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Abstract

In this paper we propose a strategy for semi-supervised image classification that leverages unsuper-
vised representation learning and co-training. The strategy, that is called CURL from Co-training
and Unsupervised Representation Learning, iteratively builds two classifiers on two different views
of the data. The two views correspond to different representations learned from both labeled and
unlabeled data and differ in the fusion scheme used to combine the image features.

To assess the performance of our proposal, we conducted several experiments on widely used
data sets for scene and object recognition. We considered three scenarios (inductive, transductive
and self-taught learning) that differ in the strategy followed to exploit the unlabeled data. As image
features we considered a combination of GIST, PHOG, and LBP as well as features extracted from a
Convolutional Neural Network. Moreover, two embodiments of CURL are investigated: one using
Ensemble Projection as unsupervised representation learning coupled with Logistic Regression,
and one based on LapSVM. The results show that CURL clearly outperforms other supervised and
semi-supervised learning methods in the state of the art.
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1. Introduction

Semi-supervised learning [1] consists in taking into account both labeled and unlabeled data
when training machine learning models. It is particularly effective when there is plenty of training
data, but only a few instances are labeled. In the last years, many semi-supervised learning
approaches have been proposed [2] including generative methods [3, 4], graph-based methods [5, 6],
and methods based on Support Vector Machines [7, 8]. Co-training is another example of semi-
supervised technique [9]. It consists in training two classifiers independently which, on the basis
of their level of confidence on unlabeled data, co-train each other trough the identification of good
additional training examples. The difference between the two classifiers is that they work on
different views of the training data, often corresponding to two feature vectors. Pioneering works
on co-training identified the conditional independence between the views as the main reason of
its success. More recently, it has been observed that conditional independence is a sufficient, but
not necessary condition, and that even a single view can be considered, provided that different
classification techniques are used [10].

In this work we propose a semi-supervised image classification strategy which exploits unlabeled
data in two different ways: first two image representations are obtained by unsupervised represen-
tation learning (URL) on a set of image features computed on all the available training data; then
co-training is used to enlarge the labeled training set of the corresponding co-trained classifiers
(C). The difference between the two image representations is that one is built on the combination
of all the image features (early fusion), while the other is the combination of sub-representations
separately built on each feature (late fusion). This strategy has the advantages that only a set of
features must be defined and in the co-training the different fusion schemes are used as different
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Figure 1: Schema of the proposed strategy.

views. Moreover, by exploiting both representation learning and co-training, classification can be
effectively performed when very few labeled data are available. We call the proposed strategy
CURL from the combination of C and URL components. The schema of CURL is illustrated in
Fig. 1.

In standard co-training each classifier is built on a single view, often corresponding to a single
feature. However, the combination of multiple features is often required to recognize complex visual
concepts [11, 12, 13]. Both the classifiers built by CURL exploit all the available image features
in such a way that these concepts can be accurately recognized. We argue that the use of two
different fusion schemes together with the non-linear transformation produced by the unsupervised
learning procedure, makes the two image representations uncorrelated enough to allow an effective
co-training of the classifiers.

The proposed strategy is built on two base components: the unsupervised representation learn-
ing, and the classifier used in co-training. By changing these two components we can have different
embodiments of CURL that can be experimented and evaluated.

To assess the merits of our proposal we conducted several experiments on widely used data sets:
the 15-scene data set, the Caltech-101 object classification data set, and the ILSVCR 2012 data set
which contains 1000 different classes. We considered a variety of scenarios including transductive
learning (i.e. unlabeled test data available during training), inductive learning (i.e. test data not
available during training), and self-taught learning (i.e. test and training data coming from two
different data sets). In order to verify the efficacy of the CURL classification strategy, we also
tested two embodiments: one that uses Ensemble Projection unsupervised representation coupled
with Logistic Regression classification, and one based on LapSVM semi-supervised classification.
Moreover different variants of the embodiments are evaluated as well. The results show that CURL
clearly outperforms other semi-supervised learning methods in the state of the art.

Summarizing, the contributions of this work are: the proposal of a new classification strategy
based on unsupervised representation learning; the use of a single set of visual features to create
two new image representations; the use of Early and Late feature fusion schemes in a co-training
workflow to allow effective classification in presence of few labeled data; extensive experiments to
demonstrate the effectiveness of the proposed classification strategy under inductive, transductive
and self-taught scenarios on different image datasets of heterogeneous contents and cardinalities.



2. Related Work

There is a large literature on semi-supervised learning. For the sake of brevity, we discuss
only the paradigms involved in the proposed strategy. More information about these and other
approaches to semi-supervised learning can be found in the book by Chapelle et al. [1].

2.1. Co-training

Blum and Mitchell proposed co-training in 1998 [9] and verified its effectiveness for the classifi-
cation of web pages. The basic idea is that two classifiers are trained on separate views (features)
and then used to train each other. More precisely, when one of the classifiers is very confident
in making a prediction for unlabeled data, the predicted labels are used to augment the train-
ing set of the other classifier. The concept has been generalized to three [14] or more views
[15, 16]. Co-training has been used in several computer vision applications including video anno-
tation [17], action recognition [18], traffic analysis [19], speech and gesture recognition [20], image
annotation [21], biometric recognition [22], image retrieval [23], image classification [24, 25], object
detection [19, 26], and object tracking [27].

According to Blum and Mitchell, a sufficient condition for the effectiveness of co-training is
that, beside being individually accurate, the two classifiers are conditionally independent given the
class label. However, conditional independence is not a necessary condition. In fact, Whang and
Zhou [28] showed that co-training can be effective when the diversity between the two classifiers
is larger than their errors; their results provided a theoretical support to the success of single-
view co-training variants [29, 30, 31] (the reader may refer to an updated study from the same
authors [32] for more details about necessary and sufficient conditions for co-training).

2.2. Unsupervised representation learning

New image representations can be efficiently learned if a large amount of labeled data is available
[33, 34, 35]. For example, the features extracted from the ConvNets [34] are widely used in different
application scenarios. In the last years, as a consequence of the success of deep learning frameworks
we observed an increased interest in methods that make use of unlabeled data to automatically
learn new representations. In fact, these has been demonstrated to be very effective for the pre-
training of large neural networks [36, 37]. Restricted Boltzmann Machines [38] and auto-encoder
networks [39] are notable examples of this kind of methods. The tutorial by Bengio covers in detail
this family of approaches [40].

