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Abstract. Texture classification plays a major role in many computer vision applications. Local binary patterns
(LBP) encoding schemes have largely been proven to be very effective for this task. Improved LBP (ILBP) are
conceptually simple, easy to implement, and highly effective LBP variants based on a point-to-average thresh-
olding scheme instead of a point-to-point one. We propose the use of this encoding scheme for extracting intra-
and interchannel features for color texture classification. We experimentally evaluated the resulting improved
opponent color LBP alone and in concatenation with the ILBP of the local color contrast map on a set of image
classification tasks over 9 datasets of generic color textures and 11 datasets of biomedical textures. The pro-
posed approach outperformed other grayscale and color LBP variants in nearly all the datasets considered and
proved competitive even against image features from last generation convolutional neural networks, particularly
for the classification of biomedical images. © 2017 SPIE and IS&T [DOI: 10.1117/1.JEI.27.1.011002]
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1 Introduction
Texture is one of the fundamental visual properties of objects,
materials, and scenes. Understanding texture is, therefore,
essential in a wide range of applications, such as surface
inspection and grading, content-based image retrieval, object
recognition, material classification, remote sensing, and medi-
cal image analysis. As a consequence, research on texture has
been attracting significant attention for at least 40 years, and a
large number of visual descriptors are now available in the
literature—for an overview, we refer the reader to Refs. 1
and 2.

During the last two decades, the “bag of features” (BoF)
paradigm has emerged as one of the most effective approaches
to texture analysis.3–5 This scheme is best explained by resort-
ing to a parallel with the “bag of words”model, whereby a text
is represented by the statistical, orderless distribution of its
words over a predefined dictionary. Likewise, the BoF repre-
sents images by the distribution of local patterns regardless of
their spatial distribution.6 One possible implementation of the
BoF model is represented by a class of methods known as
histogram of equivalent patterns (HEP).7 Descriptors of this
class sample the input images densely and assign each local
image patch to one visual word among those in the dictionary.
The image representation is the probability distribution (histo-
gram) of the visual words over the dictionary. In the HEP, the
mapping image patch → visual word is typically a function
(usually referred to as the “kernel function”) of the gray levels
of pixels in the patch. In this approach, the dictionary is
defined a priori and coincides with the codomain of the kernel
function. Local binary patterns (LBPs) and related methods
are all instances of this general scheme.6,7

Extensions of this strategy to the color domain involve
comparing the color (or multispectral) pixel values instead

of the gray levels.8 This area, however, has received signifi-
cantly less attention than the grayscale counterpart. One of
the first extensions of LBP to color images was the opponent
color LBP (OCLBP),9 in which, as we detail in Sec. 3, the
LBP operator is applied to each color channel separately as
well as to pairs of color channels. Herein, we propose a con-
ceptually simple yet effective improvement on this method.
We denote our descriptor as improved opponent color LBP
(IOCLBP) and show, experimentally, that it can significantly
outperform OCLBP in color texture classification.

In the remainder of the paper, we first provide some back-
ground in Sec. 2 and then introduce IOCLBP in Sec. 3. We
discuss the experimental activity in Sec. 4 and summarize the
results in Sec. 5. Some final considerations and directions for
future studies conclude the paper (Sec. 6).

2 Background
Few would object that LBP is one the most prominent and
widely investigated texture descriptors ever. The method first
appeared with this name in 199610 and was popularized in a
later work,11 which has now become a classic. Together, the
two papers have so far received no fewer than 9500 citations
(Source: Scopus; visited on August 17, 2017). Keys to the
success of this method are the ease of implementation, low
computational demand, and high discrimination accuracy. A
lot of LBP variations also exist; so many, indeed, that in a
recent review Liu et al.12 correctly stated that their number is
so large that it is becoming more and more difficult—even to
the expert in the field—to grasp them all. In comparison,
color variants have received significantly less attention in
the literature.

The problem of integrating texture and color information
into combined descriptors has attracted the interest of
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researchers since early on.13 The existing approaches can be
categorized in different ways, as for instance described in
Refs. 13–17 but in synthesis there are three main classes:

• pure color methods (or spectral methods),
• pure texture methods, and
• hybrid methods.

