFLOPs) and only adding a
negligible overhead in runtime (+1.20% milliseconds).
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In E3, we evaluate the contribution of using the Laplacian loss (Equation (2)) instead of plain MSE
loss to specialize each processing level in removing the compression artifacts at its corresponding
resolution scale. The use of the Laplacian loss leads to a restoration quality improvement of 0.02
and 0.01 in ΔPSNR and ΔSSIM, respectively, with respect to E2 where we use the plain MSE loss.
This experiment shows that further specializing each processing level of MRLN in removing the
compression artifacts at its corresponding resolution scale allows improving the quality of the
results.

In E4 and E5, we evaluate the contribution of using different numbers of processing levels. Using
too many levels would produce frequency bands with too little signal, making it difficult to identify
the compression artifacts. On the other hand, using too few levels would prevent the network from
capturing relevant frame components, limiting its effectiveness. The results show that using four
processing levels, i.e., ! = 4, leads to the best performance, while decreasing the levels to three
(E4) or increasing them to five (E5) causes a drop in performance, especially in ΔSSIM. Note that
GFLOPs and runtime in E4 and E5 show an unexpected behavior. This is because changing the
number of kernels (e.g., from 24 to 28 in E4 or from 24 to 22 in E5) within convolutional units has a
higher impact on computational complexity than changing the number of processing levels (e.g.,
from 4 to 3 in E4 or from 4 to 5 in E5).

5 Conclusion
In this work, we presented a method that combines the Laplacian decomposition technique with
CNNs to effectively and efficiently reduce the artifacts in HEVC-compressed videos. The proposed
method leverages the capabilities of the Laplacian decomposition to decompose compressed frames
into distinct multi-scale frequency bands, which are restored by the MRLN and finally recomposed
to obtain the restored frames. The proposed method is parametrically scalable and can be easily
instantiated in different versions to control the tradeoff between efficiency and effectiveness,
providing a versatile approach to be used in various scenarios. Specifically, we presented and
studied five versions.
Experimental results showed that our efficiency-oriented XS model outperforms state-of-the-

art methods with similar model complexity in terms of restoration performance. In addition,
it has a faster runtime. Our effectiveness-oriented XL model achieves state-of-the-art perfor-
mance when compared with methods with similar model complexity, processing videos in a
shorter time.
In the future, exploiting the coding information provided by the HEVC encoder could be an

interesting direction to further improve our work [14, 34, 35]. In addition, we plan to extend the
investigation of the proposed method to other codec standards, such as H.266/VVC [4].
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