A conceptually simpler approach consists in using clustering algorithms to identify frequently
occurring patterns in unlabeled data that can be used to define effective representations. The
K-means algorithm has been widely used for this purpose [41]. In computer vision this approach is
very popular and lead to the many variants of bag-of-visual-words representations [42, 43, 44, 45].
Briefly, clustering on unlabeled data is used to build a vocabulary of visual words. Given an
image, multiple local features are extracted and for each of them the most similar visual word is
searched. The final representation is a histogram counting the occurrences of the visual words.
Sparse coding can be seen as an extension of this approach, where each local feature is described
as a sparse combination of multiple words of the vocabulary [46, 47, 48]. Spectral clustering can
build a more discriminating dissimilarity measure between data points by using kernel functions
e.g [49, 50, 51].

Another strategy for unsupervised feature learning is represented by Ensemble Projection
(EP) [52]. From all the available data (labeled and unlabeled) Ensemble Projection samples a
set of prototypes. Discriminative learning is then used to learn projection functions tuned to the
prototypes. Since a single set of projections could be too noisy, multiple sets of prototypes are
sampled to build an ensemble of projection functions. The values computed according to these
functions represent the components of the learned representations.

LapSVM [8] can be seen as an unsupervised representation learning method as well. In this
case the learned representation is not explicit but it is implicitly embedded in a kernel learned
from unlabeled data.



2.3. Fusion schemes

Combining multimodal information is an important issue in pattern recognition. The fusion of
multimodal inputs can bring complementary information from various sources, useful for improving
the quality of the image retrieval and classification performance [53]. The problem arises in defining
how these modalities are to be combined or fused. In general, the existing fusion approaches can
be categorized as early and late fusion approaches, which refers to their relative position from
the feature comparison or learning step in the whole processing chain. Early fusion usually refers
to the combination of the features into a single representation before comparison/learning. Late
fusion refers to the combination, at the last stage, of the responses obtained after individual
features comparison or learning [54, 55]. There is no universal conclusion as to which strategy is
the preferred method for for a given task. For example, Snoek et al. [54] found that late fusion
is better than early fusion in the TRECVID 2004 semantic indexing task, while Ayache et al.
[56] stated that early fusion gets better results than late fusion on the TRECVID 2006 semantic
indexing task. A combination of these approaches can also be exploited as hybrid fusion approach
[57].

Another form of data fusion is Multiple Kernel Learning (MKL). MKL has been introduced by
Lanckriet et al. [58] as extension of the support vector machines (SVMs). Instead of using a single
kernel computed on the image representation as in standard SVMs, MKL learns distinct kernels.
The kernels are combined with a linear or non linear function and the function’s parameters can be
determined during the learning process. MKL can be used to learn different kernels on the same
image representation or by learning different kernels each one on a different image representation
[59]. The former corresponds to have different notion of similarity, and to choose the most suitable
one for the problem and representation at hand. The latter corresponds to have multiple repre-
sentations each with a, possibly, different definition of similarity that must be combined together.
This kind of data fusion, in [55], is termed intermediate fusion.

3. The Proposed strategy: CURL

In the semi-supervised image classification setup the training data consists of both labeled
examples {&;, V} = {(x;, %)}/, and unlabeled ones X, = {x;}*", |, where x; denotes the feature
vector of image ¢, y; € {1,..., K} is its label, and K is the number of classes.

In this work, for each image ¢ a set of S different image features XES), s =1,...,5 is con-
sidered. Two views are then generated by using two different fusion strategies: early and late

fusion. In case of Early Fusion (EF), the image features are concatenated and then used to learn

a new representation x/ = go([x(-l), . ,XES)]) in an unsupervised way, where ¢(-) : R" — R™

(2
is a projection function. In case of Late Fusion (LF), an unsupervised representation ¢ (XES)) is

independently learned for each image feature and then the representations are concatenated to
s LF (1) (%)
obtain x/" = [p1(x;7), ..., ps(x;”7)].

(]

Using the learned EF and LF unsupervised representations, the two views are built: "7 =
{xPryl, A7 = {xPral and AP = {xPUE ), AT = {x}7}AY . Furthermore, two label
sets VP and Y*F are initialized equal to ).

Once the two views are generated, our method iteratively co-trains two classifiers ¢yp and ¢,
on them [9]. SVMs, logistic regressions, or any other similar technique can be used to obtain them.
The idea of iterative co-training is that one can use a small labeled sample to train the initial
classifiers over the respective views (i.e. ¢pr : A"" —= Y7 and ¢ : A7 = V7)), and then
iteratively bootstrap by taking unlabeled examples for which at least one of the classifiers is very
confident. The confident classifier determines pseudo-labels [60] that are then used as if they were
true labels to improve the other classifier [61]. The confidence scores depend on the classification
framework; for instance posterior probabilities can be used for this purpose if the classifiers provide
them.

Given the classifier confidence scores Wi" = ¢ (x7") and wi" = ¢, (x}"), the pseudo-labels

97" and g7 are respectively obtained as:

§;" = arg max w;|j] (1)



g;" = arg max w;"[j] (2)

In each round of co-training, the classifier ¢, chooses some examples in X;”" to pseudo-label

for ¢pr, and vice versa. For each class k, let us call X, the set of candidate unlabeled examples

to be pseudo-labeled for ¢5r. Each x, € &, must belong to the unlabeled set, i.e. x, € XFF,

has not to be already used for training, i.e. x, ¢ X”", and its pseudo-label has to be §/" = k.

Furthermore, ¢, » should be more confident on the classification of x, than ¢y, and its confidence
should be higher than a fixed threshold t;:

Vx, € Xyt Wik < willk],wiF[k] >t (3)
If no x, satisfying Eq. 3 are found, then the constraints are relaxed:
Vx, € X, : WfF[k/’] >ty, with 19 <t (4)

Non-maximum suppression is applied to add one single pseudo-labeled example for each class
by extracting the most confident x, € X,:

find x, € X, : w; [k] = argmjawaL»F[k] (5)
The selected x, and its corresponding pseudo-label g, are added to X*" and V" respectively. If
no x, satisfying Eq. 4 are found, then nothing is added to &}** and Y**.

Similarly, the classifier ¢ chooses some examples in X7 to pseudo-label for ¢, .. At the next
co-training round, two new classifiers ¢, and ¢, are trained on the respective views, that now
contain both labeled and pseudo-labeled examples. The complete procedure of the CURL method
is outlined in Algorithms 1-3.

The Unsupervised Representation Learning is done once, and its computational cost is domi-
nated by that of co-training which, in turn, mostly depends on the cost of the supervised training
steps. The number of these steps is linear in the number of co-training rounds, and their individual
cost increases with the number of pseudo-labels assigned.