Spectral methods describe the color content of the image
regardless of its spatial distribution. By contrast, pure texture
methods—also referred to as “intensity texture features”15—
are based on the spatial variation of luminance (gray level)
but discard chrominance. These are the standard texture
descriptors, such as LBP, Gabor filters, wavelets, etc. Finally,
hybrid methods combine color and texture information
together. The approaches belonging to the last group can
be further classified into “parallel,” “sequential,” and
“integrative.”18

In parallel approaches, color and textures are computed
separately and then combined together through late or
early fusion, as for instance in LBP and color percentiles,19

LBP and color information features,20 and LBP and color
histogram.21

Sequential approaches usually involve some preprocess-
ing to convert the input image to single channel (for instance
through color quantization), after that the resulting image can
be processed through a grayscale descriptor. Examples are
the sequential classifier described by Bianconi et al.22 and
the multilayer scheme proposed by Lumini et al.23

Integrative approaches are possibly the most common
strategy for extending LBP to the color domain. They consist
of applying the LBP operator to each color channel sepa-
rately24–26 and/or to pairs of channels jointly.27,9 Color and
spatial data can also be combined in a vectorial way, as for
instance in local color vector binary patterns,28 local angular
patterns,29 color intensity local mapped pattern,30 and 3-D
LBPs.31 Another strategy consists of defining a suitable
total ordering in the color space and uses this as a replace-
ment for the natural gray-level ordering. This class of meth-
ods has been recently investigated extensively by Ledoux
et al.32 Possible implementations of this scheme involve
defining a suitable notion of distance and a reference point
in the color space chosen, as proposed in Refs. 33 and 34.

As we detail in Sec. 3, IOCLBP considers intra- and inter-
channel features35—just as OCLBP—but with a different
local thresholding scheme. While in OCLBP, the peripheral
pixels are thresholded at the value of the central pixel, thresh-
olding in IOCLBP is based on the average value. In the gray-
scale domain, the same approach has been used to define
improved LBPs (ILBP),36 which generally works better
than LBP,37 but as far as we know this idea has not been
extended to the color domain. The method proposed here can
be, therefore, considered as an extension of ILBP to color
textures.

3 Improved Opponent Color Local Binary Patterns
Let us consider a local image neighborhood N ¼
fx0; x1; : : : ; xng composed of a central point x0 and n periph-
eral points xi, i ∈ f1; : : : ; ng. For the sake of simplicity, we
shall assume the neighborhood be center-symmetric with the
peripheral points arranged circularly around the central one
(Fig. 1), though this restriction is not essential.38 Let also

a pattern P be defined as an instance of N , i.e., P ¼
fp0; pi; : : : ; png, where pi denotes a generic property of
xi, such as the gray-level intensity, color triplet, or multispec-
tral data. (In the remainder, we indicate such property in
boldface when is a vector and in normal font when is a
scalar.)

In LBP, a pattern P is assigned a unique decimal code (or,
equivalently, a visual word) in the following way:

EQ-TARGET;temp:intralink-;e001;326;466fLBPðPÞ ¼
Xn
i¼1

2i−1ϕðg0; giÞ; (1)

where

EQ-TARGET;temp:intralink-;e002;326;407ϕðx; yÞ ¼
�
0 if x ≤ y
1 otherwise

; (2)

and gi in this case is the gray level of xi. Image features are
the dense, orderless statistical distribution over the set of pos-
sible codes.

Mäenpää and Pietikäinen9 proposed an extension of this
scheme to the color domain by considering intra- and inter-
channel features. Intrachannel features are obtained just by
computing LBP on each color channel, whereas for a pair of
channels ðu; vÞ the interchannel features are defined as follows:

EQ-TARGET;temp:intralink-;e003;326;279fOCLBPu;vðPÞ ¼
Xn
i¼1

2i−1ϕðp0;u; pi;vÞ; (3)

where pi;v indicates the intensity of the i’th pixel in the v’th
channel. For a color space with C channels, there are in prin-
cipleK ¼ 2 × C!∕½2!ðC − 2Þ!�ways through which interchan-
nel features can be computed. However, to avoid redundancy
and reduce the overall number of features, for a pair of channels
ðu; vÞ it is customary to retain only one of the two possible
permutations—either ðu; vÞ or ðv; uÞ.14,9 The number of inter-
channel pairs, therefore, reduces to K ¼ C!∕½2!ðC − 2Þ!�.

