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Unsupervised color coding for
visualizing image classification results

Simone Bianco and Raimondo Schettini

Abstract
In this article, we describe a general purpose system that, given as input a segmented/classified image, auto-
matically provides different visual outputs exploiting solid colors, color boundaries, and transparent colors.
Moreover, if the names of the classes are given, the system automatically places a textual label in the less
salient sub-region of the corresponding class. For color-class association and class label placement, we take
into account the underlying image color and structure exploiting both saliency and superpixel representation.
The color selection and the color-class association are formulated both as optimization problems and heuris-
tically solved using a Local Search procedure. Results show the effectiveness of the proposed system on
images having different content and different number of annotated regions.
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Introduction

In image segmentation and classification applications,

the user may want to visually code and associate ancil-

lary information, such as names, to the different

classes depicted in the image. The decision of how to

visually code the different classes and eventually where

to place the textual annotations is a problem often

referred as view management.1 Such a problem com-

monly arises in different domains, such as visual retrie-

val,2 video surveillance,3 medical imaging,4,5

cartography,6 remote sensing,7 and augmented real-

ity.8 Among visual features, color is widely employed

to visualize the output of a segmentation-classification

process. While in some applications, the color-class

association is strongly driven by conventions (e.g. in

cartography), in many other domains this process can-

not be easily automated since there are no consoli-

dated conventions or common guidelines. While

several heuristic procedures have been proposed to

select high-contrast color palettes (see the following

section), the problem of color-class association is not

completely solved as a serious problem arises because

the chosen colors must be displayed together and

assigned to classes that maybe spatially adjacent. In

practice, this is mainly based on a trial-and-error

approach and demands a concerted effort on the part

of the user. In many dynamic applications (e.g. aug-

mented reality, video surveillance) or when very large

datasets have to be processed,9–11 this activity should

be automated as much as possible.

In this work, we propose a general purpose system

that, given as input a segmented/classified image, pro-

vides different visual outputs exploiting solid colors,

color boundaries and transparent colors. In the first

case, each class is filled with the associated color, thus

resulting in a pseudo-color representation of the

image; in the second case, colored region boundaries

are displayed on the original image; in the third case,
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transparent colors are overlaid on the original image.

For the second and third outputs, class labels (if avail-

able) are automatically placed. In the overlay solutions,

to select the colors and to place class names, we take

into account the underlying color distribution and

structure of the image using both a superpixel repre-

sentation and saliency map. Both the label placement

and the high-contrast color selection problems are NP-

hard.12,13 In this work, we model them as optimization

problems and describe a method for heuristically sol-

ving them using a Local Search (LS) procedure.

The main contributions of this work are as follows:

� The introduction of a new general purpose system

able to provide different visual outputs exploiting

solid colors, color boundaries, and transparent col-

ors. The system is completely unsupervised and its

core is constituted by algorithms able to work in

any color space, with any color distance, and with

any color palette.
� Introduction of the use of transparent colors by

taking into account underlying image colors, in

order to maximize visibility in all the use cases in

which the system can be used.
� The formalization of the high-contrast color selec-

tion and color-class association as a single prob-

lem, and the design of an efficient optimization

algorithm to solve it.
� A systematic way to automatically find the best

locations where to place class labels.
� The possibility to download the system (http://

www.ivl.disco.unimib.it/activities/cc4visual-im-

class-results/) and easily expand its functionalities.

Related work

The great majority of the automatic approaches in the

state of the art consist of heuristic procedures pro-

posed to define high-contrast sets of colors without

considering their association to the image classes (leav-

ing color-class association to the user). For example,

Kelly14 conceived a list of 22 maximally contrasting

surface colors, such that each color of the list is maxi-

mally different from the one immediately preceding it.

Later Carter and Carter15 formulated the first algo-

rithm to compute easily discriminable sets of colors.

Several authors16–20 have devised algorithms that can

also fulfill a number of ergonomical requirements. In

1995, Campadelli et al.21 presented an abstract formu-

lation of the problem of selecting high-contrast color

sets, defining it as a combinatorial optimization prob-

lem on graphs. More recently, Carter and Huertas22

have studied the ability of different metrics and several

color spaces to enhance the discriminability of small

visual targets with ultra-large color differences.

