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Abstract

This paper reviews the third biennial challenge on

spectral reconstruction from RGB images, i.e., the recov-

ery of whole-scene hyperspectral (HS) information from

a 3-channel RGB image. This challenge presents the

“ARAD 1K” data set: a new, larger-than-ever natural

hyperspectral image data set containing 1,000 images.

Challenge participants were required to recover hyper-

spectral information from synthetically generated JPEG-

compressed RGB images simulating capture by a known

calibrated camera, operating under partially known param-

eters, in a setting which includes acquisition noise. The

challenge was attended by 241 teams, with 60 teams com-

peting in the final testing phase, 12 of which provided de-

tailed descriptions of their methodology which are included

in this report. The performance of these submissions is re-

viewed and provided here as a gauge for the current state-

of-the-art in spectral reconstruction from natural RGB im-

ages.

1. Introduction

Hyperspectral imaging systems (HIS) are able to record

the distribution of light in a scene across a large number

of narrow spectral bands [12]. HISs can therefore provide

more detailed visual information than conventional RGB

cameras which are limited to three wide spectral bands (red,

green, blue). While HISs can provide many benefits to a

wide range of computer vision applications their size, cost,

limited resolution, and often long image acquisition times

have thus far limited their use to specialized industrial and

Figure 1. Sample images from the ARAD 1K hyperspectral im-

age data set. Note the variety of settings and viewpoints (images

modified for optimal display).

scientific applications [4, 5].

To facilitate more widespread use of spectral informa-

tion in computer vision application, researchers have con-

tinued to develop improved physical HISs [27] as well as

software systems to recover spectral information from more

readily available data sources such as RGB images. Early

attempts at this task relied on sparse-coding/regression

based methods [1, 3, 36, 39, 43]. In recent years neural
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net based methodologies have become significantly more

prominent [10, 23, 32] though not entirely displacing ap-

proaches such as sparse-coding [33]. The goal of this chal-

lenge is to gauge the state-of-the-art in spectral recovery

from natural RGB images and provide a larger-than-every

natural hyperspectral image data set to facilitate future de-

velopment.

This challenge is one of the NTIRE 2022 associ-

ated challenges: spectral recovery [7], spectral demo-

saicing [6], perceptual image quality assessment [19],

inpainting [40], night photography rendering [17], effi-

cient super-resolution [31], learning the super-resolution

space [34], super-resolution and quality enhancement of

compressed video [49], high dynamic range [38], stereo

super-resolution [45], burst super-resolution [8].

2. Data Set

To facilitate development and evaluation of state-of-the-

art methodologies for recovering spectral information from

natural RGB images, a larger-than-ever natural hyperspec-

tral image data set is presented. This data set expands on

the previously published ARAD HS data set [5] nearly dou-

bling its size to 1,000 images. This data set is termed the

“ARAD 1K Natural Hyperspectral Image Data Set” Fig-

ure 1 depicts a set of sample images from the ARAD 1K

data set. The 1,000 images included in the data set were di-

vided as follows: 900 training images, 50 validation images,

and 50 test images. Training and validation images were

fully released to participants during the challenge, while

ground truth hyperspectral information for the 50 test im-

ages remains confidential to facilitate equal grounds evalu-

ation of future works.

The ARAD 1K data set was collected with a Specim IQ

mobile hyperspectral camera. The Specim IQ camera is a

stand-alone, battery-powered, compact, push-broom spec-

tral imaging system which can operate independently with-

out the need for an external power source or computer con-

troller. As in the previously released ARAD data set, the use

of a highly mobile spectral imaging system facilitated col-

lection of an extremely diverse data set with a large variety

of scenes and subjects.

The Specim IQ camera provides RAW 512× 512px im-

ages with 204 spectral bands in the 400-1000nm range. For

the purpose of this challenge, manufacturer-supplied radio-

metric calibration was applied to the RAW images, and

the images were resampled to 31 spectral bands in the vi-

sual range (400-700nm). Radiometric calibration corrects

for measurement biases introduced by the camera system’s

CMOS sensor, converting the recorded RAW per channel

intensity data into accurate spectral measurements. “Lines”

(image columns) with excessive interference are also re-

moved by this process, resulting in a 482 × 512px image,

resampled to 31 bands from 400nm to 700nm with a 10nm

step. Images previously included in the ARAD data set

have been updated to the most recent radiometric calibra-

tion standard.

This data set is further expanded for the NTIRE 2022

Spectral Demosaic Challenge [6], where 16 channel spec-

tral images are provided over a 400-1000nm range - cov-

ering a wider range of wavelengths at a reduced spectral

resolution.

Additional information regarding the data set, its rela-

tion to the previously published ARAD data set, instruc-

tions for data access, and relevant code is available at the

following GitHub repository: https://github.com/

boazarad/ARAD_1K

2.1. Camera Simulation

The NTIRE 2020 [5] and NTIRE 2018 [4] spectral re-

covery challenges included two tracks: a “Real-World”

track which attempted to simulate recovering spectral infor-

mation from physical cameras, and a “clean” track which

required recovery of spectral information from a noiseless

projection to RGB. Due to increasingly low error rates in

the latter task, as well as its low practical feasibility in real-

world applications, this challenge includes a single track

which aims to predict the performance of proposed meth-

ods in a feasible real-world setting.

The challenge aims to simulate a setting where the

source camera is known but not fully controllable hence the

following assumptions are made:

1. The camera’s spectral response function is known.

2. The camera determines its exposure settings automat-

ically - the exposure algorithm is known, but param-

eters used to compute it for each scene are not (e.g.

average scene brightness).

3. The camera implements a realistic noise model.

4. Rudimentary image signal processing (ISP) is applied

in-camera (highlight clipping).

5. Images are saved in compressed JPEG format.

Participants were provided with training images pro-

duced by the challenge camera simulation pipeline, camera

simulation pipeline code, and the camera response func-

tion used in the simulation. Figure 2 depicts the camera

response function used for camera simulation in this chal-

lenge. While pipeline code and camera response function

were provided to participants, the exact noise parameters

and JPEG compression level used to generate RGB images

for the challenge was kept confidential.
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Figure 2. Response function of a challenge RGB camera sensor

based on physical measurements of a Basler ace 2 camera (model

A2a5320-23ucBAS).

3. Challenge

The NTIRE 2022 Spectral Recovery Challenge was pre-

sented as a competition on the CodaLab 1 platform which

consisted of two phases:

1. Development participants were provided with 900

training and 50 validation RGB images generated by

the camera simulation pipeline (c.f. Sec. 2.1). Corre-

sponding ground truth hyperspectral images were pro-

vided for the 900 training images. A test server was

made available where participants could upload re-

covered spectral information for the 50 validation im-

ages and receive immediate feedback on their perfor-

mance in terms of MRAE and RMSE per-image (c.f.

Sec. 3.1). During the development phase, there were

no limits on the amount of submissions per team.