IOCLBP differs from OCLBP in that both intra- and inter-
channel features are computed using a point-to-average
scheme instead of a point-to-point one. In formulas, we have

EQ-TARGET;temp:intralink-;e004;326;110fIOCLBPu;vðPÞ ¼
Xn
i¼0

2iϕðp̄u; pi;vÞ; (4)

Fig. 1 A center-symmetric neighborhood.
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where

EQ-TARGET;temp:intralink-;e005;63;459p̄u ¼
1

nþ 1

Xn
i¼0

pi;u: (5)

It is easy to see from Eqs. (1) and (3) that the number of
directional features generated by LBP and OCLBP is 2n−1

and ðCþ KÞ × 2n−1, respectively, whereas in IOCLBP, we
have C × ð2n − 1Þ intrachannel features (the “zero” pattern
is by definition impossible, hence the −1 in the formula)
and K × 2n interchannel features. Variations of LBP, such
as the rotation invariant (LBPri) and the uniform, rotation-
invariant version (LBPriu2) apply seamlessly to IOCLBP
as well. The number of features in this case (see Fig. 2)
can be computed through invariant theory.

Let us just recall here that “necklaces” are strings of λ
characters over an alphabet of size σ, being equivalent those
necklaces that can be transformed into one another through a
discrete rotation. It can be shown that the number of intrinsi-
cally different necklaces is

EQ-TARGET;temp:intralink-;e006;63;251Kðλ; σÞ ¼ 1

λ

X
vjλ

ϕ

�
λ

v

�
σv; (6)

where ϕðÞ indicates Euler’s totient function and v the divisor
of λ (see Ref. 39, Sec. 13.3 for details). Clearly, rotation-
invariant LBPs (LBPri) are a particular case of necklaces
with λ ¼ n and σ ¼ 1; therefore, their number can be easily
computed though Eq. (6). The interested reader will find fur-
ther considerations on this and a table with precomputed val-
ues in Ref. 40.

3.1 Color Spaces
IOCLBP can in principle be defined over any color space,
provided that all the channels have the same range of values.
In our experiments, we considered the RGB, Ohta’s (Ref. 41,

Sec. 4.5), and opponent color spaces (Ref. 41, Sec. 4.4). In the
last two cases, suitable normalization factors were applied to
guarantee that the range of each channel was the [0, 1] inter-
val. In the remainder, we shall use subscripts “oht” and “opp”
to denote the results obtained with these color spaces and no
subscripts for the RGB space or grayscale images.

3.2 Concatenation of IOCLBP and Local Color
Contrast Features

We also propose the use of IOCLBP in combination with
local color contrast (LCC).42 LCC is a descriptor designed
to be robust with respect to changes in illumination. It pre-
serves a useful part of color information and, at the same
time, discards the part that is often affected by changes in
illumination. Let us just recall, here, that LCC is based on
the angle θ, in the color space, between the color of the cen-
tral pixel and the average color of the peripheral pixels, i.e.,

EQ-TARGET;temp:intralink-;e007;326;279θ ¼
8<
:

0 ∶ kp0k · kp̄k ¼ 0

arccos

�
hp0;p̄i

kp0k·kp̄k

�
∶ otherwise ; (7)

where p̄0, here, stands for the color of the central point and p̄
for the average color of the peripheral points. Symbols h·; ·i
and k · k indicate inner product and Euclidean norm,
respectively.