Glasbey et al.23 proposed a greedy method for the

selection of set of colors for categorical image and

showed that its performance is comparable with that

of a simulated annealing algorithm. Breslow et al.24

proposed an algorithm for generating color scales for

both categorical and ordinal coding; their method uses

a positional space partition strategy to generate a light-

ness scale and then applies the method developed from

Campadelli et al.13 to select discriminable colors

according to the lightness constraint. Rodriguez-Pardo

and Sharma25 proposed a dynamical solution to the

problem using a hierarchical clustering followed by a

simple truncation to select the desired number of

high-contrast colors at run time. Radlak and Smolka26

proposed a methodology for deriving optimized visua-

lization based on maximizing local distance between

colors. They present visualization results using a new

color contrast measure optimized with a genetic algo-

rithm (GA). Their method can be used to obtain

pseudo-color encoded images of segmentation results.

Concerning color-class association, as an alternative

to automatic approaches, some interactive systems for

color coding have been also proposed.27–31 They share

the idea of using a fixed color palette of high-contrast

colors and rely on the user intervention to associate

them to the image classes. In this article instead, both

the search of a high-contrast set of colors and the

color-class association are performed automatically

together with the placement of the class label.

The proposed system

The processing pipeline of the proposed system is

reported in Figure 1. Given an image to be coded, its

classification/segmentation, the set of available colors

(in the following, color palettes), and (optionally) the

labels of the classes, the system generates different

proposals ranging from solid color solutions (see

Figure 1(a) and (b)) to color boundary and transpar-

ent color overlay solutions (see Figure 1(c) and (d)).

For the latter solutions, the optimal locations for the

region labels are also produced in output.

Each proposal depends on the input palette, the

number, and the spatial relationship of the classes in

the image to be coded. To generate such proposals, the

problem of selecting high-contrast color sets is jointly

addressed with the color-class association problem, in

order to maximize the color discriminability among

adjacent classes. For color boundary and transparent

color overlay solutions, a further problem is faced: the

chosen colors have also to be at maximum contrast

with respect to the underlying image colors. Finally, to

place the class labels, the less salient sub-region able to
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contain the entire label must be found for each class.

To take into account the content of the image to be

coded and the spatial relationship of the classes, suit-

able image descriptions in terms of superpixel repre-

sentation, saliency, and class adjacency representation

are exploited.

The proposed system takes as input an RGB image

I, its segmented/classified version R with class regions

r1, . . . , rn, the color palette C, and the class labels li,

i =1, . . . , n. The first stage consists in the computa-

tion of the superpixel map S,32,33 which is composed

by superpixels s1, . . . , sm, and the computation of the

saliency map M. The superpixel representation is used

since the number of pixels is high even at moderate

resolutions, making the optimization on the level of

pixels intractable.33 Superpixels instead are local,

coherent, and preserve most of the structure. In this

work, we followed Mori et al.33 which applied

Normalized Cuts algorithm34 to produce the super-

pixel map. An example of superpixel map is shown in

Figure 2(d). Saliency intuitively characterizes some

parts of the image that appear to an observer to stand

out relative to their neighboring parts.35 In this work,

we use saliency to detect which are, for each region,

the locations of the least prominent parts. These are

the candidate locations to place the class label. To

compute the saliency map in this work we use the

method proposed in Zhang and Sclaroff.36 It is a

Boolean map–based saliency model which leverages

global topological cues that are known to help in

Figure 1. Workflow of the proposed system.
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perceptual figure-ground segregation. The model is

based on the surroundedness cue taken from Gestalt

psychological studies. An example of saliency map is

shown in Figure 2(c).

Both S and M are computed from I. The segmen-

ted image R is used to compute the region adjacency

graph (RAG). The adjacency matrix A is obtained

from the RAG: the element A(i, k) is set to 1 if nodes i

and j are connected in the RAG (i.e. the regions ri and

rj are adjacent in R) and set to ‘ otherwise.