2. Testing Ground truth hyperspectral images for the

50 validation images were released, alongside 50 test

RGB images. Similarly to the development phase,

a test server was made available where participants

could upload their results and receive feedback on their

performance, but each team was limited to a total of

three submissions. This feedback allowed participants

to select their best model, while limiting the possibility

of overfitting to the test set.

Code and other data provided to participants is curated

in the following GitHub repository:https://github.

com/boazarad/NTIRE2022_spectral

1https://codalab.lisn.upsaclay.fr/competitions/

721

3.1. Evaluation Metrics

As in previous competitions [4, 5], Mean Relative Abso-

lute Error (MRAE) computed between the submitted recon-

struction results and the ground truth images was selected

as the quantitative measure for the competition. Root Mean

Square Error (RMSE) was reported as well, but not used to

rank results. MRAE and RMSE are defined as follows:

MRAE =

∑

i,c

|Pgtic
−Precic

|

Pgtic

|Pgt|
(1)

RMSE =

√

√

√

√

∑

i,c

(

Pgtic
− Precic

)2

|Pgt|
(2)

where Pgtic
and Precic

denote the value of the c spectral

channel of the i-th pixel in the ground truth and the re-

constructed image, respectively, and |Pgt| is the size of the

ground truth image (pixel count × number of spectral chan-

nels).

3.2. Evaluation Protocol

A significant challenge in evaluating the performance of

spectral recovery methodologies is curating a test set which

is representative of the desired target domains. While the

ARAD 1K data set provides a larger-than-ever 50 image

test set, including a large variety of images from multiple

settings (c.f. Sec. 2), limitations of the CodaLab platform

prevented large scale evaluation over the full test set due to

space and bandwidth constraints. To overcome this limita-

tion without significantly reducing the representation power

of the test set, test images were cropped from their orig-

inal 482 × 512 spatial resolution to a central 226 × 256
region. Participants were provided with code to prepare im-

ages for evaluation and their results were scored for MRAE

and RMSE over the selected central region of the test im-

ages.

4. Challenge Results

Table 1 details the final rankings of all participants

over the primary evaluation metrics. The lowest MRAE

achieved was 0.1131 and the lowest RMSE achieved was

0.02308. The top-7 ranked results would remain consistent

had RMSE been the primary metric.

Despite the use of significantly advanced methodologies

and vastly improved hardware, the top performing method

in this challenge achieved a MRAE score nearly twice as

high as the top performing solution in the comparable “Real

World” track of the NTIRE 2020 challenge [5] (0.1131 vs.

0.06200). This is likely both due to challenges posed by a

more realistic camera model (c.f. Sec. 2.1) as well as the

increased size of the test set (50 images vs. 10 images).
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Rank Team Username MRAE RMSE

1 MST++ [10] THU-SIGS-MEAI 0.1131 0.02308

2 MIALGO mialgo ls 0.1247 0.02569

3 CVIA SSR [28] deeppf 0.1766 0.03217

4 IFL Ptdoge 0.2035 0.03237

5 SSR songyonger 0.2586 0.03876

6 Yuelushan anjing guo 0.2802 0.04161

7 IVL [2] IVLLuigiCelona 0.2915 0.05412

8 SGG RS Whu hj whu 0.3060 0.05071

9 star-spectral star.kwon 0.4127 0.04898

10 NTU607QCO-Spectral Alex Huang 0.4361 0.07689

11 OPT KLSIT xiongmao 0.5304 0.11310

12 Image Lab SabariNathan 0.7795 0.10161

Table 1. NTIRE 2022 Spectral Reconstruction Challenge results and final rankings on the ARAD 1K HS test data.

Team Name CPU GPU Platform Train Time Inference Time

MST++ Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz NVIDIA RTX 3090 PyTorch 40 hours 0.10s

MIALGO Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz * 2 8 x NVIDIA Tesla V100 32GB PyTorch 5 Days 0.43s

CVIA SSR Intel i9-10900K CPU @ 3.70GHz NVIDIA RTX 3090 GPU PyTorch 24 Hours 0.15s

IFL Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz NVIDIA RTX3090 GPU PyTorch 3 Days 0.12s

SSR Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz NVIDIA 1080Ti PyTorch 60 Hours 1.7s

Yuelushan Intel i9-11900K 2 x NVIDIA RTX 1080Ti + NVIDIA RTX 3090 GPU PyTorch, TensorFlow 26 Hours 1.03s

IVL Intel i7-4770 CPU @3.40GHz NVIDIA GeForce GTX 1080 PyTorch, MATLAB 30 Minutes 0.01s

SGG RS Whu NVIDIA RTX A5000 PyTorch 6 Hours 0.28s

star-spectral Intel i7-8700 CPU @3.20GHz NVIDIA RTX 2080Ti PyTorch 5 Hours 0.09s

NTU607QCO-Spectral NVIDIA V100 PyTorch 9 Days 2.8s

OPT-KLSIT Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz NVIDIA GeForce RTX 3090 PyTorch 7 Days 0.67s

Image Lab IntelCore i7 processor NVIDIA RTX 2060 Keras,Tensorflow 20 Days 1.0s

Table 2. Self-reported training and inference runtimes for proposed methods.

Section 6 describes the methodologies used by top-

performing teams in this challenge, as described by their

authors.

4.1. Performance on “Out­of­Scope” Image

As in the previous competition [5], finalists were pre-

sented with an “out-of-scope” image to recover. Figure 3

depicts the out-of-scope image selected for this challenge: it

features a prominent human subjects and calibration target -

objects which are very rare in the training data set. Further-

more, the image was taken under photographic studio lights,

while the majority of training images were captured under

natural illumination or conventional indoor lighting. While

performance on the out-of-scope image may be indicative

of a methods’ extrapolation power, these measurements did

not affect participants final ranking in the challenge.

Table 3 details the performance of most submitted meth-

ods over the out-of-scope image. Figure 4 depicts recov-

ered spectra sampled from the red, green, and blue tiles of

the calibration target. While some methodologies exhib-

ited improved average performance over the out-of-scope

image, none were able to accurately recover spectra from

the calibration target. Out-of-scope performance was not

correlated strongly with primary test set performance. This

variability in performance indicates that, despite being the

largest of its kind, the ARAD 1K data set is not yet compre-

hensive. Further collection of natural hyperspectral images

would be conductive to the development of improved spec-

tral recovery systems and their evaluation.

Rank Team MRAE RMSE

1 Yuelushan(6) 0.1646 0.05480

2 CVIA SSR [28](3) 0.1786 0.05501

3 SSR(5) 0.1915 0.04387

4 SGG RS WHU(8) 0.2197 0.05531

5 MST++ [10](1) 0.2206 0.05196

6 IFL(4) 0.2365 0.03702

7 MIALGO(2) 0.2503 0.03437

8 star-spectral(9) 0.3439 0.04812

9 NTU607QCO-Spectral(10) 0.3610 0.05319

10 OPT KLSIT(11) 0.4299 0.07634

11 IVL [2](7) 0.5350 0.05879

Table 3. Performance of proposed methodologies for “out-of-

scope” image, ranking on the primary test set is denoted in sub-

script beside the team name.
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Figure 3. “Out-of-scope” image used to gauge the extrapolation

ability of methods presented in this challenge. This image contains

a prominent human subject, a calibration target, and was taken

under studio lighting (image modified for optimal display).

