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Visual recognition of aircraft mechanical parts for smart maintenance
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A B S T R A C T

Recent studies experienced the use of advanced tools for smart aircraft maintenance and inspection.

These tools often require the use of computer-vision based technologies to recognize and track a given

aircraft mechanical part in order to make it possible to show additional information to a technician on a

suitable display. In this paper we propose a visual recognition module of aircraft mechanical parts that

has been included in a prototype system designed for the smart maintenance of the Alenia-Aermacchi

M346. The evaluation, carried out on real aircrafts, considers different kind of maintenance operations

that require the recognition of 20 different mechanical parts. The visual recognition module has been

tested under different imaging conditions and varying the scale and the orientation of the parts of

interest. The results confirm the feasibility of our proposal also in such a very challenging and realistic

condition.
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1. Introduction

Maintenance and inspection operations of aircraft structures
have a great impact on the life cycle cost of an aircraft [1–3]. During
the periodic inspection and maintenance operations, technicians
follow an approved baseline program specially designed for each
aircraft. These operations includes the retrieval of information
from suitable technical documentation, verification and reporting
activities [4]. The use of information and communication
technologies, as well as artificial intelligence techniques, can help
to make these operations more cost effective with the same or
better reliability with respect to traditional approaches [5–8].

In recent years, some researchers explored the use of
augmented reality in aircraft maintenance and inspection as an
effective way for displaying additional information about objects
of interest [9–12]. In particular, De Crescenzio et al. [13] developed
a prototype system for aircraft maintenance training and opera-
tions support. The system includes: a head-mounted display to
show augmented reality; a marker-less camera pose estimation to
track mechanical parts by using computer-vision based techni-
ques; an efficient authoring procedure that enables quick and
flexible creation of digital content. The tracking of mechanical
parts has been done by using the SURF (Speeded-Up Robust
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Features) local invariant features. The prototype validation
included 10 people that repeated the oil check procedure on
three different aircrafts.

Jo et al. [14] proposed a system to simplify the aircraft
technicians maintenance tasks, minimize operation errors and
time-related costs. The system is composed mainly of three
modules: the augmented reality module that includes a module for
the tracking of mechanical parts; the knowledge-based system
module to handle the technical documents; a graphical interface
made of small windows and tab controls. The vision-based
tracking, annotation, and recognition is done by using SURF
features and self-similarity image matching.

De Crescenzio et al. [13] and Jo et al. [14] argued mainly on
the feasibility of augmented reality for aircraft maintenance
operations from the user usability point of view. None of the
existing studies reported on the robustness of the computer
vision techniques in recognizing and tracking mechanical parts.
In both papers, authors implicitly validated the goodness of the
Fig. 1. Alenia-Aermacchi M346.
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Fig. 2. Examples of some panels of the aircraft. Each panel contains several internal parts.

Fig. 3. Overview of the architecture of the smart maintenance system.
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underlining computer-vision-based technologies by evaluating
the prototypes efficiency and usability. In addition, both papers
reported only on one maintenance operation: De Crescenzio
et al. [13] experimented only on the oil check procedure while Jo
et al. [14] experimented only on the maintenance task of the
Airbus landing gear. These on-site experimentations required
the recognition of only one mechanical part. One limitation of
previous studies is the lack of a wide and convincing on-site
experimentation that includes different imaging conditions and
computer vision recognition metrics.

This paper proposes a robust method for recognition of aircraft
panel and internal mechanical parts based on computer vision
techniques. This method has been included in a smart aircraft
maintenance system that has been developed within the ‘‘Smart
Maintenance’’ Project.2 The main scope of the project is to help
aerospace companies, manufacturers, operators and service
providers to reduce the costs of direct job needed for maintenance
procedures [15]. Fig. 3 shows the architecture of the smart aircraft
maintenance system developed within the project. The system is
designed for the maintenance of the Alenia Aermacchi3 M346
aircraft represented in Fig. 1. The maintenance procedure includes
the inspection of panels and internal mechanical parts (see some
examples reported in Fig. 2).