The looping on the regions then begins. For each

region i = 1, . . . , n, all the superpixels sj \ ri are found,

and the sets Ii, Oi are initialized to the empty set, that

is, Ii =Oi = ;. For each superpixel sj , a k-means clus-

tering on the RGB values of the pixels identified by

positions x 2 I \ sj is run with k= 2 to find the two

color centroids c1 and c2. If the distance between col-

ors c1 and c2 is less than a fixed threshold t, then their

average is added to the set of colors Ii, otherwise both

c1 and c2 are added

Ii =
Ii = Ii [mean(c1, c2) if d(c1, c2)\ t

Ii = Ii [ c1 [ c2 otherwise

�
ð1Þ

The pixels of the saliency map M corresponding to

the current region ri are then filtered using a box filter

bi having dimensions ½wi , hi�, which are defined by the

size of the label li assigned to the corresponding class.

In order to avoid as much as possible to the label to

stick out from the current region, a modified version

of M is computed

M0(x)=
M0(x) if x 2 ri

P otherwise

�
ð2Þ

If i . 1, M# is updated by setting to P the label loca-

tions for the regions rj , j \ i in order to avoid overlap-

ping labels. The new map M0 is used to produce the

output Bi = bi �M0. The location Li where to place

the label for region ri is then found as

Li = arg min
x

Bi(x) ð3Þ

By design, only one label for each class is placed. In

case of classes composed of multiple regions, the label

is placed only in the largest region in the less salient

part.

The next step is the identification of the part of the

image adjacent to ri, that is, the set of pixels neighbor-

ing with ri. To this end, the dilation mathematical mor-

phology operator is applied to ri to obtain dri. The

region nri, representing the adjacent space external to

region ri is then obtained as nri = dri � ri. The super-

pixels sj 2 nri are then found, and for each superpixel,

the two centroids c1 and c2 are found. As for Ii, Oi is

updated as follows

Oi =
Oi =Oi [mean(c1, c2) if d(c1, c2)\ t

Oi =Oi [ c1 [ c2 otherwise

�
ð4Þ

The final stage of the proposed system is to find a

set of colors ci, i = 1, . . . , n (one for each image class),

fcigN
i = 1 2 C having maximum contrast between them,

and with the colors Ii, Oi, i = 1, . . . , n. This is done

using the high-contrast coloring (HCC) algorithm

described in the next subsection.

The pseudo-code of the algorithm implemented in

the proposed system is given in algorithm 1.

HCC algorithm

Given a palette C of possible colors and the sets of col-

ors, respectively, inside and outside each region ri, that

is, Ii and Oi, i = 1, . . . , n, the problem is to find a set

of n colors having maximum contrast among them and

Figure 2. (a) Original image, (b) image segments, (c) saliency map, (d) superpixel map, (e) superpixels belonging to I1,
that is, the inside of region r1, and (f) superpixels belonging to O1, that is, the outside of the same region.
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with respect to Ii and Oi and to place them so that the

local contrast is maximized. Formally

c1, . . . , cn = arg max
c�
1
, ..., c�n

min min
j =1, ..., n
k= 1, ..., n
j 6= k

d(c�j , c
�
k)

2
6664

0
BBB@ ,

min
j = 1, ..., n

k= 1, ..., n

j 6= k

A(j, k)d(c
�
j , c
�
k), min

i = 1, ..., n

j = 1, ..., jIi j

d(c�i , Iifjg),

min
i = 1, ..., n

j = 1, ..., jOi j

d(c�i ,Oifjg)

3
75s ½wd ,wA,wI ,wO��1

1
CA

ð5Þ

where the operator f�g is used to index elements inside

a set, j � j is the set cardinality, and 8 is used to denote

the Hadamard product. The first term in the right-

hand side of equation (5) computes the minimum dis-

tance among the selected colors, the second one the

minimum distance between the colors corresponding

to adjacent regions, the third one the minimum dis-

tance between the color associated with the region ri

and the colors inside it (i.e. Ii), and the fourth one the

minimum distance between the color associated with

the region ri and the colors outside it (i.e. Oi).

Some of the possible outputs are reported in

Figure 1. They are obtained by acting on the weights

½wd ,wA,wI ,wO�, as reported in Table 1.