4. Experiments

CURL is parametric with respect to the projection function ¢ used in the unsupervised rep-
resentation learning URL, and the supervised classification technique C used during to co-train
¢pr and ¢, . As first embodiment of CURL, we used Ensemble Projection [52] for the former
and logistic regression for the latter. Another embodiment, based on LapSVM (8] is presented in
Section 5.4.

4.1. Data sets

We evaluated our method on two data sets: Scene-15 (S-15) [43], and Caltech-101 (C-101)
[62]. Scene-15 data set contains 4485 images divided into 15 scene categories with both indoor and
outdoor environments. Each category has 200 to 400 images. Caltech-101 contains 8677 images
divided into 101 object categories, each having 31 to 800 images. Furthermore, we collected a
set of random images by sampling 20,000 images from the ImageNet data set [63] to evaluate
our method on the task of self-taught image classification. Since the current version of ImageNet
has 21841 synsets (i.e. categories) and a total of more than 14 millions images, there is a small
probability that the random images and images in the two considered data sets come from the
same distribution.

4.2. Image features

In our experiments we used the following three features: GIST [64], Pyramid of Histogram of
Oriented Gradients (PHOG) [65], and Local Binary Patterns (LBP) [66]. GIST was computed on
the rescaled images of 256 x 256 pixels, at 3 scales with 4, 8 and 8 orientations respectively. PHOG
was computed with a 2-layer pyramid and in 8 directions. Uniform LBP with radius equal to 1,
and 8 neighbors was used.

In Section 5.3 we also investigate the use of features extracted from a CNN [67] in combination
with the previous ones.



Algorithm 1: CURL

Data: Labeled data {X}, Y}, unlabeled data X,
Result: Classifiers ¢ (-) and ¢, (-)

begin
[XPRXEF X XL = computeURL(A, X))
yEF — yLF — y

train classifier ¢ppp : 77 = Y&F

train classifier ¢, : X7 — Y&

for co-training round c=1:C do

initialize WZF = W = YPF = YIF = ()
foreach x7" ¢ A" do

add w/" = ¢pr(x]") to WP

.....

foreach x;* € X7 do
add w;" = ¢, (x;") to WHF
add §-" = arg max wX"[j] to YEF
| 71=1,...,.K
for class number k =1: K do
for (vy,v9) € {(EF,LF), (LF,EF)} do
find {X,, ¥} with
X, CXU, X NX =0, Y2 C Y2 st
Vx, € X, and V§?> € Y¥2, hold:
032 =k, wit[k] < wi2[k], wiz[k] >t
if X, =0 then
find {X,, Y} with
X, CX, X NA =0, Y2 Y% st
Vx, € X, and V{2 € Y?2, hold:
ji2 =k, wi2[k] >t
[X,,)?| =nonMaxSuppr(X,,)’? W2
XU = XU X,
Ly =yru
train classifier ¢pp @ A = Y&F
| train classifier ¢, : X7 — YIF

Algorithm 2: compute URL

Data: Labeled data A} and unlabeled data X,
Result: Unsup. representations XZEF,XfF7XlLF,XuLF
begin

Learn EF representation ¢ on {[xl(-l), oo ,xz(-s)]}f:lU

2 = o({xV, . xR )

?

1 S
X = o, XY )
Lo p representations ©, on {XES)}zIS_lU XZLF — {[SOI(XZ(-I))’ o8 (XES))] iL:l
S
27 = (o), s (Y,




Algorithm 3: non-maximum suppression

Data: X, Y, W,k
Result: X*,)A)*
begin
find {X,, ).} with X, € X, Y, € Y s.t.:
w, k] = argmax w;[k], with w; € W
J

4.3. Ensemble projection

Differently from others semi-supervised methods that train a classifier from labeled data with
a regularization term learned from unlabeled data, Ensemble Projection [52] learns a new image
representation from all known data (i.e. labeled and unlabeled data), and then trains a plain
classifier on it.

Ensemble Projection learns knowledge from T different prototype sets P! = {(s!, c!)}i",, with
te{l,...,T} where st € {1,..., L+ U} is the index of the i—th chosen image, ¢! € {1,...,7} is
the pseudo-label indicating to which prototype s! belong to. 7 is the number of prototypes in P?,
and n is the number of images sampled for each prototype. For each prototype set, m hypotheses
are randomly sampled, and the one containing images having the largest mutual distance is kept.

A set of discriminative classifiers ¢*(-) is learned on P!, one for each prototype set, and the
projected vectors ¢!(x;) are obtained. The final feature vector is obtained by concatenating these
projected vectors.

Following [52] we set T = 300, » = 30, n = 6, m = 50, using Logistic Regression (LR) as
discriminative classifier ¢f(-) with C' = 15.

Within CURL, Ensemble Projection is used to learn both Early Fusion and Late Fusion un-
supervised representations. In the case of Early Fusion (EF), the feature vector x; is obtained

concatenating the S different features available x; = [xgl), N ,XES)], s =1,...,5. In the case

of Late Fusion (LF), the feature vector x; is made by considering just one single feature at time
X; = xgs). For both EF and LF, the same number T of prototypes is used in order to assure that
the unsupervised representations have the same size. The posterior probabilities computed by the

LR classifier on the feature vector x; are used as the confidence scores w;.

4.4. Ezxperimental settings

We conducted two kinds of experiments: (1) comparison of our strategy with competing
methods for semi-supervised image classification; (2) evaluation of our method at different number
of co-training rounds. We considered three scenarios corresponding to three different ways of using
unlabeled data. In the inductive learning scenario 25% of the unlabeled data is used together with
the labeled data for the semi-supervised training of the classifier; the remaining 75% is used as an
independent test set. In the transductive learning scenario all the unlabeled data is used during
both training and test. In the self-taught learning scenario the set of unlabeled data is taken from
an additional data set featuring a different distribution of image content (i.e. the 20,000 images
from ImageNet); all the unlabeled data from the original data set is used as an independent test
set.

As evaluation measure we followed [52] and used the multi-class average precision (MAP),
computed as the average precision over all recall values and over all classes. Different numbers
of training images per class were tested for both Scene-15 and Caltech-101 (i.e. 1, 2, 3, 5, 10,
and 20). All the reported results represent the average performance over ten runs with random
labeled-unlabeled splits.