5. Conclusion

The NTIRE 2022 Spectral Recovery Challenge contin-

ues the biennial tradition of providing the most extensive

evaluation of methods for spectral recovery from RGB im-

ages. The challenge provided a larger-than-ever natural hy-

perspectral data set for both training and evaluation. Par-

ticipation in this year’s challenge was the highest to date,

with participation numbers increased by over 130% relative

to the 2020 challenge.

While neural networks remain the primary tool used by

top-performing methodologies, this year’s top-performing

methodologies were able to present inference times below

the 0.5 second processing time required by top-performers

in the 2020 challenge [5].The hybrid methodology pre-

sented by Hu et al. [22] is of particular note, providing sub-

30ms inference times, albeit at the cost of higher error rates.

Between the higher overall MRAE/RMSE scores of this

years top performers relative to previous challenges and

variability observed in the “out-of-scope” test - it is clear

that there is both significant potential for improved perfor-

mance over the currently available data set as well as room

to expand the coverage of future natural hyperspectral im-

age data sets to additional scene types and domains. It is

our hope that the data and methodologies described here

will facilitate both these goals.

6. Methods and Teams

6.1. MST++: Multi­stage Spectral­wise Trans­
former for Efficient Spectral Reconstruc­
tion [10]

Figure 5, describes the MST++ pipeline: (a) depicts the

proposed Multi-stage Spectral-wise Transformer (MST++),

which is cascaded by Ns Single-stage Spectral-wise Trans-

formers (SSTs). MST++ takes a RGB image as input and

reconstructs its HSI counterpart. A long identity map-

ping is exploited to ease the training procedure. Fig. 5 (b)

shows the U-shaped SST consisting of an encoder, a bot-

tleneck, and a decoder. The embedding and mapping block

are single conv3×3 layers. The feature maps in the en-

coder sequentially undergo a downsampling operation (a

strided conv4×4 layer), N1 Spectral-wise Attention Blocks

(SABs), a downsampling operation, and N2 SABs. The bot-

tleneck is composed of N3 SABs. The decoder employs a

symmetrical architecture. The upsampling operation is a

strided deconv2×2 layer. To avoid the information loss in

the downsampling, skip connections are used between the

encoder and decoder. Fig. 5 (c) illustrates the components

of SAB, i.e., a Feed Forward Network (FFN as shown in

Fig. 5 (d) ), a Spectral-wise Multi-head Self-Attention (S-

MSA), and two layer normalization. Details of S-MSA are

given in Fig. 5 (e).

S-MSA. Suppose Xin ∈ R
H×W×C as the input of S-

MSA, which is reshaped into tokens X ∈ R
HW×C . Then

X is linearly projected into query Q ∈ R
HW×C , key K ∈

R
HW×C , and value V ∈ R

HW×C :

Q = XWQ,K = XWK,V = XWV, (3)

where WQ, WK, and WV ∈ R
C×C are learnable pa-

rameters; biases are omitted for simplification. Subse-

quently, we respectively split Q, K, and V into N heads

along the spectral channel dimension: Q = [Q1, . . . ,QN ],
K = [K1, . . . ,KN ], and V = [V1, . . . ,VN ]. The dimen-

sion of each head is dh = C
N

. Please note that Fig. 5 (e)

depicts the situation with N = 1 and some details are omit-

ted for simplification. Different from original MSAs, our

S-MSA treats each spectral representation as a token and

calculates self-attention for headj :

Aj = softmax(σjK
T
jQj), headj = VjAj , (4)

where KT
j denotes the transposed matrix of Kj . Because

the spectral density varies significantly with respect to the

wavelengths, we use a learnable parameter σj ∈ R
1 to adapt

the self-attention Aj by re-weighting the matrix multiplica-

tion KT
jQj inside headj . Subsequently, the outputs of N

heads are concatenated to undergo a linear projection and

then is added with a position embedding:

S-MSA(X) =
(

N

Concat
j=1

(headj)
)

W + fp(V), (5)
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(a) (b) (c)

Figure 4. Recovered radiance spectra from the Red(a), Green(b), and Blue(c) tiles of the color calibration target in the out-of-scope image

(Figure 3). Per-spectra MRAE values for each method are included in parenthesis on the plot legends.
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Figure 5. The overall pipeline of MST++. (a) Multi-stage Spectral-wise Transformer. (b) Single-stage Spectral-wise Transformer. (c)

Spectral-wise Attention Block. (d) Feed Forward Network. (e) Spectral-wise Multi-head Self-Attention.

where W ∈ R
C×C are learnable parameters, fp(·) is the

function to generate position embedding. It consists of two

depth-wise conv3×3 layers, a GELU activation, and re-

shape operations. The HSIs are sorted by the wavelength

along the spectral dimension. Therefore, we exploit this

embedding to encode the position information of different

spectral channels. Finally, we reshape the result of Eq. (5)

to obtain the output feature maps Xout ∈ R
H×W×C .

• Total method complexity

Our MST++ requires 1.62 M Params and 23.05 G

FLOPS.

The test size is 256×256×3.

• Training

During the training procedure, RGB images are lin-

early rescaled to [0, 1], after which 128×128 RGB and

HSI sample pairs are cropped from the data set. The

batch size is set to 20 and the parameter optimization

algorithm chooses Adam modification with β1 = 0.9
and β2 = 0.999. The learning rate is initialized as

0.0004 and the Cosine Annealing scheme is adopted

for 300 epochs. The trianing data is augmented with

random rotation and flipping. The proposed MST++

has been implemented on the Pytorch framework and

approximately 40 hours are required for training a net-

work on a single RTX 3090 GPU. MRAE loss function

between the predicted and ground-truth HSI is adopted

as the objective. In the implementation of our MST++,

we set Ns = 3, N1 = N2 = N3 = 1, C = 31.

• Testing

During the testing phase, the entire RGB image is also

linearly rescaled to [0, 1] and fed into the network to
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fulfill the spectral recovery. Our MST++ takes 102.48

ms for per image (size 482×512×3) reconstruction on

a single RTX 3090 GPU.

• Ensembles and fusion strategies

We adopt three ensemble strategies, including:

(a) self-ensemble [44], the RGB input is flipped

up/down/left/right or rotated 90°/180°/270° to be fed

into the network, the output HSIs are then averaged.

(b) multi-model ensemble, we also train MIRNet [52],

MPRNet [53], Restormer [51], HiNet [13], MST [9]

families. The reconstructed HSIs of these models and

our MST++ are linearly fused together.