The optimization problem is solved with the LS

procedure introduced in Bianco and Citrolo.37 The

LS procedure is based on the concept of neighbor-

hood, which is defined as follows

Nh(K )= f ~K � C : jKn ~K j= h, h \ n, j ~K j= ng ð6Þ

In this work the 1-neighborhood N1(�) is used,

which means that two solutions are 1-neighbors if and

only if they differ for just one element. Starting from a

random solution with n colors, in each iteration, an

exhaustive search over the 1-neighborhood of the cur-

rent solution is performed: the solution that leads to

the highest improvement according to equation (5) is

selected as the new current solution. The optimization

ends when no improved solution is found. In order to

speed-up convergence, the solution is initialized using

grid search. Starting from the image region r1, c1 is

chosen to solve equation (5) by setting ½wd ,wA,
wI ,wO�= ½0, 0,wI ,wO� and n= 1. For image regions

from r2 to rn, new elements are added to the solution

by solving equation (5) and keeping fixed the previous

elements.

Experimental results

The proposed method can work with any color palette

having any cardinality, described in any color space

given that a color distance is defined. The default color

palette is the Munsell Atlas which contains over 1300

colors. This choice is due to the fact that the classified

images may not only be displayed on the screen but

also printed. Since the gamuts of feasible colors of

common displays and color printers differ consider-

ably, a high-contrast color coding on the screen may

be drastically modified when printed. Since many col-

ors cannot be reproduced in print, restricting the selec-

tion of color to the Munsell Atlas greatly limits this

drawback.30

Three other different color palettes C among which

to select the n colors are used in the following. They

have been chosen as can be easily visualized and appre-

ciated as a whole. The three color palettes are reported

Algorithm 1 Pseudo-code of the algorithm implemented
in the proposed system.

Data: RGB image I, segmented image
R =

⋃N
i=1 ri, color palette(s) P , region

labels {li}Ni=1

Result: colors Ci, label locations Li,
i = 1, . . . , N

Compute saliency map M
Compute superpixel segmentation S
Initialize adjacency matrix A = Inf(N,N)
for each region ri ∈ R, i = 1 to N do

Ii = Oi = ∅
M ′ = M
Find superpixels sk ∈ ri
for each superpixel s do

Set M ′(x) = P for each x ∈ s
Run clustering on RGB colors to find 2
centroids c1 and c2
if d(c1, c2) < t then

Ii = Ii ∪mean(c1, c2)
else

Ii = Ii ∪ c1 ∪ c2

if i > 1 then
for j = 1, . . . , i− 1 do

Set M ′(x) = P for each
x ∈ [Lj , Lj + w]× [Lj , Lj + h]

dri = dilate(ri)
Find superpixels sk ∈ nri = dri − ri
for each superpixel s do

Run clustering on RGB colors to find 2
centroids c1 and c2

if d(c1, c2) < t then
Oi = Oi ∪mean(c1, c2)

else
Oi = Oi ∪ c1 ∪ c2

Find regions rj , j = {1, . . . , N} − i s.t.
r ∩ dri �= ∅
if ¬ isempty(j) then

A(i,j) = 1

B = boxfilter(M ′, h, w)
Find Li s.t. Li = argminx∈ri B

Find N high contrast colors wrt
A,Ii,Oi,i = 1, . . . , N that maximize Eq. 5
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in Figure 3. These palettes have different color charac-

teristics: the first one varies only in luminance, and

thus it is inherently one-dimensional (1D); the second

one is two-dimensional (2D) as representing a sam-

pling of an iso-luminance plane in the CIELab color

space;38 and the third one is three-dimensional (3D)

as spanning the whole RGB cube. The first palette is a

gray-scale composed of 256 shades of gray, that is,

jCj= 256. The second one contains iso-luminance

colors, with jCj= 441. The third one corresponds to

the palette of web-safe colors, with jCj= 216. The

web-safe palette was defined as a set of colors that

could be shown without dithering on 256-color dis-

plays. In fact, on 256-color displays, applications can

set a palette of any selection of colors that they choose,

dithering the rest.