We computed LCC features by applying the ILBP oper-
ator on the angle map resulting from transforming the input
image through Eq. (7)

EQ-TARGET;temp:intralink-;e008;326;142fLCCðPÞ ¼
Xn
i¼0

2iϕðθ̄; θ0Þ; (8)

where

Fig. 2 Summary list of the methods included in the experiments.
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EQ-TARGET;temp:intralink-;e009;63;133θ̄ ¼ 1

nþ 1

Xn
i¼0

θi: (9)

We finally combined IOCLBP and LCC by concatenating
the respective feature vectors. Based on the results of previous
experiments,42 we applied a scaling factor of w ¼ 0.25 to

LCC. We maintained this setting with the akin methods
used for comparison, i.e., LBP + LCC and OCLBP + LCC.

4 Experiments
To evaluate the effectiveness of IOCLBP and IOCLBP +
LCC, we carried out a set of image classification experiments

Fig. 3 Generic color textures: summary table.

Fig. 4 Biomedical textures: summary table.
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using 20 datasets of color texture images as described in
Sec. 4.1. For comparison, we considered 10 LBPs variants
and 5 image descriptors based on pretrained convolutional
neural networks (Sec. 4.2). Classifier and accuracy evalu-
ation procedure are detailed in Sec. 4.3.

4.1 Datasets
We considered 9 datasets of generic color texture images rep-
resenting materials and scenes (Sec. 4.1.1, Fig. 3) and 11
datasets of biomedical images (Sec. 4.1.2, Fig. 4).

4.1.1 Generic color textures

KTH-TIPS: Ten classes representing materials such as alu-
minum foil, bread, corduroy, cotton, cracker, linen, orange
peel, sandpaper, sponge, and styrofoam.43,44 One sample
of each class was acquired at 9 different scales, 3 poses,
and under 3 illumination conditions, resulting in 81 images
per class. The dimension of the images is 200 px × 200 px.

KTH-TIPS2b: An extension of KTH-TIPS containing one
more class, four samples for each class instead of one, and
one additional illumination condition. The whole dataset
contains 432 images for each class.45,44 The image dimension
is the same as in KTH-TIPS.

Outex-00013: Sixty-eight texture classes from Outex’s
test suite TC-00013.46 They represent heterogeneous materi-
als, such as barley, cardboard, fabric, natural stone, paper,
sandpaper, and wool. For each class, there are 20 image sam-
ples of dimension 128 px × 128 px, which have no variation
in scale, rotation angle, or illumination conditions.

Outex-00014: The same classes as in Outex-00013; how-
ever, in this case, each sample was acquired under three dif-
ferent lighting sources: a 2300-K horizon sunlight, a 2856-K
incandescent CIE A, and a 4000-K fluorescent TL84 lamp,
respectively. As a result, there are 60 samples for each class
instead of 20. The image dimension is the same as in Outex-
00014. For both Outex-00013 and Outex-00014, it is impor-
tant to point out that to maintain a uniform evaluation pro-
tocol (see Sec. 4.3) for all the datasets considered here, we
used different subdivisions into train and test set than those
provided with the TC-00013 and TC-00014 test suites.

PlantLeaves: Images of leaves from 20 different species
of plants acquired under controlled imaging conditions
through a planar scanner.47 There are 60 samples for each
class, each of dimension 128 px × 128 px.

RawFooT: Sixty-eight classes representing different types
of raw food, such as grain, fish, fruit, meat, pasta, and
vegetables.1,48,49 Each sample was acquired under 46 differ-
ent lighting conditions that differ in the direction of light,
color, and/or the illumination intensity. Other viewing con-
ditions as scale and rotation angle are invariable. We subdi-
vided each image into four nonoverlapping images of
dimension 400 px × 400 px and this way obtained 46 × 4 ¼
184 image samples for each class.

STex: Four hundred seventy-six color texture images repre-
senting objects, materials and scenes, such as bark, buildings,
flowers, leather, metal, stones, tiles, and wood. The pictures
have been acquired “in the wild” around in the city of
Salzburg, Austria.50 The dataset comes in two different resolu-
tions—i.e., 1024 px × 1024 px and 512 px × 512 px—of
which we used the second one in our experiments. We subdi-
vided the original images into 16 nonoverlapping samples of
dimension 128 px × 128 px.