(c) multi-scale ensemble, we respectively train our

models with patches at size of 256×256, 128×128,

and 64×64. Then fuse the output HSIs.

On the validation set, self-ensemble, multi-model en-

semble, and multi-scale ensemble can obtain about

0.015, 0.045, 0.033 in terms of MRAE, respectively.

• Code and Pre-trained Models

We contribute a baseline and toolbox containing 11

SOTA image restoration methods and their pre-trained

models to beneift the comunity of spectral reconstruc-

tion. The repository is at https://github.

com/caiyuanhao1998/MST-plus-plus

6.2. MIALGO: Enhanced Holistic Attention Net­
work for Spectral Reconstruction

Spectral reconstruction, as a typical reconstruction task

is highly similar to the image super-resolution. We utilize

Holistic Attention Network(HAN [35]), a SOTA method in

the super-resolution tasks as the backbone to solve it. To

be specific, we notice that the brightness(mean) of the in-

put images is set to a fixed value(typical scene reflectivity,

0.18), it is particularly important to estimate the brightness

of the target, and thus we divide the RGB/Mosaic image

into two cases based on the maximum value. Followings

are detailed explanations for the two cases:

1. The maximum value is less than the upper limit (255

for rgb or 4095 for mosaic). In this case, the maximum

value of the input corresponds to the maximum value of GT

(ignoring the effects of mosaic processing and quantization

errors), so we add a simple normalization layer before the

backbone, after that, the brightness of the image is basically

same with GT. This case is relatively simple, and the net-

work can handle it well.

2. The maximum value of the input is equal the upper limit.

In this case, the clip operation during the generation of in-

put causes a lot of energy loss, so the brightness cannot be

estimated by referring to the maximum value like case 1. To

deal with this ill-conditioned and difficult problem, we use

Figure 6. Architecture of the Enhanced Holistic Attention Net-

work for Spectral Reconstruction.

a lot of augmented data for training.

We also remove the upsampling layer of HAN to keep the

size of the input, and add a normalization layer after the

backbone to avoid the loss caused by the clip operation.

Figure 6 describes the high-level architecture of the so-

lution.

• Total Method Complexity

the total number of GMACS is 1822, and the total

number of parameters is 7457168.

• Additional Training Data

We found that the bottleneck of the task is the bright-

ness estimation, that is, the richness of the data, so we

tried to use a lot of additional data, including ICLV [3],

CAVE [50] and Harvard [11].

• Training

According to the code provided by the organizer, we

generate and augment the input data ourselves, in-

cluding random brightness, random noise, random

padding, flip, rotation, etc. We first train on all the

data for 100k iterations, and then train separately on

each case’s data for 100k iterations. In the later stages

of training, we increase the proportion of hard sam-

ples. MRAE and SSIM were used as training loss and

in late training, we keep only the luminance compo-

nent of SSIM.

• Testing

The model is switched according to the maximum

value of the input, which corresponds to the two cases

in the training phase.

6.3. CVIA SSR: DRCR Net: Dense Residual Chan­
nel Re­calibration Network with Non­local
Purification for Spectral Super Resolution
[28]

In this section, we describe our proposed dense residual

channel re-calibration network (DRCR Net) in detail. Given

IRGB as the input of DRCR Net. As illustrated in Fig. 8, we

first employ two convolutional layers to extract the shallow

feature F0 as well as boost the number of bands from input

RGB images.

FSF = HSFE convs(IRGB), (6)
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Figure 7. Architecture of dense residual channel re-calibration network for Spectral Super Resolution from RGB Images. ↓ and ↑ indicate

downsampling and upsampling, respectively.

Figure 8. Architecture of channel re-calibration module. In the

figure, YGAP (·) represents the global average pooling operation.

where HSFE convs(·) stands for front convolution opera-

tions. Then we use the extracted shallow feature FSF as

the input of the non-local purification module (NPM). Thus

we can further have

F0 = HDF (FSF ), (7)

where HDF (·) represents our designed very simple but ef-

ficient NPM whose output F0 is then taken as the input of

our multiple dense residual channel re-calibration (DRCR)

blocks.

Fm = Hm
DRCR(F

m−1)

= Hm
DRCR(H

m−1
DRCR(· · ·H

1
DRCR(F

0) · · · )),
(8)

where Fm and Fm−1 denote the output and the input of

the mth DRCR block, separately. Hm
DRCR(·) represents the

mth DRCR block. To be specific, the DRCR blocks have

a U-shaped structure in which the encoding part and de-

coding part consist of three 3×3 plain convolution layers,

separately. Additionally, three concatenation operations be-

tween the encoding part and decoding part are utilized to

explore the information interaction among the intermedi-

ate layers and such skip cross-layer connections help to al-

leviate the vanishing gradient problem. Besides, we em-

ploy the dual channel re-calibration module (CRM) to re-

calibrate the features associated with the DRCR block along

the channel dimension, where the first CRM H
(m,1)
DCRM (·)

draws the calibration feature F
m,1
RF from the input of the mth

DRCR block. The above process can be expressed as

F
(m,1)
RF = H

(m,1)
DCRM (Fm−1) (9)

We then fuse the F
(m,1)
RF with the aggregated features in the

middle layer of mth DRCR block, additionally, we also in-

put the F
(m,1)
RF into the second DCRM H

(m,2)
DCRM (·) for fur-

ther calibration of the channel-dimensional features and the

above process can be formulated as

F
(m,2)
RF = H

(m,2)
DCRM (F

(m,1)
RF ), (10)

Therefor, the output of the ith convolution layer in mth

DRCR block can be expressed as:

F(m,i) =























H
(m,i)
DRCR conv(F

m−1) i = 1

H
(m,i)
DRCR conv(F

(m,i−1)) i = 2, 3

H
(m,i)
DRCR conv([F

(m,1)
RF ,F(m,i−1)]) i = 4

H
(m,i)
DRCR conv([F

m,i−1,F(m,7−i)]) i = 5, 6,

(11)

where H
(m,i)
DRCR conv(·) denotes the ith convolution opera-

tion of mth DRCR block, and [·, ·] represents the concate-

nation operation of two features. Moreover, we add F
(m,2)
RF

to the output of the last convolution layer F(m, 6), thus we

can further have

Fm = Fm,i−1 + F
(m,2)
RF . (12)

Finally, similar to the front structure of the network, we use

two plain convolutions to aggregate features and map the

number of bands to 31 to obtain the spectral reconstructed

HSI ISR.

ISR = HAF convs(F
m), (13)

where HAF convs(·) stands for tail convolution operations.

• Training

For training details, we set the number of DRCR

blocks to 10, and the channels of intermediate layer

features to 100. The image pairs are cropped to

128 × 128 region before normalized to [0, 1]. The re-

duction ratio r value of the channel re-calibration mod-

ule (CRM) is 8. For optimization, we choose Adam
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with β1 = 0.9, β2 = 0.99 and ϵ = 10−8. The learning

rate is set as 0.0001 initially and a decay policy with a

power of 1.5. We stop network training at 100 epoch.