The performance of the proposed strategy are compared with those of other supervised and
semi-supervised baseline methods. As supervised classifiers we considered Support Vector Ma-
chines (SVM). As semi-supervised classifiers, we used LapSVM [68, 8]. LapSVM extend the SVM
framework including a smoothness penalty term defined on the Laplacian adjacency graph built
from both labeled and unlabeled data. For both SVM and LapSVM we experimented with the
linear, RBF and x? kernels computed on the concatenation of the three available image features
as in [52]. The parameters of SVM and LapSVM have been determined by a greedy search with



a three-fold cross validation on the training set. We also compared the present embodiment of
CURL against Ensemble Projection coupled with a logistic regression classifier (EP+LR) as in
[52].

5. Experimental results

As a first experiment we compared CURL against EP+LR, and against SVMs and LapSVMs
with different kernels. Specifically, we tested the two co-trained classifiers operating on early-
fused and late-fused representations, both employing EP for URL and LR as classifier C, that
we call CURL-EF(EP+LR) and CURL-LF(EP+LR) respectively. We also included a variant
of the proposed method. It differs in the number of pseudo-labeled examples that are added at
each co-training round. The variant skips the non-maximum suppression step, and at each round,
adds all the examples satisfying Eq. 3. We denote the two co-trained classifiers of the variant as
CURL-EF, (EP+LR) and CURL-LF,, (EP+LR).

Fig. 2 shows the classification performance with different numbers of labeled training images
per class, in the three learning scenarios for both the Scene-15 and Caltech-101 data sets. For
the CURL-based methods we considered five co-training rounds, and the reported performance
correspond to the last round. For SVM and LapSVM only the results using x? kernel are reported,
since they consistently showed the best performance across all the experiments. Detailed results

Scene-15 inductive Scene-15 transductive Scene-15 self-taught

@
i
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Figure 2: Mean Average Precision (MAP) varying the number of labeled images per class, obtained on the Scene-15
data set (first row), and on the Caltech-101 data set (second row). Three scenarios are considered: inductive learning
(left column), transductive learning (middle column) and self-taught learning (third column). Note that inductive
learning on the Caltech-101 data set is limited to 5 labeled images per class because otherwise for some classes there
wouldn’t be enough unlabeled data left for both training and evaluation.

for all the tested baseline methods, and for the CURL variants across the co-training rounds are
available in Tables 1, 2 and 3.

The behavior of the methods is quite stable with respect to the three learning scenarios, with
slightly lower MAP obtained in the case of self-taught learning. It is evident that our strategy out-
performed the other methods in the state of the art included in the comparison across all the data
sets and all the scenarios considered. Among the variants considered, CURL-LF(EP+LR) demon-
strated to be the best in the case of a small number of labeled images, while CURL-LF,,(EP+LR)
obtained the best results when more labeled data is available. Classifiers obtained on early-fused
representations performed generally worse than the corresponding ones obtained on late-fused rep-
resentations, but they are still uniformly better than the original EP+LR Ensemble Projection



Table 1: Mean Average Precision (MAP) of the baseline algorithms, varying the number of labeled images per class
in the three learning scenarios considered: inductive (IND), transductive (TRD), and self-taught (ST).

Scene-15 Caltech-101

# img | method IND TRD ST # img | method IND TRD ST
SVMyiy, 227 223 223 SVMyin, 6.0 6.3 6.3
SVM,4f 26.5 258 25.8 SVM,p¢ 7.1 73 13

1 SVM, 29.5  28.7 28.7 1 SVM, 2 9.5 9.6 9.6
LapSVMy;,, | 28.1  29.1 26.4 LapSVMy;, 9.2 9.6 9.1
LapSVM,;; | 28.8  29.8 26.7 LapSVM, ¢ 9.8 102 9.6
LapSVM,. | 323  33.7 30.2 LapSVM,. | 10.2  10.7 10.0
EP+LR 38.3 393 324 EP+LR 8.3 8.7 84
SVMyir, 27.4 26.9 26.9 SVMyin 9.1 9.2 9.2
SVM, ¢ 329 313 313 SVM,pp 10.1 9.8 98
2 SVM, 354 349 349 5 SVM, 14.1 137 137
LapSVMy, | 33.7 349 312 LapSVMy, | 12.3 128 121
LapSVM,;¢ | 34.6  35.7 32.5 LapSVM,p | 127  13.3 124
LapSVM,. 38.1 39.6 35.7 LapSVM, 2 14.6 14.9 14.5
EP+LR 44.6 47.3  41.0 EP+LR 12.6 13.1 125
SVMyiy, 30.0 30.2 302 SVMyin 10.7  10.8 10.8
SVM, ¢ 36.5 36.7 36.7 SVM,p¢ 11.7 11.6 11.6
3 SVM, 2 39.9 393 393 3 SVM, 2 16.7 16.3 16.3
7| LapSVMy;,, | 37.6  38.6 36.4 “ | LapSVMy;,, | 13.8 143 135
LapSVM,,; | 37.7 389 37.2 LapSVM,; | 14.0  14.6 13.9
LapSVM,= | 42.8 439 416 LapSVM,. | 17.9 183 17.6
EP+LR 50.8 532 485 EP+LR 155 15.7 153
SVMyin 35.5 352 352 SVMuin 134 133 133
SVM, ¢ 43.5 428 428 SVM,p¢ 149 146 146
5 SVM, 46.5  46.1 46.1 5 SVM, 20.7 205 20.5
LapSVMy;,, | 43.4 445 435 LapSVM;;,, | 16.3  16.6  16.0
LapSVM,;p | 43.8  44.7 440 LapSVM,; | 16.8  17.1 16.6
LapSVM,- | 49.2  50.5 49.3 LapSVM,- | 21.7 221 214
EP+LR 55.6  58.6 55.2 EP+LR 194 200 19.5
SVMyir, 43.8  43.7 43.7 SVMyin - 173 173
SVM,p¢ 51.9 51.3 51.3 SVM,p¢ - 19.2 19.2
10 SVM, 2 55.5 55.2  55.2 10 SVM, - 26.0 26.0
LapSVMy;,, | 51.4 525 52.3 LapSVMy;, - 205 201
LapSVM,;; | 524  53.1 53.0 LapSVM, 4 - 216 212
LapSVM,. | 56.6 57.4 57.2 LapSVM, . - 281 275
EP+LR 62.8 644 629 EP+LR - 260 25.2
SVMyin 50.1  50.3 50.3 SVMuin - 197 197
SVM, ¢ 574 571 57.1 SVM,4¢ - 221 221
15 SVM, 2 60.7 60.6 60.6 15 SVM, 2 - 291 291
LapSVMy;, | 55.1  56.0 55.5 LapSVMy;, - 229 225
LapSVM,;r | 57.8  58.7 58.3 LapSVM,¢ - 240 235
LapSVM,. | 60.9 61.6 61.2 LapSVM,2 - 313 309
EP+LR 66.0 67.9 67.3 EP+LR - 295 29.0
SVMyiy, 54.0 535 53.5 SVMyirn - 215 215
SVM,4p 60.4  60.3 60.3 SVM,pp - 242 242
20 SVM, 2 64.2 64.1 64.1 20 SVM, - 315 315
LapSVMy;,, | 58.3  58.7 58.6 LapSVMy;, - 246 240
LapSVM,4 | 60.8  61.4 61.2 LapSVM, ¢ - 268 26.1
LapSVM,. | 64.5 654 65.1 LapSVM, - - 334 327
EP+LR 67.8 69.7 69.1 EP+LR - 319 31.0




