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Abstract 
Learning-based methods for Automatic White Balance (AWB) are trained on properly-annotated 
datasets, where each image is associated to a ground truth illuminant. The intrinsic characteristics of 
such datasets, therefore, play a fundamental role in the generalization capability of the resulting AWB 
model. In this paper we analyze the biases of commonly-used datasets for Automatic White Balance: 
ColorChecker, Cube+, Gray Ball, INTEL-TAU, and NUS from National University of Singapore. We 
describe each dataset in terms of employed cameras, distribution of the illuminants, shooting 
parameters, and image content. The resulting analysis highlights the individual shortcomings of each 
dataset, as well as the type of image that is under-represented by all analyzed datasets, such as 
artificial-light and low-light scenarios. 

Keywords: Automatic white balance, illuminant estimation, color constancy, dataset analysis. 

INTRODUCTION 

Automatic White Balance (AWB), sometimes referred to as computational color constancy, is the task 

of correcting a digital image as if the scene was captured under some reference illumination 

conditions. The development and benchmarking of AWB algorithms is based on the availability of 

datasets of images whose illuminant ground truth is given, or which can be easily estimated from a 

color target placed in the scene. In this paper we analyze the most commonly used datasets in order 

to verify if there is a bias in the illuminant chromaticity distributions, in shooting conditions, and in the 

semantic image content distribution. Image content is considered important as it is often exploited to 

various extents by different AWB algorithms, such as Gijsenij et al. (2010), Bianco et al. (2008) and 

(2012), and Buzzelli et al. (2018). 

We consider our investigation necessary since the presence of a bias in the image datasets used in 

the AWB research not only may invalidate the evaluation of the methods available in the state of the 

art, but it is increasingly critical as almost all of the new methods are based on machine learning 

algorithms as shown by Ershov et al. (2021). The dependencies, cross-talks and deficiencies that we 

have found across all datasets suggest possible directions for the design of novel AWB methods and 

for future data collection. 

ANALYZED DATASETS 

For the analysis of this paper, we focused on five datasets considered relevant in the state of the art 

research for Automatic White Balance. Their main characteristics are reported in Table 1. 
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Title Year Cameras Images Reference target 

ColorChecker (Gehler et al.) 2008 2 568 24-patch Macbeth Color Checker 

Cube+ (Banić et al.) 2014 1 1707 Datacolor SpyderCUBE 

Gray Ball (Ciurea and Funt) 2003 1 11346 Gray sphere 

INTEL-TAU (Laakom et al.) 2019 3 7022 X-Rite ColorChecker Passport chart 

NUS (Cheng et al.) 2014 9 1853 24-patch Macbeth Color Checker 

Table 1: Analyzed datasets for Automatic White Balance, with their main characteristics. 

• ColorChecker by Gehler et al. (2008). 

The dataset is composed of 568 images. Of these, 86 were shot with a Canon EOS-1DS, and the 

remaining 482 with a Canon EOS 5D. All images include in the frame a 24-patch Macbeth Color 

Checker target. Multiple versions of the ground truth of this dataset have been proposed 

through the years, such as the ‘reprocessed’ version by Shi and Funt (2012), and the more recent 

‘recommended’ version by Hemrit et al. (2018), which has been used in this work. 

• Cube+ by Banić et al. (2017). 

This dataset contains all 1365 images of previous the “Cube” dataset and additional 342 images, 

for a total 1707 images, shot using a Canon EOS 550D camera. In the lower right corner of each 

image, the SpyderCube calibration object is placed. Its two neutral 18% gray faces were used to 

determine the ground-truth illumination for each image, thus providing two annotations per 

image, with one manually selected by the original authors as better representative for the 

corresponding scene. 

• Gray Ball by Ciurea and Funt (2003). 

The dataset contains 11,346 images divided into 15 sequences, with many shots acquired at 

close interval one from another. Many of the images depict people, and include both indoor 

and outdoor scenarios, the latter taken in two different locations. The dataset was collected 

using a Sony VX-2000 digital video camera, and every shot includes the eponymous gray ball 

color target for ground truth annotation in the bottom-right corner. The images are provided in 

non-linear 8bit RGB format.  

• INTEL-TAU by Laakom et al. (2019). 

This dataset is a set of 7022 images in total, captured using three different camera models: 

Canon 5DSR, Nikon D810, and Sony IMX135. It is the updated version of INTEL-TUT, which was 

released and later withdrawn due to non-compliance with privacy regulations. The ground truth 

of each image is defined through a separate set of images, captured in the same scenes but not 

included in the actual database, depicting s a X-Rite ColorChecker Passport chart reflecting the 

main illumination source. 

• NUS by Cheng et al. (2014). 

Collected by the National University of Singapore (NUS), this dataset is composed of a total 1853 

images, shot with 9 different cameras: Canon EOS-1Ds Mark III (259 images) Canon EOS 600D 

(200 images) Fujifilm X-M1 (196 images) Nikon D40 (117 images) Nikon D5200 (200 images) 

Olympus E-PL6 (208 images) Panasonic Lumix DMC-GX1 (203 images) Samsung NX2000 (202 

images) and Sony SLT-A57 (268 images). All images include a 24-patch Macbeth Color Checker 

target. 
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ILLUMINANT CHROMATICITY DISTRIBUTIONS 

In order to compare existing datasets on equal ground, it is necessary to consider the different spectral 

sensitivities of the sensors involved in their acquisition, i.e., to map the dataset illuminants into a 

device-independent color space by normalizing them to a reference white, for which we chose CIE D55. 