USPTex: One hundred ninety-one classes of color tex-
tures with 12 samples per class.51,52 The classes represent
materials such as seeds, rice, and fabric but also road
scenes, vegetation, walls, clouds, and soil. The images
have been acquired in the wild and have a dimension of
128 px × 128 px.

V × C TSG: Forty-two classes of ceramic tiles acquired
under controlled and steady imaging conditions in the
V × C laboratory at the Polytechnic University of Valencia,
Valencia, Spain.53,54 There are 14 base classes, each identi-
fied by its commercial denomination—e.g., Agata, Berlin,
Firenze, Lima, Oslo, and Venice, and each class comes in
three subclasses (grades), which are very similar and difficult
to differentiate even to the trained eye. The original images
have different resolution and can be either rectangular or
square, and the number of samples varies from class to
class. Herein, we retained 12 samples for each class and
cropped each image to a central square window of dimension
minðW;HÞ ×minðW;HÞ, where W and H are the width and
height of the original image, respectively.

4.1.2 Biomedical textures

BioMediTechRPE: Image samples of pluripotent stem cell-
derived retinal pigment epithelium (RPE) cells—the layer of
the eye between the neurosensory retina and the choroid.55,56

The dataset includes three classes representing different
stages of RPE maturation indicated as fusiform, epithelioid,
and cobblestone, respectively, plus a fourth class sharing
features common to two or more of the other classes. The
number of samples per class varies from 150 to 949. Of
each image sample we retained a central region of dimension
480 px × 480 px.

BreakHis: Histological images of breast tumour tissue
from 82 patients collected at the P&D Laboratory—
Pathological Anatomy and Cytopathology, Parana, Brazil.57,58

The images have been acquired using four different magni-
fication factors, i.e., 40×, 100×, 200×, and 400×, and in our
experiments, we considered each group as a dataset on its
own, which in the remainder we indicate as BreakHis 40×,
BreakHis 100×, etc. The images are labeled into two main
classes (“benign” and “malignant” lesions) and four sub-
classes each, i.e., adenosis, fibroadenoma, Phyllodes
tumor, and tubular adenoma (benign lesions) and carcinoma,
lobular carcinoma, mucinous carcinoma, and papillary car-
cinoma (malignant lesions), respectively. In the experiments,
we only considered the two-class subdivision into benign
and malignant lesions. The original images have dimension
700 px × 460 px, which we centrally cropped to a square
of 460 px × 460 px.

Epistroma: Histological images of colorectal cancer from
643 patients enrolled at Helsinki University Central Hospital,
Helsinki, Finland, from 1989 to 1998.59,60 The tissue samples
have been stained with diaminobenzidine and hematoxylin
and labeled into two classes: epithelium (825 samples) and
stroma (551 samples). The dimension of the images varies
from 172 px × 172 px to 2372 px × 2372 px.

Kather: Histological images of colorectal cancer from 10
patients enrolled at the University Medical Center Mannheim,
Mannheim, Germany.61–63 The tissue samples have been
stained with hematoxylin and eosin (H&E), digitally scanned,
and labeled into eight classes: epithelium, simple stroma,
complex stroma, immune cells, debris, normal mucosa glands,

Journal of Electronic Imaging 011002-5 Jan∕Feb 2018 • Vol. 27(1)

Bianconi, Bello-Cerezo, and Napoletano: Improved opponent color local binary patterns. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 12/13/2017 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



adipose tissue, and background. For each class, there is a
total of 625 image samples of dimension 150 px × 150 px.

LiverAge: Histological images representing liver tissue
from a total of 30 female mice on an unrestricted diet.64,65

The samples are classified into four classes depending on
the age of the subject, i.e., 1, 6, 16, and 24 month, respec-
tively. The tissue specimens have been H&E stained by a
single operator to avoid interobserver variability. The origi-
nal images have a dimension of 1388 px × 1040 px of which
we retained a central crop of size 1040 px × 1040 px.