Table 2: Mean Average Precision (MAP) of the CURL variants, in the (EP+LR) embodiment, varying the number of
labeled images per class at the different co-training rounds obtained on the Scene-15 data set in the three learning
scenarios considered: inductive (left), transductive (middle), and self-taught (right). For clarity, the (EP+LR)
suffixes have been omitted.

# co-train round # co-trai round # co-train round
# img | method 0 1 2 # img | method 0 1 2 1 5 # img | method 0 1 2 1
CURL-EF 383 41.0 41.1 411 41.1 CURL-EF 39.3 41.7 419 419 419 419 CURL-EF 324 348 352 353 353
CURL-LF 400 424 438 4 443 CURL-LF 308 426 438 441 442 444 CURL-LF 36.7 386 39.6 30.7 308
1 CURL-EF&LF - 433 437 44.0 1 CURL-EF&LF - 435 439 441 441 442 1 CURL-EF&LF - 384 389 389 39.0
CURL-EF, 383 384 385 383 CURL-EF, 303 389 389 389 387 387 CURL-EF, 324 328 328
CURL-LF, 400 39.9 399 39.6 CURL-LF, 308 309 399 307 306 303 CURL-LF, 36.7 348 348
CURL-EF&LF, - 404 404 40.1 CURL-EF&LF,, - 404 404 404 402 40.0 CURL-EF&LF, - 35.5 35.6
CURL-EF 5 463 46.4 46.6 CURL-EF 473 49.2 49. 49.7  49.7 CURL-EF 41.0 42.5 42.6
CURL-LF 50.2 50.7 51.1 CURL-LF 48.7  50.6 52.0 521 CURL-LF 45.4 47.6 475
, | CURL-EF&LF 50.0 502 5 | CURL-EF&LF - 512 520 5 | CURL-EF&LE - 46.5 46.6
CURL-EF, 44.7 CURL-EF,, 47.3 474 CURL-EF, 41.0 427 425
CURL-LF, 8.8 CURL-LF, 487 493 CURL-LF, 454 442 437
CURL-EFLLE, 48.0 CURL-EF&LF,, - 496 CURL-EF&LF, - 450 447
CURL-EF 522 CURL-EF 532 54 CURL-EF 187 05 495
CURL-LF 56.2 CURL-LF 54.8  55.8 57.5 CURL-LF 53.4 54.5 54.4
5 | CURL-EF&LF 55.7 4 | CURL-EF&LF - 564 574 5 | CURL-EF&LE - 536 536
CURL-EF, 525 CURL-EF, 532 534 522 CURL-EF, 485 506 50.6
CURL-LF,, 55.3 CURL-LF,, 54.8  55.4 53.7 CURL-LF,, 53.4 523 52.0
CURL-EF&LF, 55.2 CURL-EF&LF, - 558 53.9 CURL-EF&LF, - 52.9 526
CURL-EF 56.2 CURL-EF 586 591 5.2 CURL-EF 552 555 555
CURL-LF 59.3 CURL-LF 60.3 61.3 61.9 CURL-LF 59.4 60.0  60.1
- | CURL &LF 59.1 - | CURL-EF&LF - 615 61.8 . | CURL-EF&LF - 59.4  59.4
? | CURL-EF,, 57.7 ? | CURL-EF, 59.6 50.7 ° | CURL-EF,, 55.2 575 575
CURL-LF,, 59.8 CURL-LF, 61.8 615 CURL-LF, 59.4 50.6
CURIL- &LF,, 59. CURL-EF&LF,, - 619 61.3 CURL-EF&LF, - 59.8 .7
CURL-EF 63.2 CURL-EF 644 64.6 64.7 CURL-EF 62.9 63.1 1
CURL-LF 66.6 CURL-LF 66.6 67.0 67.6 CURL-LF 66.0 66.7 66.7
10 | CURL-EF&LE 66.4 10 | CURL-EF&LF - 671 67.4 10 | CURL-EF&LE - 66.7  66.7
CURL-EF,, 65.3 CURL-EF, 644 66.2 675 CURL-EF, 62.9 65.7 6.0
CURL-LF, 67.8 CURL-LF, 66.6 685 69.0 CURL-LF, 66.0 67.3 67.5 67.6
CURL-EF&LE, 67.8 CURL-EF&LF, - 684 69.0 CURL-EF&LF, - 67.6 67.7 67.8
CURL-EF 6.1 CURLEF 679 650 8.0 CURL-EF 673 675 615 675
CURL-LF 69.6 CURL-LF 701 705 710 CURL-LF 705 709 7L1 712
15 | CURL-EF&LR 69.3 694 695 15 | CURL-EF&LF - 705 708 15 | CURL-EF&LE - 710 TLL 712
“ | CURL-EF,, 68.3 68.7 68.8 CURL-EF,, 67.9 69.5 70.9 ? | CURL-EF,, 67.3 69.8 70.1 70.2
CURL-LF, 70.9 710 709 CURL-LF, 701 717 723 CURL-LF, 705 711 713 7L
CURL-EF&LF, 708 70.9 709 CURL-EF&LF,, - 7T 724 CURL-EF&LF, - 715 TLT 718
CURL-EF 67.9 679 679 CURL-EF 69.7 698 69.8 CURL-EF 69.1 692 692 69.2
CURL-LF 713 71.5 T1.6 CURL-LF 72.1 72.6 CURL-LF 72.3 724 725 726
50 | CURL-EF&LE 71.2 712 713 50 | CURL-EF&LE - 123 724 50 | CURL-EF&LE - 726 727 727
CURL-EF, 69.8 702 703 “ | CURL-EF, 69.7 712 723 CURL-EF, 69.1 715 TLT 718
CURL-LF,, 72.4 725 725 CURL-LF,, 72.1 733 73.7 CURL-LF,, 72.3 727 728 728
CURL-EF&LF, 72.2 724 724 CURL-EF&LF, - 133 738 CURL-EF&LF, - 732 732 733

Table 3: Mean Average Precision (MAP) of the CURL variants, in the (EP4+LR) embodiment, varying the number of
labeled images per class at the different co-training rounds obtained on the Caltech-101 data set in the three learning
scenarios considered: inductive (left), transductive (middle), and self-taught (right). For clarity, the (EP+LR)
suffixes have been omitted.