We report in Figure 4 the colors selected for the

three palettes for different set cardinalities

n= 3, 4, 6, 9, 12 without considering the spatial lay-

out, that is, setting ½wd ,wA,wI ,wO�= ½1, 0, 0, 0� in

equation (5). It is possible to see that when n

increases, the selected colors tend to be more similar.

This explains the importance of the spatial layout of

the colors on the image, that is, the way in which the

colors are associated with the image regions, which is

captured by the second term in equation (5).

Some example results taking into account the image

spatial layout and color-class associations are reported

for different application domains: Pascal VOC 2012

segmentation challenge,39 texture classification,

images annotation, and webpage layout segmentation.

For all examples, the distance d( � , � ) used is the CIE

DE which is an Euclidean distance computed in the

CIELab color space. The CIELab color space is cho-

sen in this work for its popularity and simplicity,40 but

other color spaces could be used in the proposed sys-

tem as well, as for example the CIECAM0241 and its

extensions42 which are particularly indicated when the

final viewing conditions are known.

Concerning the superpixel segmentation, the

threshold t in equations (1) and (4), that is, the one to

decide if two colors are different enough to be both

added to the respective sets Ii and Oi or they have to

be averaged into a single color, is set to 3 DE units.

Below this value, humans hardly perceive color differ-

ences. Concerning class labels, in all the examples

equal-length labels are assumed. The size for the box

filer bi and thus of the space reserved to the placement

of the label of each region has been set to

½w, h�= ½75, 21�.
In Figure 5 for each example, we report the original

image, its segmentation with number overlaid repre-

senting the class id, and different proposals: the results

using the gray-scale and iso-luminance palettes (with

½wd ,wA,wI ,wO�= ½wd ,wA, 0, 0� and no labels overlaid),

the results using the web-safe palette (with

½wd ,wA,wI ,wO�= ½wd ,wA,wI ,wO� and labels overlaid)

coloring boundaries only, or overlaying region colors

Table 1. Output obtained with different parameter settings in equation (5).

Parameters Output obtained

½wd, wA, wI, wO� Solution taking into account the original image colors inside each region. Suggested when region
boundaries have to be displayed or colors have to be overlaid on the original image.

½wd, wA, 0, 0� Solution ignoring the original image colors. Suggested when a pseudo-color representation of the
image is needed.

½wd, 0, 0, 0� Solution ignoring the original image colors and region adjacency. Suggested when only a set of

maximally contrasting colors is needed (e.g. Bianco and Citrolo37).

Figure 3. Color palettes used in this work: (a) gray-scale, (b) iso-luminance, and (c) web-safe.
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on the original image. The RAG of each image is

reported in Figure 6. Notice how for classes composed

of multiple regions (i.e. class 4 in the first image, class

2 in the second one, and class 5 in the third one) the

labels are placed on the region that can contain the

whole label. Together with the different proposals, the

user can also set the transparency level of the overlay

solutions as well as the saturation of the underlying

image. Some examples of the effect of these two para-

meters are shown in Figure 11 in Appendix 1.

In Figure 7, we report the chromaticity plane of the

CIELab color space showing the position of the cho-

sen colors with respect to image colors for the first

image in Figure 5 using the web-safe palette. The

image colors Ii and Oi for each class ri are represented

as blue dots. The colors themselves are represented as

red crosses. The gray line represents the boundary of

the CIELab color space and is a superset of the pal-

ette. From the figure, it is possible to see how the four

selected colors are both very far from each other and

far from the colors of the corresponding underlying

classes.

Finally, we numerically compare the results

obtained by the proposed algorithm with those

obtained by two alternative solvers to the LS proposed

in this article: the first one is a color selection and pla-

cement solution obtained by multiple random selec-

tions; the second one is based on GAs that are often

used to solve high-contrast color selection problems.26

Concerning random selection, we performed

1,000,000 random independent runs and report the

results of both the best solution found and the average

solution. Concerning GA, we performed 100 indepen-

dent runs with 200 individuals each and report the

results of both the best solution found and the average

solution. The results are reported both in terms of fit-

ness and in terms of the four elements of which it is

composed of: the distance between colors (dD), the dis-

tance among adjacent colors (dA), and the distance

among the color associated with each class and the col-

ors, respectively, inside and outside of it (dI and dO).