LiverGender AL: A dataset analogous to LiverAge with
samples representing liver tissue from six-month-old male
and female mice on an ad-libitum diet.64,65 The classification
is two-way in this case: male and female subjects. The other
settings are the same as in the LiverAge dataset.

LiverGender CR: Similar to LiverGender AL, but in this
case, the samples come from six-month-old male and female
mice on a caloric restriction diet.64,65 The classification is
again between male and female subjects, while the other set-
tings are the same as in LiverAge and LiverGender AL.

Lymphoma: A collection of samples from malignant lym-
phoma biopsies sectioned and stained with H&E.66 The data-
set comprises three classes representing different types of the
disorder: lymphocytic leukemia, follicular lymphoma, and
mantle cell lymphoma. The samples have been prepared by
different pathologists at different sites and, as a consequence,
show a large degree of staining variation. The original images
have a dimension of 1388 px × 1040 px, which again we
cropped to a central portion of size 1040 px × 1040 px.

4.2 Comparison with Other Methods
We comparatively evaluated the effectiveness of IOCLBP
with that of 10 LBP variants and 5 pretrained CNNs as
detailed as follows (see also Fig. 2 for a round-up).

4.2.1 Local binary patterns variants

We considered the following LBP variants (sorted by pub-
lication date):

• texture spectrum,67

• LBP,11

• ILBP,36

• OCLBP,9

• completed LBP,68

• oRGB-LBP,24

• extended LBP,69

• local color vector binary patterns,28

• combination of LBPs and LCC,42 and
• hybrid color LBP.25

For each of the aforementioned methods, a rotation-
invariant, multiresolution feature vector was obtained by
concatenating the rotation-invariant feature vectors com-
puted at resolution 1, 2, and 3 (Fig. 5). Rotation invariance
was obtained by grouping together all the local patterns that
can be transformed into one another by a discrete rotation,
which is usually referred to as the “ri” configuration—see
also Refs. 11 and 40 on this point. The number of features
generated by each descriptor is shown in Fig. 2. For details
about each of the aforementioned methods, we refer the
reader to the given references.

4.2.2 Pretrained convolutional neural networks

For calibration purposes, we also included five feature vec-
tors from pretrained convolutional neural networks, specifi-
cally, Caffe-AlexNet, VGG-M, VGG-VeryDeep-16, VGG-
VeryDeep-19, and ResNet-50 as, respectively, described in
Refs. 70–73 For each pretrained model, we considered as
features the L2-normalized output the last fully connected
layer. This approach, which is usually referred to as the
“FC” configuration, proved the most effective in recent com-
parative studies.74

4.3 Classification and Accuracy Evaluation
Classification was based on the parameter-free nearest-
neighbor classifier with L1 (“cityblock”) distance. Accuracy
estimation was performed through split-sample validation
with stratified sampling, i.e., half of the samples of each
class were used to train the classifier and the remaining half
to test it. The estimated accuracy was the fraction of samples
of the test set that were classified correctly. For a stable esti-
mation, the results (Tables 1 and 2) were averaged over 100
random splits into train and test set.

5 Results and Discussion

5.1 Accuracy
Table 1 summarizes the average classification accuracy
obtained with the generic color textures. As can be seen,
IOCLBP + LCC and IOCLBP emerged as the best methods
among the LBP variants in eight datasets out of nine.
Comparison with CNN-based features shows that ResNet-
50-FC outperformed the other descriptors in six dataset
out of nine, while IOCLBP achieved the best accuracy in
the remaining three.

Fig. 5 Pixel neighborhoods corresponding to resolutions 1, 2, and 3.
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With the biomedical textures (Table 2), the scenario was
decidedly more favorable to LBP variants, which proved
superior to CNN-based features in 8 dataset out of 11. In
particular, IOCLBP + LCC emerged as the absolute best-per-
forming methods in 6 datasets out of 11.

Interestingly, the superiority of CNN-based methods with
generic color textures, and, by contrast, that of LBP variants—
distinguishably the descriptors proposed in this paper—with

biomedical textures seems consistent with recent findings75

suggesting that CNNs are more suitable when there is high
intraclass variability, whereas LBP works better with homo-
geneous, fine-grained textures with low intraclass variability.