Our DRCR Net has been implemented on the Pytorch

framework and approximately 24 hours are required

for training the NTIRE2022 data set on 1 NVIDIA

3090Ti GPU.

• Testing

We choose to input the complete RGB images to the

network to fulfill the spectral recovery on an NVIDIA

3090Ti GPU with 24G memory. Our network takes

0.158s per image (GPU time) for test data.

6.4. IFL: Residual Dual Attention Network (RDAN)

In this challenge, we propose a residual dual attention

network (RDAN) for spectral reconstruction from RGB im-

ages. Residual dual attention block (RDAB) is the basic unit

of RDAN, which includes two key components, the dual at-

tention module (DAM) and group progressive convolution

module (GPCM). Note that the structure of RDAB benefits

from [29]. DAM is developed to capture spatial long-range

similarity and channel short-range dependency within inter-

mediate features, while GPCM is designed to explore local

contextual consistency. Fig. 9 shows the detail architecture

of RDAN. Concretely, DAM includes two parts, non-local

spatial attention module (NLSAM) and local spectral atten-

tion module (LSAM). As shown in Fig. 10a, NLSAM and

LSAM are jointed parallel. NLSAM adopts classic non-

local operations to explore spatial long-range similarity. To

reduce computational burden, different from [47], NLSAM

regards one patch as one pixel, which making it possible to

embed non-local operations in each basic unit of network

in the case of limited memory resources. Inspired by re-

cent work [46] and considering high correlation of adjacent

spectral bands in HSIs, LSAM is introduced to model chan-

nel short-range dependency. Derived from [18], GPCM is

proposed. From Fig. 10b, the number of feature channels

and size of receptive field are progressively increased and

enlarged in GPCM, which is helpful to explore local con-

textual consistency effectively. Besides, owing to group

and concatenation operation, GPCM improves diversity and

richness of representation apparently through implicit reuse

of features and indirect multi-scale fusion.

In addition to the above well-designed network, we ex-

plore the data processing strategy seriously. Maybe Norm-

factor provided is always ignored. Instead, the data used

to supervised the output of our network is not normalized.

Experiments prove that the strategy is effective in this chal-

lenge. Besides, mean relative absolute error (MARE) loss

function [42] is used to train our model.

• Training During the development phase, we split the

provided NTIRE training data into two parts for train-
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Figure 10. Proposed Attention and Convolution Module.

ing and validation. We retain fours models trained with

different parameter settings or training data, which

have the best performance on corresponding valida-

tion data respectively. We evaluate the models retained

again when validation data is public. Table 4 shows

the performance, parameters setting, and training strat-

egy of all models retained. In addition, during the de-

velopment phase, the batch size of our model is 32,

and the Adam optimizer with β1 = 0.9, β2 = 0.999,

and ϵ = 10−8 is adopted. 64 × 64 RGB-HSI pairs

are cropped with a stride of 32 from the original data

set for training [29]. The learning rate is initialized

to 0.0001 and the linear function is set as the decay

strategy. Then PyTorch framework is used to realize

proposed models. The optimization of models is im-

plemented on NVIDIA GPU.

• Testing

During the testing phase, the whole RGB image is in-

put into our trained model. Output images were nor-

malized (divided by maximum value) before submis-

sion.

• Ensembles and fusion strategies

Four best models trained with different parameters set-

ting are used to reconstruct spectral from given testing

RGB images. Then all results are averaged as the final

result. Compared with the single model, as shown in

Tab. 4, model-ensemble strategy can further improve

the accuracy of spectral recovery.

6.5. SSR: Improved Attention Network for Spectral
Reconstruction

We improve the backbone of a single image spatial

super-resolution model named HAN [35]. We just replace
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Model Name
Patch Size

in NLSAM

Total

Iterations

MRAE on

Cropped Image

Best v1k4 4×4 278150 0.181807

Best v1k8 8×8 278150 0.188734

Best v2k4 4×4 277850 0.208914

Best v2k8 8×8 277850 0.210183

Ensemble - - 0.177332

Table 4. Performance of individual models and model ensemble

over the challenge’s validation data.

the SE [22]-like channel attention in RCAB [54] unit with

ECA [46]-like channel attention and added spatial atten-

tion after it. In this way, our model can focus on adjacent

bands without the influence of distant irrelevant bands, and

at the same time spatial attention emphasizes more impor-

tant parts spatially. We first transform the RGB image with

3 channels into 31 channels through Linear interpolation,

and then extract shallow features through a convolutional

layer. After the improved backbone network, the network

tail is a convolutional layer with the number of output chan-

nels of 31. During this process, the spatial size of feature

map remains unchanged. In addition, we add global short-

cuts to enable the backbone network to learn residuals. We

set the number of groups in the HAN to 6, stack 12 RCAB

blocks in each group, and set the number of channels in the

middle layer to 64.

Besides, considering that the self-attention in Trans-

former can capture long-range dependency, we also try use

Restormer [51] to complete the Spectral Reconstruction.

We halved the size of the original Restormer and transform

into a spectral super-resolution model as described above.

• Training The RGB-HSI pair is split into 64*64’size

patch without overlapping. We adopt the min-max nor-

malization for each input image independently. The

initial learning rate is set as 1e-4 and decays by half

every 30,000 iterations for 3 times. The batch size is

32 when training improved HAN and the optimizer is

Adam with default hyper-parameters. When training

Restormer, the batch size is 8.

• Testing In test phase, the whole image serves as net-

work’s input.

• Ensembles and Fusion Strategies We ensemble 4 mod-

els of improved HAN with different learning rates and

batch sizes and one model of Restormer using the

weighted average method.

6.6. Yuelushan: Stepwise spectral super­resolution

We think that the competition consists of three sub-tasks,

and they are the image denoising (DN) task, the image de-

white-balancing (DWB) task, and the final image spectral

super-resolution (ISR) task. We firstly train an image de-

noising network for removing the noises and compressing

artifacts. Then an image de-white-balancing network is

proposed for restoring the original illumination intensity in

spectral imaging. Finally, the de-white-balanced images are

used for spectral reconstruction. all the three parts are im-

plemented with the RCAN-like [54] deep models. The flow

of the proposed framework is shown in Figure 11.

Figure 11. The flow of the proposed spectral reconstruction

method.

• Total Method Complexity

In the image denoising part, we utilize the original HSI

images and official code for generating the noise-free

RGB images, this step is called DN. In the second part,

we use the image denoising model to generate the de-

noised images, which are then utilized for de-white-

balancing, and the reference ground truth is generated

by the official code. Finally, we restore the hyperspec-

tral information from the DWBed images, we call it

the ISR stage.