Results are visualized as radar plots in Figure 8. Note

that dD4dA, and the equality holds only when the

nearest colors are assigned to adjacent regions. From

the plots, it is possible to see that the proposed method

is able to outperform the compared solvers on all the

sample images and on all the different terms compos-

ing the fitness function. The second best solution is

always obtained by the best GA solution, with the aver-

age random solution obtaining the worst result.

Numerical values for the fitness values are also

reported in Table 2 together with the improvement of

our solutions with respect to the best compared solver,

that is, the best GA solution. In particular, we can

observe that when the number of classes is small (i.e. 4

to 5) the average improvement of the proposed method

with respect to the best GA solution is 2.43%; when

the number of classes increases, instead, the average

improvement increases to 26.06%. Computational

times are reported in Table 3. For the best random

solution, the total time for the 1,000,000 guesses is

reported, while for the average random one, the time

for a single guess is reported. For the best GA solution,

the total time for the 100 runs is reported, while for

the average GA one, the time for a single run is

reported. For the proposed method, being it not based

on randomness, a single value is reported.

To test the robustness of the proposed method to

the initialization, 100 independent runs are performed

with random initialization. The radar plots of the solu-

tion obtained with the proposed initialization and the

average solution obtained with random initialization

Figure 4. Colors selected for the three palettes for
different set cardinalities n = 3, 4, 6, 9, 12 without
considering the spatial layout (top row) and their position
inside the respective palettes (remaining rows). The sRGB
coordinates of the selected colors are reported in
Appendix 1.
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are reported in Figure 9. The average drop in perfor-

mance using a random initialization is less than 6.5%,

which is one order of magnitude lower than the one

that we have passing from the best random solution to

the average random one (i.e. 66.8%), and almost half

of the one that we have passing from the best GA solu-

tion to the average GA one (i.e. 10.0%). Furthermore,

even with random initialization, the results obtained

by the proposed method are on average almost 4.4%

better than those obtained by the best GA solution,

confirming the robustness of the proposed method to

the choice of the initial conditions.

As a final experiment, we run the same experiments

as before changing the working color space used from

CIELab to CIECAM02-UCS.42 The CIECAM02-

UCS is an extension of CIECAM02 that better fits

both small and large color differences. As mentioned

at the beginning of this section, to be properly used,

Figure 5. Examples of results obtained by our method: (a) original image, (b) its segmentation with overlaid region
identification numbers, pseudo-color results using the (c) gray-scale palette and (d) iso-luminance palettes, and region
boundaries (e) with and (f) without overlaid colors using the web-safe palette (both with labels overlaid).
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Figure 6. RAGs of the images reported in Figure 5.

Figure 7. Chromaticity plane of the CIELab color space showing the position of the chosen colors with respect to image
colors for the first image in Figure 5 using the web-safe palette. Image colors Ii and Oi for each class ri are represented
as blue dots. The colors themselves are represented by red crosses. The gray line represents the boundary of the
CIELab color space.

Table 2. Comparison of fitness values obtained in terms of CIELab DE by the random selection, the GA selection, and the
proposed method on the five images in Figure 5.

Image No. of
classes

No. of
regions

Random
(best)

GA (best) Random
(average)

GA (average) Proposed Improvement

Image 1 (horse) 4 7 60.95 70.10 17.76 61.68 70.10 0.00%
Image 2 (texture) 8 13 45.15 47.45 17.78 43.75 60.63 27.78%
Image 3 (Oscar) 5 6 56.44 59.76 18.74 54.74 63.50 6.26%
Image 4 (basketball) 4 5 61.90 69.02 18.34 62.12 69.74 1.03%
Image 5 (webpage) 8 8 42.93 50.13 14.89 44.15 62.33 24.34%