# co-train round # co-train round # co-train round
# img | method 0 1 2 3 4 5 # img | method 0 1 2 3 4 5 # img | method 0 1 2 3 4
CURL-EF 83 104 105 105 105 10.5 CURL-EF 87 11.1 11.2 11.2 11.2 11.2 CURL-EF 8.4 9.3 9.3 9.2 9.2
CURL-LF 101 116 118 118 118 118 CURL-LF 105 122 124 124 124 124 CURL-LF 107 114 113 112 111
1 CURL-EF&LF - 115 116 11.6 11.6 116 1 CURL-EF&LF - 121 122 122 122 122 1 CURL-EF&LF - 109 108 10.7 10.7
CURL-EF, 83 83 85 85 88 88 CURL-EF, 87 88 88 88 89 89 CURL-EF, 84 84 84 84 84
CURL-LF, 101 103 103 106 107 10.7 CURL-LF, 105 105 105 106 106 10.6 CURL-LF, 107 107 107 107 107
CURL-EF&LF,, - 9.5 9.6 9.8 10.0 10.1 CURL-EF&LF,, - 9.8 9.8 9.9 9.9 9.9 CURL-EF&LF, - 101 10.1 10.1 10.1
CURL-EF 126 142 143 143 143 142 CURL-EF 131 144 145 146 145 145 CURL-EF 12.: 13.3 134 134
CURL-LF 153 163 163 163 162 162 CURL-LF 157 165 166 166 166 16.6 CURL-LF 15. 160 159 159
, | CURL-EF&LF - 159 159 158 158 158 5 | CURL-EF&LF - 160 161 161 161 16.0 , | CURL-EF&LF 154 154 154
CURL-EF,, 126 126 134 135 139 14.1 CURL-EF,, 13.1 131 138 139 141 142 “ | CURL-EF,, 12.5 125 125 125
CURL-LF, 153 157 159 162 16.3 CURL-LF, 157 162 164 165 166 16.6 CURL-LF, 15. 153 154 154
CURL-EF&LF, - 46 151 155 157 CURL-EF&LF,, - 152 155 157 158 158 CURL-EF&LF, 147 147 147
CURL-EF 55 168 169 169 16,9 CURL-EF 5.7 168 169 169 170 17.0 CURL-EF 5.3 160 160 160
CURL-LF 18.8 194 19.6 19.7 19.6 CURL-LF 19.0 195 198 19.8 CURL-LF 18.. 18.9 188 188
5 | CURL-EF&LF - 189 190 189 189 5 | CURL-EF&LF - 189 190 5 | CURL-EF&LF 184 184 184
CURL-EF,, 155 159 168 171 17.1 CURL-EF,, 15.7 162 172 CURL-EF,, 15.3 154 154 155
CURL-LF,, 18.8 5 198 CURL-LF,, 19.0 20.0 20.2 CURL-LF,, 18, 185 18.6 18.6
CURL-EF&LF, - 19.0 CURL-EF&LF, 19.3 CURL-EF&LF, 180 180 180
CURL-EF 104 204 CURL-EF 207 CURL-EF 19 199 109 199
23.7 CURL-LF 24.2 CURL-LF 23. 236 236 23.6
- 23.0 - | CURL-EF&LF 23.3 . | CURL-EF&LF 23.0 229 229
° 21.0 2| CURL-EF,, 218 ° | CURL-EF,, 19.5 197 198 198
244 CURL-LF,, 25.1 CURL-LF,, 23 235 236 23.6
23.7 CURL-EF&LF,, 24.3 CURL-EF&LF, 228 229 229
- - CURL-EF 26.4 CURL-EF 25. 25.5 255 25.5
CURL-LF - - e CURL-LF 304 CURL-LF 29. 209 209 299
1o | CURL-EF&LE B 10 | CURL-EF&LF 20.6 10 | CURL-EF&LE : 20.3
CURL-EF, - - e CURL-EF,, 27.8 CURL-EF, 25. 25. 26.1
CURL-LF, B CURL-LF, 318 CURL-LF, 29. 30.5 306 30.6
CURL-EF&LE, - - e CURL-EF&LF, 31.0 CURL-EF&LF, 20.9 30.0 30.0
CURL-EF - - - - = CURLEF 298 CURL-EF 29,4 293 293 293
CURL-LF - - .o CURL-LF 34.1 CURL-LF 33 341 341 341
15 | CURL-EF&LE - - e 15 | CURL-EF&LF 335 15 | CURL-EF&LF 337 336 336
° | CURL-EF,, .- * | CURL-EF, 311 ° | CURL-EF,, 29. 209 301 30.2
CURL-LF, - - - CURL-LF, 35.9 CURL-LF, 33 346 347 348
CURL-EF&LF, e CURL-EF&LF,, 35.0 35.1 CURL-EF&LF, 343 344 345
CURL-EF - - - - - - CURL-EF 321 321 CURL-EF 3L
CURL-LF - - - CURL-LF 365 36.6 CURL-LF 36
50 | CURL-EF&LE - - e 50 | CURL-EF&LE 36.1 36.0 50 | CURL-EF&LE
CURL-EF, S - e “ | CURL-EF, 33.8 340 CURL-EF, 31,
CURL-LF,, - - - - - - CURL-LF,, 38.4 38.6 CURL-LF,, 36.
CURL-EF&LF, - e CURL-EF&LF, 378 379 CURL-EF&LF,
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which can be considered as their non-cotrained version. SVMs and LapSVMs performed poorly
on the Scene-15 data set, but they outperformed EP+LR and some of the CURL variants on the
Caltech-101 data set.