The maintenance system includes a technician, an aircraft, a
remote server, an off-the-shelf tablet device and a mobile
application (named ‘‘smart maintenance’’) developed for the
project. The technician uses the application running on the tablet
to take pictures of the panel of interest for a given maintenance
operation. The application sends the picture to a web service,
hosted by the server, that processes it by using computer vision
techniques. The result consists in the identification of the panel
and of the mechanical parts portrayed in the picture.

The computer vision module works as follow: given an image, it
detects the presence of panels and of parts of interest by comparing
the image itself with similar images that have been previously
annotated by manually drawing the polygonal contours of the
2 http://www.smartmaintenance.it.
3 http://www.leonardocompany.com/.
elements to recognize. The experiments considered 248 images
portraying eight different panels and 20 different mechanical parts
of the Alenia-Aermacchi M346. The panels and parts have been
selected by experts from Alenia-Aermacchi because they are
representative of different kind of maintenance operations. Each
panel and each part have been acquired under different imaging
conditions simulating the normal operating conditions encoun-
tered by the technicians performing the maintenance operations.
Therefore, the appearance of the mechanical parts in the pictures
are characterized by a large degree of variability in terms of
lighting conditions, scale and orientation as depicted in Fig. 4.

The information about the panel and the mechanical parts
recognized by the system could be exploited in several ways. For
instance, it may be used to keep a visual log of the operations, to
assist the training of the personnel, to provide additional technical
information, etc. In this work we focus on the use case in which the
maintainer needs to access to the technical documentation
(drawings, 3D models, checklists, operational instructions, etc.)
associated to one ore more mechanical parts involved in a given
maintenance operation. To do so he takes a picture of the panel
hosting the parts he is interested in, and then waits for the
response of the server. The server will send back the same picture
with the recognized parts highlighted by a colored boundary. Then,
the maintainer selects one of the boundaries to query the remote
database for the information related to the corresponding part.
After he finished to read the documentation, he can proceed by
selecting a different part, or by taking a new picture. The complete
use case, that is summarized in Fig. 5, has been implemented in an
experimental prototype which includes the mobile application, the
remote service, and the remote database.

The paper is organized as follows: Section 2 presents an
overview of methods for object recognition. Section 3 describes the
proposed approach for the visual recognition of mechanical panels
and parts of an aircraft. Section 4 describes the experimental
protocol and the results obtained. Finally, Section 5 summarizes
the work and highlights some promising directions for future
research on this topic.

2. Methods for detection of mechanical parts

Object detection consists in determining whether or not a given
object (or an instance of a given category of objects) is represented
in an image and, in the positive case, where it is. Usually the object is
defined by one or more reference images (called templates) where
its location has been manually specified, for instance by providing a
polygonal outline of its boundaries. In the literature, object
detection has been approached with two main approaches [16]:

� template-based methods, in which the pixels of the templates are
directly compared with the pixels in the input image;
� methods based on local descriptors, where salient points in the

input image are selected and mathematically described; the
description of each point is then compared with similar
descriptions computed for the salient points in the templates.

http://www.smartmaintenance.it
http://www.leonardocompany.com/


Fig. 4. Some examples for each of the 20 mechanical parts included in the experimentation. Each example is a crop from a larger picture, and has been resampled to a uniform

width.
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We decided to focus on the second approach because it is more robust
with respect to viewpoint variations, a property that is very useful
when there is the need to introduce as few constraints as possible in
the image acquisition process. In the simplest scenario, the input is a
pair of images: one in which an element of interest has been
previously outlined (i.e. the template), and one (that we will call the
input image) in which we want to determine whether or not there is
another instance of the same element (in that case we also want to
identify its boundary in the image plane). The main steps of the
detection procedure are:

1. detection of salient points (also called keypoints) in the two
images;

2. computation of the descriptor associated to each keypoint;
3. matching between pairs of keypoints from the two images on

the basis of the similarity between their descriptors;
4. search for a geometric relationship that is able to ‘‘explain’’ the
spatial layout of the matching pairs of keypoints.