• Training In the DN and DWB parts, we utilize 5

RCABs for constructing the deep models, We train the

networks for 100 epochs with batch size 4 and an ini-

tial learning rate of 0.0005, which reduces by a fac-

tor of 0.5 every 20 epochs. We choose the L1 loss

and Adam optimizer. All the experiments in these two

stages are implemented by the TensorFlow framework

in the Ubuntu16.04 environment with 128G RAM and

2 NVIDIA RTX 1080Ti GPUs.

In the ISR part, we utilize 10 RCABs for construct-

ing the deep model, We train the networks for 100

epochs with batch size 4 and an initial learning rate

of 0.0005, which reduces by a factor of 0.5 every 20

epochs. We choose the MRAE loss and Adam op-

timizer. All the experiments in these two stages are

implemented by the TensorFlow and PyTorch frame-

works in the Ubuntu16.04 environment with 128G

RAM and 2 NVIDIA RTX 1080Ti GPUs.

• Testing In the test phase, the images are sent to the

trained DN, DWB, and ISR models, respectively, and

then we can obtain the restored HSIs. We conduct the

whole framework without model-ensemble.
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6.7. IVL: Fast­n­Squeeze [2]

• General method description: Our method applies a

3 × 31 linear transformation matrix to convert RGB

data into 31-band spectral data. For each image in the

training set, such matrix is individually optimized us-

ing the Moore-Penrose pseudoinverse [37]. The train-

ing matrices are then used to define a new matrix to be

used at inference time for each image, based on differ-

ent rationales. We describe four variants based on this

idea:

– Fast: the images from the training set that are

most similar to the test image are identified

(based on low-level RGB statistics). The corre-

sponding matrices are extracted, and a median

matrix is computed for application to the test im-

age.

Test MRAE = 0.4629

– Squeeze: a SqueezeNet [24] CNN model is

trained and applied to estimate, given the input

RGB image, a single global scaling factor to be

applied to the reconstructed spectral image from

Fast. In particular a weighted average of the

spectral reconstructions obtained from two train-

ing iterations is used.

Test MRAE = 0.4160

– Fast-n-Squeeze: a weighted average of the

spectral reconstructions obtained from Fast and

Squeeze is used.

Test MRAE = 0.3647

– Fast-n-Squeeze (lower): an ideal lower-bound of

Fast-n-Squeeze is computed, assuming the exis-

tence of an oracle that determines for each input

image whether to use Fast or Squeeze.

Test MRAE = 0.2915

• Representative image / diagram of the method(s):

see Figure 12.

• Training

The training of the proposed method is divided into

two phases:

In the first phase, pseudo-inverse RGB-to-spectral ma-

trices [37] are optimized for each training image. This

is at the core of all presented solutions.

In the second phase, specific for the Squeeze and sub-

sequent solutions, the parameters of the SqueezeNet-

v1.1 model are finetuned using the Mean Relative Ab-

solute Error (MRAE) as loss function. We train the

model for a total of 30 epochs by using Adam opti-

mizer with starting learning rate of 1 × 10−4 which

Figure 12. Schematic representation of Fast-n-Squeeze: our solu-

tion for spectral reconstruction from RGB data.

decays by a factor of 0.5 every 10 epochs, a batch-

size equal to 16, and exponential decay rates β1 and

β2 equal to 0.9 and 0.999. Each RGB image feeded to

the model is normalized by its global maximum value

and then resized to 256px resolution using bilinear in-

terpolation. We randomly apply horizontal and vertical

flip and rotate of an angle between 0 and 360 degrees.

At the end of each epoch, the MRAE is estimated on

the validation set. The model that achieves the lowest

MRAE is chosen as best model.

• Testing In the testing phase we first select the respec-

tive pseudo-inverse matrix for each image using the

Fast method. Consequently the Squeeze algorithm es-

timates the global scale factor to be applied to this

pseudo-inverse matrix to better match the spectral rep-

resentation of the RGB image.

• Ensembles and fusion strategies Our first solution,

named Fast, achieves MRAE 0.4629. It does not

exploit any form of ensamble or fusion.

Our second solution, named Squeeze, achieves MRAE

0.4160. It is computed as a weighted average between

two training iterations of the SqueezeNet model:

Squeeze =
1

3
Squeeze(1) +

2

3
Squeeze(2) (14)

The weights were empirically set.

Our third solution, named Fast-n-Squeeze, exploits the

uncorrelated nature of Fast and Squeeze to improve

upon the spectral reconstruction of both, by resorting

to a weighted average:

Fast-n-Squeeze =
1

2
Fast +

1

2
Squeeze (15)
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The weights were also empirically set. The Fast-n-

Squeeze solution achieves MRAE = 0.3647, which is a

21% improvement over Fast, and a 12% improvement

over Squeeze.

Our fourth solution is intended as an hypothetical

lower bound: for each test image, the best solution

between Fast and Squeeze is selected assuming the

availability of an oracle. This configuration achieves

MRAE = 0.2915, highlighting the potential of the pro-

posed solution in case of a classifier trained to identify

two different classes of images, and suggesting a di-

rection for future developments.

• Performance Analysis

We implement the proposed method in Python3.8 us-

ing the PyTorch package with CUDA-v11.6 as back-

end. The proposed model is trained on a worksta-

tion equipped with an Intel i7-4770 CPU @3.40GHz,

16GB DDR4 RAM 2400MHz, NVIDIA GeForce

GTX 1080 GPU with 2560 CUDA cores.

The training of the SqueezeNet takes about 30 minutes.

When processing 512×482 input images, the proposed

method provides 104.71 FPS real-time processing per-

formance on an NVIDIA GeForce GTX 1080.

The proposed method is lightweight and efficient and

can be run on devices with limited computational re-

sources. It consists of the matrix multiplication of the

RGB triplets by the pseudo-inverse and by the for-

ward pass of SqueezeNet. The first step depends on

the resolution of the input image. The forward pass

of the SqueezeNet, which is the most computation-

ally expensive operation of our method, is resolution-

independent. In fact, the image is fed to the CNN at

the fixed size of 256× 256 pixels.

Therefore, our method can scale to high resolution im-

ages without problems of insufficient GPU memory

and at a low impact on the inference time.

6.8. SGG RS Whu: PoNet+: A Physical
Optimization­based Network with Spectral
Grouping for Spectral Recovery

A physical optimization-based spectral recovery meth-

ods is unrolled into an end-to-end CNN as our previous

work PoNet [21]. Besides, we employed the spectral group-

ing similar to HSRnet [20].

6.8.1 Physical Optimization Unrolling

Let X ∈ ❘W×H×C represent the observed HSI, where C

is the number of the spectral channels, and W and H are

Spectral
Group

Figure 13. The framework of the proposed PoNet+.

the width and height, respectively. Y ∈ ❘W×H×c repre-

sents the observed multispectral image, where c < C is the

number of multispectral bands, specifically for RGB image,

with c = 3. Varying in SRF, the sensors obtain different MS

or HS data with different bands. A transformation matrix

Φ ∈ ❘c×Ccan be used to describe the spectral degradation

between MS and HS imaging as follows.