Co-training allows to make good use of the early fusion representations that otherwise lead
to worse results than late fusion representations. In our opinion this happens because the two
views capture different relationships among data. This fact is visible in Fig. 3, which shows 2D
projections obtained by applying the t-SNE [69] method to GIST, PHOG, LBP features, their
concatenation, and their learnt early- and late-fused representations. Unsupervised representation

Figure 3: t-SNE 2D projections for the different features used. They are relative to the Scene-15 (top row) and
Caltech-101 (bottom row) data sets. Different classes are represented in different colors, and the same class with
the same color across the row.

learning allows t-SNE to identify groups of images of the same class. Moreover, representations
based on early and late fusion induce different relationships among the classes. For instance, in the
second row of Fig. 3f the blue and the light green classes have been placed close to each other on
the bottom right; in Fig. 3e, instead, the two classes are well separated. The difference in the two
representations explains the effectiveness of co-training and justifies the difference in performance
between CURL-EF(EP+LR) and CURL-LF(EP+LR).

As further investigation, we also combined the two classifiers produced by the co-training
procedure obtaining two other variants of CURL that we denoted as CURL-EF&LF(EP+LR)
and CURL-EF&LF,, (EP+LR). However, in our experiments, these variants did not caused any
significant improvement when compared to CURL-LF(EP+LR).

5.1. Performance across co-training rounds

Here we analyze in more details the performance of our strategy across the five co-training
rounds. Results are reported in Fig. 4 with lines of increasing color saturation corresponding to
rounds one to five. CURL-LF(EP+LR) is reported in red lines, while CURL-LF,,(EP+LR) in
blue. Results are reported in terms of MAP improvements with respect to EP+LR, which, we
recall, corresponds to CURL-EF(EP+LR) with zero co-training rounds. For CURL-LF(EP+LR),
performances always increase with the number of rounds. For CURL-LF,,(EP+LR), this is not
true on the Scene-15 data set with a small number of labeled examples. In CURL-LF,,(EP+LR)
each round of co-training adds all the promising unlabeled samples, with a high chance of including
some of them with the wrong pseudo-label. This may result in a ‘concept drift’, with the classifiers
being pulled away from the concepts represented by the labeled examples. This risk is lower on the
Caltech-101 (which tends to have more homogeneous classes than Scene-15) and when there are
more labeled images. The original CURL-LF(EP+LR) is more conservative, since each of its co-
training rounds adds a single image per class. As a result, increasing the rounds usually increases
MAP and never decreases it by an appreciable amount.

We observed the same behavior for CURL-EF(EP+LR) and CURL-EF,,(EP+LR). We omit
the relative figures for sake of brevity.

The plots confirm that CURL-LF(EP+LR) is better suited for small sets of labeled images,
while CURL-LF,,(EP+LR) is to be preferred when more labeled examples are available. The
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Figure 4: Performance obtained by CURL-LF(EP+LR) and CURL-LF, (EP+LR) varying the number of co-training
rounds. Performance are reported in terms of MAP improvement with respect to Ensemble Projection. Due to the
small cardinality of some classes, inductive learning on the Caltech-101 has been limited to five labeled images per
class.

representation learned from late fused features explains part of the effectiveness of CURL. In fact,
even CURL-LF(EP+LR) without co-training (zero rounds) outperforms the baseline represented
by Ensemble Projection.

5.2. Comparison with standard co-training

In this section we compare the proposed classification strategy with standard co-training [9].
Since standard co-training employs two views, we compare with all the six possible combinations
of features that we can generate by assigning one feature to each view or the concatenation of two
features to one view and a single feature to the other view.

The experimental results are reported in Fig. 5, for both the Scene-15 and Caltech-101 data
sets. Results are reported only for the classifier obtained by combining the scores on the two
views, since its performance are always better that those of each single-view classifier. We report
the results in the transductive scenario only.

It can be seen that the results obtained by CURL are better than those obtained by any
combination of features with standard co-training. In particular we can observe that on the
Scene-15 data set, the co-training variants using only PHOG features as a view obtain the worst
performance. On the Caltech-101 data set instead, the co-training variants using only GIST
features as a view obtain the worst performance. This is not surprising since GIST were specifically
designed to provide a rough description (i.e. the gist) of the scene.

5.8. Leveraging CNN features in CURL

In this further experiment we want to test if the proposed classification strategy works when
more powerful features are used. Recent results indicate that the generic descriptors extracted
from pre-trained Convolutional Neural Networks (CNN) are able to obtain consistently superior
results compared to the highly tuned state of the art systems in all the visual classification tasks
on various datasets [67]. We extract a 4096-dimensional feature vector from each image using
the Caffe [70] implementation of the deep CNN described by Krizhevsky et al. [34]. The CNN
was discriminatively trained on a large dataset (ILSVRC 2012) with image-level annotations to
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Figure 5: Mean Average Precision (MAP) varying the number of labeled images per class, obtained on the Scene-15

data set (left), and on the Caltech-101 data set (right). Results are compared with standard co-training on the
possible six subdivision of the GIST (G), PHOG (P), and LBP (L) features in the two views.

Scene-15 Caltech-101

Figure 6: 2D projections for the CNN features on the two data sets used: Scene-15 (left) and Caltech-101 (right).
Different classes are represented in different colors.

classify images into 1000 different classes. Briefly, a mean-subtracted 227 x 227 RGB image is
forward propagated through five convolutional layers and two fully connected layers. Features are
obtained by extracting activation values of the last hidden layer. More details about the network
architecture can be found in [34, 70].

We leverage the CNN features in CURL using them as a fourth feature in addition to the three
used in Section 4. The discriminative power of these CNN features alone can be seen in Fig. 6,
where their 2D projections obtained applying the t-SNE [69] method are reported.

The experimental results using the four features, are reported in Fig. 7, for both the Scene-15
and Caltech-101 data sets. We report the results in the transductive scenario only. It can be seen
that the results using the four features are significantly better than those using only three features
mainly due to the discriminative power of the CNN features. Furthermore, the CURL variants
achieve better results than the baselines. This suggests that CURL is able to effectively leverage
both low/mid level features as LBP, PHOG and GIST, and more powerful features as CNN.

5.4. Second embodiment of CURL using LapSVM

In this Section we want to evaluate the CURL performance in a different embodiment. Specif-
ically, we substitute the EP and LR components with LapSVM-based ones. In the LapSVM, first,
an unsupervised geometrical deformation of the feature kernel is performed. This deformed kernel
is then used for classification by a standard SVM thus by-passing an explicit definition of a new
feature representation. In this CURL embodiment we exploit the unsupervised step as surrogate of
the URL component, and SVM as C component. The confidence scores are computed by convert-
ing the signed distance from the separating hyperplanes in the kernel space into probabilities [71].