GA: genetic algorithm.For the random selection, the higher and the average fitness over 1,000,000 independent runs are reported. For
the GA selection, the higher and the average fitness over 100 independent runs with 200 individuals each are reported.
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CIECAM02 and its extensions require the final view-

ing conditions to be known and specified. We run the

experiments considering two different viewing condi-

tions: self-luminous display with CIE D65 white point

under office illumination and print evaluation in a

light booth under CIE D50 standard illuminant. The

relevant parameters of both the viewing conditions are

reported in Table 4. The distance d(� , �) used is the

DE0, and the threshold t is set to 3 units. The fitness

values are reported in Table 5, where it can be seen

that algorithms’ ranking are the same as those in Table

2 and the improvements are similar. Additionally, we

replicate the results reported in Figure 4 by consider-

ing the CIECAM02-UCS color space and the viewing

condition 1 (see Table 4). The results are reported

in Figure 10 and represent the colors selected for

the three palettes for different set cardinalities

n= 3, 4, 6, 9, 12 without considering the spatial

Figure 8. Radar plot visualizations of the fitness values and the four terms of which it is composed, obtained by the
random selection (red) and the proposed method (blue) on the five images in Figure 5. For the random selection, the
higher fitness over 1000 independent runs is reported.

Table 3. Comparison of execution times for the random selection, the GA selection, and the proposed method on the five
images in Figure 5.

Image No. of
classes

No. of
regions

Random
(best)

GA (best) Random
(average)

GA
(average)

Proposed

Image 1 (horse) 4 7 1305.8 s 1507.6 s 0.0013 s 15.08 s 3.03 s
Image 2 (texture) 8 13 2073.4 s 2947.8 s 0.0021 s 29.48 s 18.87 s
Image 3 (Oscar) 5 6 1529.4 s 1793.4 s 0.0015 s 17.93 s 5.56 s
Image 4 (basketball) 4 5 1349.2 s 1481.4 s 0.0013 s 14.81 s 3.22 s
Image 5 (webpage) 8 8 2048.5 s 3036.4 s 0.0020 s 30.36 s 18.99 s

GA: genetic algorithm.For the random selection, the average and total time for 1,000,000 independent runs are reported. For the GA
selection, the average and total time for the 100 independent runs with 200 individuals each are reported.
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layout, that is, setting ½wd ,wA,wI ,wO�= ½1, 0, 0, 0�.
The sRGB coordinates of the selected colors are also

reported in Appendix 1 to allow their further visual

appreciation and their immediate re-use.

Conclusion

Color is pre-attentively observed and used to segment

the visual environment. This characteristic makes it

particularly effective in visualizing image classification

and segmentation results. A problem that may arise is

that we often have more items to be represented in an

image than easily discriminable colors. Moreover,

selecting a high-contrast color subset is only part of the

solution since the colors must be assigned to the image

classes and displayed together. In this article, we pro-

posed a general purpose system that given as input a

segmented/classified image automatically provides

Figure 9. Radar plot visualizations of the fitness values and the four terms of which it is composed, obtained of the
proposed method with the proposed initialization (solid line) and the average solution obtained with random initialization
(dashed line) on the five images in Figure 5. For the random initialization, the average values over 100 independent runs
are reported.

Table 4. Relevant parameters for the two viewing conditions considered in Table 5.

Parameters Viewing conditions

1 2

Ambient illumination in lux (or cd/m2) 500 (159.2) 1000 (318.3)
Scene or device white luminance 80 318.30
LA in cd/m2 15 60
Adopted white point Display Light booth
SR 2 1
Surround Average Average
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different types of outputs ranging from solutions to be

used when a pseudo-color representation of the image

is needed, to solutions to be used when region bound-

aries have to be displayed or transparent colors have to

be overlaid on the original image, specifically: different

pseudo-color representations (obtained using different

color palettes), colored region boundaries displayed on

the original image, transparent colors overlaid on the

original image, and if available, the automatic place-

ment of the class labels. Both the color selection and

class-color association are formulated as an optimiza-

tion problem and heuristically solved using a LS proce-

dure. Experimental results show the effectiveness of

the proposed method on images having different con-

tent and different number of annotated classes. Results

are compared with the best solution obtained in 1000

independent random selections, showing an average

improvement of 51.6% in the fitness values. Finally,

we also included a method for the automatic place-

ment of class labels on the image exploiting an image

description in terms of saliency.