Finally, no clear trend emerged as for the best color space
among the ones considered (i.e., RGB, Ohta, and opponent
space), with the results showing a rather dataset-dependent
trend.

Table 1 Generic color textures: overall accuracy by descriptor and dataset.

Dataset ID (see Fig. 3)

Descriptor 1 2 3 4 5 6 7 8 9

LBP variants

CLBP 95.8 95.9 81.2 83.5 74.5 94.9 82.0 88.0 88.0

ELBP 93.8 94.7 83.3 86.5 78.7 96.1 78.3 84.2 91.7

HCLBP 95.6 96.5 86.8 86.7 79.8 97.4 86.8 91.4 90.5

ILBP 95.4 95.1 85.5 88.6 76.9 97.1 80.4 87.0 90.5

IOCLBP 96.2 98.5 91.0 91.9 77.7 97.7 91.5 92.7 94.9

IOCLBPoht 93.6 96.6 87.5 86.5 72.5 97.3 85.3 89.0 92.3

IOCLBPopp 94.4 97.2 88.0 87.8 80.0 97.1 82.4 87.3 95.7

IOCLBP + LCC 96.8 98.8 90.0 91.2 78.8 97.4 93.6 95.2 96.0

LBP 94.2 93.5 80.9 83.7 73.8 95.2 74.2 82.1 89.4

LBP + LCC 94.9 95.9 83.6 85.1 79.3 96.7 83.1 89.7 93.7

LCVBP 96.3 97.6 82.8 83.5 75.4 97.3 90.0 93.6 91.5

OCLBP 95.2 97.8 90.9 91.5 76.9 97.0 88.6 90.3 93.3

OCLBPoht 92.7 95.4 85.4 84.7 72.3 96.8 82.2 85.3 90.9

OCLBPopp 92.8 96.1 86.0 86.2 80.7 96.6 78.2 82.2 93.5

OCLBP + LCC 96.5 98.5 89.9 90.8 77.9 96.8 91.7 93.4 94.9

oRGB-LBP 97.3 97.9 84.8 86.3 84.1 97.0 89.7 93.7 92.6

TS 92.9 94.6 81.3 83.9 76.2 96.6 78.7 85.3 91.2

CNN-based features

Caffe-Alex-FC 98.7 99.0 82.9 83.8 71.6 97.6 91.2 95.7 80.0

VGG-M-FC 98.7 99.3 84.9 83.3 74.0 98.4 94.4 97.6 79.2

VGG-VD-16-FC 99.4 99.5 84.3 83.5 77.4 98.6 94.3 96.8 79.5

VGG-VD-19-FC 99.4 99.4 83.8 82.8 78.0 98.6 94.1 96.6 74.6

ResNet-50-FC 99.6 99.7 87.2 86.0 86.6 98.9 97.4 99.2 83.2

Note: Datasets IDs: 1, KTH-TIPS; 2, KTH-TIPS2b; 3, Outex-13; 4, Outex-14; 5, PlantLeaves; 6, RawFooT; 7, STex; 8, USPTex; and 9, V × C TSG.
Note: For each dataset, boldface figures indicate the highest value among the hand-designed descriptors and italic values indicate the highest
among all descriptors.
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5.2 Computational Demand
Table 3 shows, for each descriptor, the average feature
extraction (FE) time per image, the average classification
(CL) time per problem, and the group (QFE and QCL) into
which the population is divided by the corresponding quar-
tiles. The results show that the proposed approaches entail a

higher workload than other LBP variants, as one would
reasonably expect. Compared with CNN-based features,
IOCLBP and IOCLBP + LCC emerge as slower in the fea-
ture extraction step but faster in the classification step due to
the lower-dimensional feature vectors. The table also shows
that there are no significant differences in the computational
demand depending on the color space used.

Table 2 Biomedical textures: overall accuracy by descriptor and dataset.