13



Scene-15 transductive Caltech-101 transductive

95 90
90 85 4
85 80
>
75
80
—~_ Y .70
§ 75 §
o Py 65
s 701 EP+LR = o] EP+LR ]
] —-y— CURL-EF (EP+LR) ] —-y— CURL-EF (EP+LR)
65 —%— CURL-LF (EP+LR) 554 —%— CURL-LF (EP+LR) | |
—-m— CURL-EF,(EP+LR) —-m— CURL-EF,(EP+LR)
60 —@— CURL-LF,(EP+LR) | 50 —#— CURL-LF (EP+LR) |4
—e— SVM —¢— SVM
554 —-— LapSVM 1 45 —— LapSVM B
4
50 . . T T T 40 T T . T T
1 2 3 5 10 15 20 1 2 3 5 10 15 20
Number of labeled images per class Number of labeled images per class

Figure 7: Mean Average Precision (MAP) varying the number of labeled images per class, obtained on the Scene-15
data set (left), and on the Caltech-101 data set (right). Results are obtained using GIST, PHOG, LBP and CNN
features.

The EF view is obtained concatenating the GIST, PHOG, LBP and CNN features and generating
the corresponding kernel, while the LF one is obtained by a linear combination of the four kernels
computed on each feature. This is similar to what is done in multiple kernel learning [59]. Due to
its performance in the previous experiments, the x? kernel is used for both views. The experimen-
tal results on the Scene-15 and Caltech-101 data sets in the transductive scenario, are reported
in Fig. 8. We named the variants of this CURL embodiment by adding the suffix (LapSVM).
It can be seen that the behavior of the different methods is the same of the previous plots, with
the LapSVM-based CURL outperforming the standard LapSVM. The plots confirm that CURL-
LF(LapSVM) is better suited for small sets of labeled images, while CURL-LF,,(LapSVM) is to
be preferred when more labeled examples are available.

Scene-15 transductive Caltech-101 transductive
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Figure 8: Mean Average Precision (MAP) varying the number of labeled images per class, obtained on the Scene-15
data set (left), and on the Caltech-101 data set (right). Results are obtained using GIST, PHOG, LBP and CNN
features.

In Fig. 10 and 11 qualitative results for the ‘Panda’ class of the Caltech-101 data set are
reported: the results are relative to the case in which a single instance is available for training
and one single example is added at each co-training round (i.e. each pair of rows correspond to
CURL-EF (LapSVM) and CURL-LF(LapSVM) respectively). The left part of Fig. 10 contains the
training examples that are added by the CURL-EF(LapSVM) and CURL-LF(LapSVM) at each
co-training round, while the right part and Fig. 11 contain the first 40 test images ordered by
decreasing classification confidence. Samples belonging to the current class are surrounded by a
green bounding box, while a red one is used for samples belonging to other classes.

In the sets of training images, it is possible to see that after the first co-training round, CURL-
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LF(LapSVM) selects new examples to add to the training set, while CURL-EF(LapSVM) adds
examples seleted by CURL-LF(LapSVM) in the previous round. This is a pattern that we found
to occur also in other categories when very small training sets are used.

In the sets of test images, it is possible to see that more and more positive images are recovered.
Moreover, we can see how the images belonging to the correct class tends to be classified with
increasing confidence and move to the left, while the confidences of images belonging to other
classes decrease and are pushed to the right.

5.5. Large scale experiment

In this experiment we want to test the proposed classification strategy on a large scale data set,
namely the ILSVRC 2012 which contains a total of 1000 different classes. The experiment is run
on the ILSVRC 2012 validation set since the training set was used to learn the CNN features. The
ILSVRC 2012 validation set, which contains a total of 50 images for each class, has been randomly
divided into a training and a test set containing each 25 images per class. Again, different numbers
of training images per class were tested (i.e. 1, 2, 3, 5, 10, and 20). The second embodiment of
CURL is used in this experiment.

The experimental results are reported in Fig. 9 and represent the average performance over
ten runs with random labeled-unlabeled feature splits.

Given the large range of MAP values, the plot of MAP improvements with respect to LapSVM
baseline is also reported. It can be seen that the behavior is similar to that of the previous plots,
with the LapSVM-based CURL variants outperforming the LapSVM. As for the previous data sets,
the plots show that CURL-EF(LapSVM) and CURL-LF(LapSVM) are better suited for small sets
of labeled images, while CURL-EF,, (LapSVM)and CURL-LF,,(LapSVM) are to be preferred when
more labeled examples are available. It is remarkable that the proposed classification strategy is
able to improve the results of the LapSVM, since the CNN features were specifically learned for
the ILSVRC 2012.
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Figure 9: Mean Average Precision (MAP) varying the number of labeled images per class, obtained on the ILSVRC
2012 data set: MAP values (left) and MAP improvements over LapSVM baseline (right). Results are obtained using
GIST, PHOG, LBP and CNN features.

6. Conclusions

In this work we have proposed CURL, a semi-supervised image classification strategy which
exploits unlabeled data in two different ways: first two image representations are obtained by unsu-
pervised learning; then co-training is used to enlarge the labeled training set of the corresponding
classifiers. The two image representations are built using two different fusion schemes: early fusion
and late fusion.

The proposed strategy has been tested on the Scene-15, Caltech-101, and ILSVRC 2012 data
sets, and compared with other supervised and semi-supervised methods in three different exper-
imental scenarios: inductive learning, transductive learning, and self-taught learning. We tested
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Training images Test images

Figure 10: Qualitative results of the proposed strategy for the ‘Panda’ class of the Caltech-101 data set over five co-
training rounds. Train images are on the left, the first 17 test images, ordered by decreasing classification confidence
are on the right. Test images from 18 to 40 are reported in Fig. 11.

two embodiments of CURL and several variants differing in the co-trained classifier used and in
the number of pseudo-labeled examples that are added at each co-training round. The experimen-
tal results showed that the CURL embodiments outperformed the other methods in the state of
the art included in the comparisons. In particular, the variants that add a single pseudo-labeled
example per class at each co-training round, resulted to perform best in the case of a small number
of labeled images, while the variants adding more examples at each round obtained the best results
when more labeled data are available.

Moreover, the results of CURL using a combination of low/mid and high level features (i.e.
LBP, PHOG, GIST, and CNN features) outperform those obtained on the same features by state
of the art methods. This means that CURL is able to effectively leverage less discriminative
features (i.e. LBP, PHOG, GIST) to boost the performance of more discriminative ones (i.e. CNN
features).
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