Y = ΦX (16)

The high-dimension HSIs can be approximately pre-

dicted by adopting some priors to a minimization problem

to constrain the solution space as follows:

X̂ = argminX ∥Y − ΦX∥
2
2 + λR(X) (17)

where λ is a trade-off parameter, and R(·) is a regulariza-

tion function. Employ the half-quadratic splitting method

with a penalty parameter as µ and solve it by the gradient

descent algorithm:

X̂k+1 = (1− ϵµ)Xk−ϵXkΦΦ
T +ϵMHΦT +ϵµZk (18)

Ẑk = Prox(Xk) = argminZ ∥Z −Xk∥
2
2 +

λ

µ
R(Z)

(19)

where ϵ is the optimization stride. As for the Z-subproblem,

proximal operators that impose prior knowledge can deal

with it.

Unrolling the physical optimization method into CNN,

the proposed PoNet+ is shown in Fig. 13.

6.8.2 Cross-Dimensional Channel Attention

In traditional physical optimization-based algorithms, hy-

perparameters need to be defined manually and adjust to

the optimal through a large number of experiments. Fur-

thermore, in spectral super-resolution, differential treatment

should be performed for the hyperparameters of different

channels due to the different radiation characteristics.

Pooling is a common operation used in traditional chan-

nel attention, which is popular for fast computation and no

parameter requirement at the cost of high information loss.
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Furthermore, traditional channel attention weights the dif-

ferent channels of features separately ignoring the interac-

tion between channels. There have been many works stated

that building relationships between every two channels is

much of importance. However, when the number of chan-

nels is large and attention mechanisms are frequently em-

ployed, the problem of computational burden should also

be focused on.

Inspired by the above-mentioned points, we proposed

a strategy named Cross-Dimensional Channel Attention

(CDCA) employing 1D and 2D convolutional layers to

manage the hyperparameter learning in this paper. 2D con-

volutional layers are used to extract pixel-by-pixel attention

maps. On the other hand, 1D convolutional layers are em-

ployed to integrate attention maps for fast computational

speed. Details of the proposed module are shown in Fig. 14.
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Figure 14. Cross-dimensional channel attention

We adopt two 2D convolutional layers with the kernel

size of 1 × 1 to extract different spectral features R,S ∈
❘

W×H×C . Attention map A ∈ ❘C×C between any two

channels can be calculated as follows:

aij = RiS
T
j (20)

where aij measures the attention between the ith and jth

bands. Ri and Sj is the reshaped channel. To boost the

computational speed, we employ a 1D convolutional layer

with the kernel size of k to integrate channel-to-channel

attention map A. Then, the final cross-dimensional chan-

nel attention-based hyperparameter P ∈ ❘1×C will be ob-

tained after a softmax layer:

pj =
exp

(

W 1d ∗Aj + b1d
)

∑C

j=1 exp (W
1d ∗Aj + b1d)

(21)

where W 1d and b1d mean the kernel weights and biases for

the 1D convolutional layer, and pj ∈ P is the parameter

for the jth band. In this way, we build a learnable end-to-

end CNN by unrolling the physical optimization algorithm,

which keeps the advantages of deep learning and physical

model-based algorithm.

6.8.3 Cross-Depth Feature Fusion

In deep learning-based algorithms, the depth makes much

sense for the network effect, in other words, the deeper net-

works get the better results. However, the shallow features

are also very important. In the proposed method, we get

multiple updated results at different depths. To improve the

model memory of shallow features, a strategy named Cross-

Depth Feature Fusion (CDFF) is proposed as shown in Fig.

13.

Given a set of intermediate results

{X0, X1, X2, · · ·Xk−1}, PoNet+ firstly concatenates

results at different depths:

FC
k−1 = Concat(X0, X1, X2, · · ·Xk−1) (22)

Then, a convolutional layer with ReLU is also employed

to fuse cross-depth features to obtain the input for the next

stage.

XIn
k = ReLU(WF

k−1 ∗ F
C
k−1 + bFk−1) (23)

where XIn
k means the input feature for the kth optimiza-

tion stage. Acquiring various information from cross-depth

features, XIn
k can represent more comprehensive spectral

information from shallow and deep features, which is bene-

ficial to the subsequent optimization.

6.8.4 Spectral Grouping

Spectral grouping is achieved by grouping bands with

spectral relevance according to spectral response functions

(SRFs). The spectral grouping is used to avoid recon-

struction distortion caused by the excessive spectral differ-

ence between different channels. Nevertheless, it seems in-

evitable that there still will be some differences between

bands in the same group. The proposed strategy ensures

that intra-group bands reconstruction is determined by the

same combination of multispectral channels. By roughly

representing spectral relevance from the similarity of imag-

ing according to spectral response functions, SRF-guided

convolutional layers don’t have to be adjusted for the same

sensor, which improves the generalization of this module.

Note that, PoNet is a universal network presented to ad-

dress generalized spectral super-resolution, including clas-

sical spectral super-resolution (sSR), FusSR, and PansSR.

So, we only employed the PoNet in sSR. A representative

diagram of the method is shown in Fig. 13.

• Training

We directly read 900 images into “.h5” file with the

original size (512×482). And in each iteration, we just

input one image pairs. Training loss is ℓ1 loss function.

• Testing The proposed method is an end-to-end net-

work, we just generate the recovered hyperspectral im-

ages by feeding the test image into the trained model.
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Figure 15. Representative training scheme for proposed method.

6.9. star­spectral: U­net with Learnable Inverse
RGB Filter

We use 3 fully-connected layer to construct inverse R, G,

B filter for 31 channels. The output of each fully-connected

layer has size of (batch-size, 31) and it represents inverse R

or G or B filter to reconstruct spectral information from R

or G or B channel. After we get the output of each fully-

connected layers, we apply dot-product between inverse fil-

ter and corresponding color channel. After that, we sum-

mate dot-producted output.

The proposed inverse RGB filter preserves input spatial

resolution. Therefore, if the spatial resolution of the input

image is same as target image. Then we look forward to

neural network learns to reconstruct spectral information

much easily.

• Training

Our training is composed of two parts to train each

goal. First, we reconstruct RGB ground truth data

by applying learnable RGB filter to spectral ground

truth. Then we trained DenseNet to translate input im-

age to RGB ground truth. After that, we fixed pre-

trained DenseNet, we trained inverse RGB filter to re-

construct channel-wise information by giving L1 loss

between spectral ground truth. Fig. 15 describes the

architecture of the proposed method. The complexity

increases due to additional usage on inverse RGB filter

compared to using a simple CNN model.

• Testing

After training, we directly apply trained model to

validation RGB data and evaluate PSNR, SSIM, and

MRAE to see how the trained network reconstruct

spectral information well.