Dataset ID (see Fig. 4)

Descriptor 1 2 3 4 5 6 7 8 9 10 11

LBP variants

CLBP 83.2 81.6 78.5 77.2 74.7 97.1 86.1 82.6 85.8 93.6 73.6

ELBP 83.7 80.6 75.7 74.7 71.0 92.4 78.1 88.5 90.3 96.3 66.1

HCLBP 84.2 82.5 80.3 78.1 75.6 93.3 87.8 90.5 94.2 97.8 72.3

ILBP 83.7 81.1 80.2 76.9 73.0 92.6 82.2 86.3 92.1 95.7 69.3

IOCLBP 85.4 93.1 92.2 92.7 91.0 91.8 92.2 97.0 95.7 98.6 86.0

IOCLBPoht 85.0 92.6 93.5 92.9 90.8 93.2 92.0 96.7 96.9 98.0 79.6

IOCLBPopp 84.3 91.5 91.2 90.0 87.4 93.0 91.2 96.5 96.0 98.4 81.4

IOCLBP + LCC 85.3 93.7 92.9 93.8 91.9 92.8 93.4 97.9 97.8 98.6 89.5

LBP 83.9 78.3 74.6 72.8 69.9 92.3 75.4 83.9 89.4 94.7 66.0

LBP + LCC 84.7 83.1 78.9 79.6 75.7 93.2 84.0 88.9 96.1 98.6 74.8

LCVBP 85.4 89.8 87.9 87.0 86.1 91.8 90.9 96.4 95.7 98.7 77.4

OCLBP 85.2 91.5 91.2 92.1 90.5 91.8 91.0 96.8 95.3 98.6 82.4

OCLBPoht 85.1 91.7 92.5 92.6 90.4 93.2 91.6 95.8 95.5 97.9 79.0

OCLBPopp 84.2 90.4 90.4 89.4 87.5 93.2 90.4 95.6 95.3 98.7 79.7

OCLBP + LCC 85.4 92.4 92.4 93.2 91.5 92.3 92.5 97.5 97.6 98.6 87.8

oRGB-LBP 85.0 86.7 85.2 84.9 84.4 93.1 85.0 94.3 95.2 98.6 73.5

TS 84.0 80.8 78.0 76.4 72.7 92.0 80.0 86.1 90.3 94.9 68.0

CNN-based features

Caffe-Alex-FC 86.8 85.2 83.8 84.9 84.9 94.3 83.3 81.6 95.8 99.5 73.8

VGG-M-FC 86.8 89.5 87.0 88.6 83.7 95.1 85.1 85.1 95.5 98.1 75.6

VGG-VD-16-FC 86.3 89.7 87.0 87.0 83.4 95.3 86.0 74.2 91.0 92.6 71.1

VGG-VD-19-FC 86.5 88.8 86.4 85.6 83.4 94.5 84.1 73.2 82.0 93.5 63.6

ResNet-50-FC 87.5 93.4 90.9 91.6 89.8 97.3 89.6 87.3 90.5 97.4 77.1

Note: Datasets IDs: 1, BioMediTechRPE; 2, BreakHis40×; 3, BreakHis100×; 4, BreakHis200×; 5, BreakHis400×; 6, Epistroma; 7, Kather; 8,
LiverAgeing; 9, LiverGender-AL; 10, LiverGender-CR; and 11, Lymphoma.
Note: For each dataset, boldface figures indicate the highest value among the hand-designed descriptors and italic values indicate the highest
among all descriptors.
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6 Conclusions
In this work, we have introduced a conceptually simple,
easy-to-implement yet highly discriminative local descriptor
for color images, which we have called IOCLBP. Experi-
mentally, we have demonstrated the superiority of either
IOCLBP alone and/or in combination with LCC with respect
to akin methods (LBP variants) for the classification of color
texture images. In our experiments, IOCLBP’s accuracy was
comparable to that of features based on pretrained convolu-
tional networks—and even better in most cases—but with
the advantage of IOCLBP being conceptually much easier
to implement and training free. Remarkably, the proposed
descriptor proved particularly suitable for the classification
of fine-grained color textures, as, for instance, those con-
tained in histological images.
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