The proposed system is available at http://www.ivl.-

disco.unimib.it/activities/cc4visual-im-class-results/

and could be used in existing image and video annota-

tion software such as LabelMe,9 Ilastik,43 Sloth,44

VATIC,10 and iVat.11

As future work we plan to investigate the use of a

combination of different image descriptions to better

identify the less prominent sub-regions of the image.

We also plan to conduct a user study to investigate

where users prefer to place class labels and integrate

these preferences directly in the fitness function.45 The

whole system could be validated in specific use cases,

for example, remote sensing where the color-class asso-

ciation should take into account the semantic and there-

fore the colors could be a priori fixed or limited to a

certain portion of the gamut (e.g. we could be

Figure 10. Colors selected for the three palettes for
different set cardinalities n = 3, 4, 6, 9, 12 without
considering the spatial layout (top row) and their position
inside the respective palettes (remaining rows). The color
space considered is the CIECAM02-UCS under the viewing
condition 1 (see Table 1). The sRGB coordinates of the
selected colors are reported in Appendix 1.

Table 5. Comparison of fitness values obtained in terms of CIECAM02-UCS DE0 by the random selection, the GA
selection, and the proposed method on the five images in Figure 5.

Image Viewing condition 1 Viewing condition 2

Random
(best)

GA
(best)

Proposed Improvement Random
(best)

GA
(best)

Proposed Improvement

Image 1 (horse) 72.64 72.09 74.76 2.92% 74.46 75.61 75.61 0.00%
Image 2 (texture) 36.22 41.02 50.23 22.45% 37.63 43.18 51.75 19.85%
Image 3 (Oscar) 55.25 60.41

63.15
4.54% 58.22 63.02 66.33 5.25%

Image 4 (basketball) 73.32 71.44 74.05 1.00% 74.96 74.52 75.12 0.21%
Image 5 (webpage) 34.98 43.43 52.87 21.74% 35.07 45.98 53.82

17.95%

GA: genetic algorithm.For the random selection, the higher fitness over 1,000,000 independent runs is reported. For the GA selection,
the higher fitness over 100 independent runs with 200 individuals each is reported.
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interested to use a particular green for fields or limit the

associated color to the gamut of greens). In the actual

system, it is already possible to fix one or more colors,

but this functionality should be extended. The system

could be further extended to include also options for

visually impaired and color-blind users. We also plan to

conduct a user study to evaluate the proposed system

and to integrate more complex relationships among the

chosen colors such as color harmony.46
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Appendix 1

In the following, we report the sRGB coordinates of
the high-contrast colors selected in Figures 4 and 10
(Tables 6–11). We also report in Figure 11 some exam-
ples of the effect of setting the transparency level of the
overlay solutions as well as the saturation of the under-
lying image.

Table 6. sRGB coordinates of the high-contrast colors selected in Figure 4 for the gray-scale palette using CIELab as
the working color space.
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Table 8. sRGB coordinates of the high-contrast colors selected in Figure 4 for the web-safe palette using CIELab as the
working color space.

Table 9. sRGB coordinates of the high-contrast colors selected in Figure 10 for the gray-scale palette using CIECAM02-
UCS as the working color space under the viewing condition 1 (see Table 4).

Table 7. sRGB coordinates of the high-contrast colors selected in Figure 4 for the iso-luminance palette using CIELab
as the working color space.
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Table 10. sRGB coordinates of the high-contrast colors selected in Figure 10 for the iso-luminance palette using
CIECAM02-UCS as the working color space under the viewing condition 1 (see Table 4).

Table 11. sRGB coordinates of the high-contrast colors selected in Figure 10 for the web-safe palette using CIECAM02-
UCS as the working color space under the viewing condition 1 (see Table 4).
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Figure 11. Different proposals for the overlay solution using the web-safe palette. The transparency of the overlaid
colors is changed in five steps (from 100% to 0%) along the different columns; the saturation of the underlying image is
changed in five steps (from 0% to 100%) along the different rows.
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