Fig. 6 illustrates the four main steps, that are described in greater
detail in the following sections.

2.1. Detection of the keypoints

The detection process is based on the matching between pairs
of keypoints. It is very important that their location is chosen in
such a way that the region surrounding them can be recognized
with sufficient reliability even when the images are taken from a
different viewpoint, under different lighting conditions etc.
Moreover, there must be a high chance that the similarity between
two keypoints is not accidental, that is, their similarity must be
indicative of the fact that they correspond to identical points in the
acquired scene. To achieve this, keypoints must be chosen in the



Fig. 5. Schematic view of the use case considered in this work: (i) the operator takes

a picture; (ii) the computer vision module recognizes the parts of the aircraft; (iii)

the operator selects one of the parts; (iv) the corresponding operation and

maintenance manual is retrieved from the remote database; (v) the information is

used to carry out with maintenance operation.

Fig. 6. The main steps of the recognition procedure in which the outlined part in a

template image (left column) is searched in an input image (right column). From top

to bottom: template and input images; keypoint detection; matching between the

descriptors in the two images; boundary of the recognized part, obtained after the

estimation of the geometric transformation relating the matching keypoints.
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proximity of strong discontinuities along multiple directions (for
instance, corners of objects). To do so, several operators have been
proposed in the past. Among the others, we can mention the Harris
corner detector [17] and its improved Harris-Laplace version [18],
the Differences of Gaussian (DoG) operator [19], the Speeded Up
Robust Features (SURF) [20]) and the Features from Accelerated
Segment Test (FAST) [21]. In particular, the last three (DoG, SURF
and FAST) have the advantage of being invariant with respect to
rotation and scale, and, according to the comparison made by
Tuytelaars and Mikolajczyk [22], they are characterized by having
good degrees of repeatability (low sensitivity to the viewing
conditions), accuracy (precision of localization), and robustness
(low sensitivity to image noise, discretization effects, compression
artifacts, blur, etc.). Among these SURF and FAST have been
designed to optimize the speed of computation, sometimes at the
expense of small decrease in accuracy with respect to DoG.

For the reasons outlined above, and considering that in our
application all the computation is performed on the server, we
chose to use the DoG operator. The operator consists in performing
two convolutions of the images with two Gaussian filters differing
in the scale parameter

D ¼ ðI�GðksÞÞ�ðI�GðsÞÞ; (1)

where I � G(s) represents the convolution between the input
image I (converted to gray scale) and a Gaussian filter with
parameter s, and where k > 1 is a constant defining the relative
difference between the scales. The absolute value |D| captures the
amount of discontinuity of the points in the image at the given
scale. The operation is repeated for multiple scales, and the local
maxima in the image plane and across scales, are selected as
candidate keypoints. An orientation is assigned to the candidates
by taking the direction of maximal local variation at their locations.
Finally, candidates of ambiguous position, scale, or orientation, are
discarded.

2.2. Computation of the descriptors

For each detected keypoint a numerical description is
computed to be used for its matching. These descriptors are called
‘‘local’’ because they represent a neighborhood of the keypoint.
They are computed by taking into account the scale and orientation
of the keypoints. A multitude of local descriptors have been
proposed in the literature [23], including the Scale Invariant
Feature Transform (SIFT) [24], the Speeded Up Robust Features
(SURF) [20], the Binary Robust Independent Elementary Features
(BRIEF) [25], the Binary Robust Invariant scalable keypoints
(BRISK) [26], and the Oriented FAST and rotated BRIEF (ORB)
[27]. Among these we choose to adopt SIFT since, according to
several comparative studies [23,28], they often outperform the
others that, in fact, have been mainly designed to approximate the
accuracy of SIFT but with a fraction of the computational cost.