INTEL-TAU is the only dataset providing a colorimetric characterization of the employed cameras, for 

which we could accurately compute the corresponding reference white using the D55 spectrum from 

the Light Spectral Power Distribution Database by Roby and Aubé (2015). For the remaining datasets, 

we referred to a definition by Luo (2016), according to which “illuminant D55 can be assumed to 

represent the SPD for (direct) sunlight provided that the sun is not too low in the sky”. We thus 

handpicked for each camera an image that best-represents the adopted definition, relying on 

metadata such as timestamp and location to reinforce our selection, and chose the corresponding 

annotation as reference white in RAW-specific RGB form. These values were finally used to normalize 

all the datasets illuminants using a Von Kries-like transform, and were eventually plotted in the Angle-

Retaining Chromaticity diagram by Buzzelli et al. (2020) to avoid any representation-specific distortion 

of the data. The result is presented in Figure 2, with reference whites reported in the legend as R/G 

and B/G chromaticity pairs, as well as non-normalized points indicated by an × symbol. 

 

 

Figure 1: Illuminant distributions for five AWB datasets, normalized by sensor-specific D55 reference whites. 

For further reference, CIE series D illuminants from D40 to D150 have also been reported in each 

plot. It is possible to observe how all analyzed datasets roughly follow the distribution of daylight 

illuminants, eventually contributing with additional data points at low Correlated Color Temperatures 

(CCT), typically found in indoor scenarios illuminated by incandescent light sources. The area of high 

CCTs, commonly covered by outdoor in-shadow surfaces, appears to be better represented by the Gray 

Ball dataset, and by the more recent INTEL-TAU dataset. Finally, the direction orthogonal to the axis 
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defined by CIE series D illuminants, i.e. ranging from greenish to magenta-ish lights, is poorly 

represented by all the analyzed datasets. Collecting data from such range of non-natural light sources 

could be potentially useful in conducting research on human perception. 

SHOOTING PARAMETERS AND ILLUMINATION LEVELS 

We have characterized the five AWB datasets in terms of illumination levels, i.e. low-light to bright-

light conditions, following two complementary approaches. With the first approach, we extracted 

shooting parameters from EXIF data, whose distributions are reported in Figure 2 (please, note that 

EXIF data are not available for the sRGB-encoded Gray Ball dataset, and that no ISO information was 

found for images from the Sony IMX135 camera of the INTEL-TAU dataset). Under the assumption of 

properly-set camera parameters, these pieces of information can be exploited to produce an 

estimation of the scene illumination according to Le et al. (2019): 

𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = log10 (
𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒2

𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑡𝑖𝑚𝑒
) + log10 (

250

𝐼𝑆𝑂
). (1) 

The resulting distribution is shown in Figure 3 (left). Alternatively, the scene illumination conditions 

can be inferred by classifying the images into discrete labels, such as: “Highlight”, “Lowlight”, and 

“Sunset/Sunrise”. This information, shown in Figure 3 (right), has been obtained by training an 

unpublished Convolutional Neural Network (CNN) on a proprietary dataset of annotated images, and 

applying it to sRGB-rendered white-balanced images from the AWB datasets. 

 

        

Figure 2: Shooting parameters distributions for the analyzed AWB datasets: Aperture, Exposure Time, and ISO. 

        

Figure 3: Illumination conditions computed by means of shooting parameters (left) and image analysis (right). 
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Without loss of generality, it is possible to observe that both independent analyses show a general 

predominance for bright light scenarios. Middle-to-low light scenes are partially represented by the 

INTEL-TAU dataset, by the Gray Ball dataset (only supported by classification-based analysis), and to 

some extent by the ColorChecker dataset, although its low number of total images must also taken 

into consideration. Finally, the Sunset/Sunrise scenario is scarcely covered across all datasets. We 

argue that such extreme imaging conditions are particularly relevant for real-life applications, as 

consumer devices equipped with AWB modules are found to often produce sub-optimal results in 

these set-ups. 

IMAGE CONTENT 

We have further analyzed the datasets in terms of image content. Following the same procedure 

described in the previous Section, we have trained three CNNs on a proprietary annotated dataset, 

and we have performed inference on white-balanced images from the five AWB datasets. The 

aggregated results are presented in Figure 4. 

 

 

Figure 4: Image content distribution of the AWB datasets, according to three different sets of classes. 

The amount of images depicting human subjects is relatively small, a problem partially related to 

privacy-protecting instruments such as the General Data Protection Regulation (GDPR). Note that, due 

to automatic annotation, some false positives (related to statues, posters, etc.) might occur, such as in 

the Cube+ dataset which is known not to contain any proper human subject. The INTEL-TAU dataset 

depicts a relevant number of people, however their faces are censored with an average-color mask, 

thus preventing the application of some semantic-based AWB methods, such as the one developed by 

Bianco et al. (2012). Finally, in terms of environments (indoor, outdoor, and close-ups) and 

composition (close-to-long range), all datasets appear to be well-balanced. 

CONCLUSIONS 

We have compared the most popular datasets for Automatic White Balance in terms of illuminant 

distribution, shooting parameters, and image content. We have highlighted the individual 

shortcomings of each dataset, thus suggesting the opportunity to merge multiple datasets into a more-

complete set of images. For sensor-dependent AWB methods, this type of fusion can only be exploited 

by bringing the datasets into a common representation. To this extent, a set of reference white points 

has been compiled for each involved sensor and shared within this manuscript. 

Deficiencies have been found across all datasets, such as a lack of images illuminated with artificial 

light sources and/or low-light images, indicating a direction for future data collection. 
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An analysis on image content has also been provided. As a future development, it would be valuable 

to extract similar statistics on non-AWB datasets that well-represent common user photographic 

collections, in order to compare their content distributions. 
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