• Ensembles and fusion strategies

We ensemble CNN(DenseNet) to reconstruct spatial

information and inverse RGB filter to reconstruct spec-

tral information. By assembling these architectures,

both networks are easy to reconstruct hyper-spectral

image much easily.

6.10. NTU607QCO­Spectral: Knowledge transfer­
ring and edge preserving loss functions for
spectral reconstruction

We use the MSBDN [16] as backbone. We adjust the

final output layer as 31 to fit this track. Furthermore, dur-

ing training, we apply the knowledge transfer [14, 55] tech-

nique to improve the model performance. That is, we first

train several model with different initialization and opti-

mizer. And then we fine-tune all model and add the loss

to regularize the model. We not only desire the predicted

images are identical to ground truth but also the average

predictions. The loss functions Ltransfer for certain model

j is written as:

Ltransfer(yj , ŷ) = L(yj , ŷ) + L(yj ,

∑n

0 ŷi

n
) (24)

where L means the edge-preserving loss function, yi means

the predictions from model i, and the ŷ is the ground truth

image. With learn multiple characteristics from different

model, the performance of single model can be increased.

We use loss function in [15, 48] as edge preserving loss

function.

Training. During the training phase, we randomly crop the

image as 512x512 to optimize two models. We use Adamw

and SGD optimizer with the learning rate of 0.0001 and the

learning rate decrease of 0.1 every 1000 epochs. The total

epoch is 10000 and takes 7 days. We set the batch size as

10. And then we use the knowledge transfer [55] to finetune

all model. We set learning rate of 0.00001 for 1000 epochs

and takes 2 days.

Testing. We use two models for evaluation. Similarly to

training phase, the images are divided into two 512x512

images with overlaying pixels. We predict two images and

then merge them.

6.11. OPT­KLSIT: An interpretable hyperspectral
reconstruction network from RGB images

For high-quality spectral reconstruction from RGB im-

ages, we propose an interpretable mixed regression net-

work (IMRnet), as shown in Figure 16. Specifically, based

on the fact that natural scene hyperspectral is essentially

on a low-dimensional manifold [25], we constructed a 3d-

encoder network that could encode hyperspectral into a low-

dimensional embedding space. The key of this 3d-encoder

is to use three 3*3*200 3d-convolution kernels to simulate

spectral response function with physical characteristics to

reduce the dimension. Then, we use a decoder network with

a self-attentional mechanism [30] to recover the original

hyperspectral data from 3D embedding space. See the 3d-

encoder module and SA-decoder module in Figure 16. The
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Figure 16. An Interpretable mixed Regression Network.

whole autoencoder network uses the residual network with

PReLU activation function as the basic architecture to sta-

bilize the network. Next, we use an modified Unet network

(GB-Unet) with hyperparameter bias and gain to complete

the nonlinear transformation from RGB to the correspond-

ing 3D embedding space. Finally, the SA-decoder module

is combined to complete the reconstruction from RGB to

hyperspectral.

It is worth noting that only hyperspectral data as input in

our autoencoder, which is useful for robust reconstruction.

In other words, the optimized 3d-encoder and SA-decoder

network are equivalent to a feature extractor and can be ap-

plied to any hyperspectral data. In the reconstruction stage,

only the mapping of RGB to 3D embedding space needs to

be optimized. This greatly reduces the workload for spec-

tral reconstruction from RGB Images. More importantly,

it avoids solving complex three-to-many mapping problems

directly and transforms complex problems into simple con-

vex problems of 3 to 3.

• Training

In the training process, we use MRAE Loss to op-

timize the network. What’s more, we use the joint

training method of freezing and unfreezing to fur-

ther improve the reconstruction accuracy. Specifi-

cally, the 3d-encoder and SA-decoder are first trained

jointly. Then, the GE-Unet network is combined with

the SA-decoder. Next, the optimized SA-decoder pa-

rameters are imported and frozen. Begin to optimize

the GE-Unet to realize the nonlinear conversion from

RGB to 3D-embedded space. Finally, when the loss

is reduced to a certain precision, unfreeze the SA-

decoder network to further optimize the whole net-

work. This training process can effectively guide the

development of the reconstructed network towards the

low-dimensional representation based on mathemati-

cal model. The accuracy is higher than that of direct

blind training under the same parameters.

The input RGB image and output spectral images were

randomly cropped to a 64×64 region, then rescaled to

[0, 1]. The parameters of network are Xavier initial-

ized. The learning rate is initialized as 0.0001 the poly-

nomial function is set as the decay policy with power

= 1.5. For optimization, the Adam [26] optimizer was

used with β1 = 0.5, β2 = 0.999 and a batch size of

36. Reflection padding was used in the system to avoid

border artifacts. All the experiments were performed

on 1 NVIDIA RTX 3090 GPU.

• Testing

Testing Instead of cropping image into small blocks,

the complete RGB image is used to get a complete

spectral image on an NVIDIA RTX 3090. The IMRnet

takes 0.67s per image

• Ensembles and fusion strategies

Our three-step training method can effectively guide

the development of the reconstructed network to the

low-dimensional representation based on mathemati-

cal model. Under the same parameters, the training

accuracy of this method is higher than that of direct

blind training.

We used AWAN [30], the 2020 champion, and the gen-

eral Unet network [41] as a baseline.

6.12. Image Lab: Dual Residual Channel Attention
Net for Spectral Reconstruction

We proposed a novel deep dual residual channel atten-

tion(DRCA) network is presented for spectral reconstruc-

tion from RGB images shown in Figure 17. The Network

has two-level feature extraction mechanisms. The input im-

age is passed to the Coordinate convolution layer to improve

the spatial information. The output of the coordinate con-

volution layer is connected with a densely connected block

and a sequence of six DRCA blocks. The densely connected

block contains the four convolution blocks, and the output

channel of the convolution layer is set as 128. The block di-

agram of the DRCA block is shown in the Figure 18. In the

second level, the input of the DRCAi block and DRCAi+1

are added together. The same steps applied to the remaining

DRCA blocks. The DRCAn connected to the convolution

layer with 128 channels. The output of level one features

and level two features output fused. The spectral bands are

generated from the fused features.

• Training

The shared data set consists of 899 images. We split

into 675 images for training and 224 images for vali-

dation. Training images were cropped into sub-image
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Figure 17. Architecture for Spectral Reconstruction

Figure 18. Dual Residual Attention Block

patches with a resolution of 64 × 64 and a batch size of

8 was selected empirically for stochastic gradient de-

cent. The model is trained with 10784 training patches

and 3584 validation patches. We used Adam opti-

mizer with a learning rate of 0.001 to 0.00001 and 500

epochs for training the model. The proposed network

was trained with the IntelCore i7 processor, RTX 2060

GPU, 8GB RAM, Platform keras

• Testing

We extracted the patches from the test image in a non-

overlapping mode and predicted them with a model.
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