SIFT descriptors are computed from a square region around the
keypoints. The size and the rotation of the region depends on the
scale and orientation of the keypoint. The square is divided in
4 � 4 tiles and for each tile a eight-bin histogram of the direction
of the gradient of the image is computed. The final 128-
dimensional descriptor is obtained by concatenating the
16 eight-dimensional histograms. To avoid local high contrast
measurements from being given too excessive emphasis, Lowe
proposed a two-stage normalization, where the entries after a
first-stage unit sum normalization are limited to not exceed the
value of 0.2, and then the modified image descriptor is normalized
to unit sum again.
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2.3. Pairwise matching

The recognition of panels and parts relies on the detection of
corresponding points in the template and in the input images. A
simple approach for detecting these correspondences consists in
the exhaustive comparison of all possible pairs of keypoints. The
comparison is based on the computation of a distance function
between the descriptors. For instance, the Euclidean distance is
often used to compare SIFT descriptors. Each keypoint in the
input image is compared with all the keypoints in the template
and the most similar one (i.e. that with the closest descriptor) is
selected. If the distance between the descriptors is below a set
threshold then the pair of keypoints is considered as a valid
correspondence.

The quality of the correspondences greatly influences the
reliability of the final recognition. Therefore, it is common to
include additional criteria to reject dubious correspondences. A
widely used one is to reject those case where a keypoint in the
input image shows a high similarity with respect to multiple
keypoints in the template image. More precisely, to accept a
correspondence involving a given keypoint in the input image it is
required that the ratio between the distances with the two most
similar keypoints in the template image is above a set threshold.

The exhaustive search can be too expensive when there are
many keypoints in the images. A strategy for a more effective
selection of the correspondences has been proposed by Muja and
Lowe [29]. Their approach, called FLANN (Fast Approximate
Nearest Neighbors), consists in an approximate search where
the closest keypoints is not guaranteed to be found. The loss in
accuracy is balanced by a huge speed-up. The approximate search
is justified by the fact that no exact method is known that is faster
than the exhaustive search. FLANN combines two methods for the
approximate search: the use of randomized kd-trees [30] and that
of hierarchical k-means clustering [31]. The choice between the
two methods, and the configuration of their parameters is made in
two steps: first the parameters space is sampled and is chosen the
combination minimizing the cost function

cost ¼ s þ wbb

ðs þ wbbÞopt

þ wmm; (2)

where s denotes the time required to search all the keypoints, b is
the time required to initialize the algorithm and m is the ratio
between the amount of memory needed to initialized the
algorithm and that required to store all the keypoints. The weights
wb and wm determine a trade-off between computation time and
memory usage. In a second step the Nelder-Mead optimization
method is used to refine the values previously found.

2.4. Estimate of the geometric transformation

Not all the correspondences are reliable. Some of them may
represent pairs of similar but distinct details in the images. From
the set of all the correspondences found only those that define a
coherent geometric transformation must be taken into account.
The basic assumption is that if there exist a geometric transfor-
mation capable of explaining a large fraction of correspondences,
then it is possible to conclude that the object in the template does
actually occur in the input image. The transformation itself could
then be used to infer the location of the object found. Since the
object we are searching for could have been subject to rotations
and translations in the 3D space, and since its image is the result of
a projective transformation from the 3D space to the image plane,
then the geometric transformation to be determined must be a
homography.
In projective geometry homographies are linear transforma-
tions and thus they can be represented by a 3 � 3 matrix H of
coefficients:
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where xi, yi are the coordinates of the i-th keypoint in the input
image, x0i, y0i are the coordinates of the corresponding keypoint in
the template image. In projective geometry such a relationship can
be determined up to the scaling factor si. Moreover, the
relationship is approximate, due to several factors including the
acquisition noise, the digitization process of the images and the
inaccuracies in the localization of the keypoints. The inexactness of
the relationship suggests to use a least squares fitting approach to
find H. More precisely, it is common to find H by minimizing the
reprojection error [32]:

X
i

x0i�
h11xi þ h12yi þ h13

h31xi þ h32yi þ h33

� �2

þ y0i�
h21xi þ h22yi þ h23

h31xi þ h32yi þ h33

� �2

: (4)

This formulation of the problem assumes that no false
correspondences exist. The presence of false correspondences
(outliers) can introduce large distortions in the reprojection errors.
An optimization strategy that is robust with respect to the
presence of outliers is therefore required. A method with this
property is RANSAC (RANdomized SAmple Consensus) [33].

The RANSAC method works by iteratively selecting a random
subset of correspondences. The selected correspondences are
considered as possible inliers (i.e. non-outliers), and this hypothe-
sis is verified by optimizing H on them by minimizing the
reprojection error. The resulting matrix H is evaluated by counting
how many correspondences (inliers and outliers) agrees with the
geometric transformation that it defines (i.e. how many of them
have an individual reprojection error below a set threshold). If this
number is large enough then H is refined by taking into account all
the concordant correspondences. This procedure is repeated a set
number of times, producing each time a matrix that is rejected due
to the low number of concordant correspondences, or a ‘‘correct’’
matrix together with its reprojection error on the concordant
correspondences. Finally, the matrix with the lowest error is
selected. If all the generated matrices are rejected, then a failure in
the search is declared.

Several variants of RANSAC have been proposed so far, differing
in the criterion used to detect the outliers (MSAC [34]), in the
optimization step (LO-RANSAC [35]), in the use of a-priori

knowledge about the data (PROSAC [36]) etc. According to the
work of Choi et al. these variants can outperform standard RANSAC
in the context of homography estimation [37]. However, in this
work we adopted the standard version and we deferred the
experimentation of the alternatives to our future investigation.

3. Recognition of aircraft mechanical parts

The methods described in the previous section have been
implemented and used to build a system for the automatic
detection of panels and mechanical parts. More in detail, the
system includes two main sub-modules: a panel detector and a
part detector. The panel detector takes the input image, detects its
keypoints and computes their SIFT descriptors. Then FLANN and
RANSAC are used to match the content of the input image with the
templates representing the panels. Templates consist in images
where the panel is open and clearly visible; a polygonal
approximation of the boundary of each panel have been manually
outlined: only the keypoints detected inside the boundary dilated
by 20% are used for the detection. Template images, boundary and



Fig. 7. Scheme of the system for the automatic detection of panels and mechanical

parts.
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keypoints are precomputed and stored in a database. Beside the
criteria used by the RANSAC method, to reduce the amount of false
positives additional heuristics have been introduced. These
heuristics are based on the reprojection of the polygonal contour
from the template image to the input image. Such a reprojected
contour is obtained by applying Eq. (3) to the vertices of the
contour on the template image. Candidate detections are discarded
if one of the following conditions does not hold true:

� the shape of the reprojected contour must be convex;
� its baricenter must fall within the boundaries of the input image;
� the transformation must not imply an inversion of the

orientation of the shape (i.e. if the vertices of the original
Table 1
Performance of the proposed system on 248 images depicting eight panels and 20 diff

# Part name Panel Detection

1 Get home display A 41 

2 Oxygen/air refueling control panel A 58 

3 Engine/fuel display panel A 22 

4 Flight control computer (A &D) B 19 

5 Store management Computer B 15 

6 Lefas bevel gearbox (left side) B 13 

7 Flight control computer (B &C) C 30 

8 Miscellanea computer assay C 31 

9 Lefas bevel gearbox (right side) C 11 

10 Rudder control module D 24 

11 Servo actuator horizontal tail D 19 

12 Valve fuel shut off DC motor operated E 39 

13 Crash survival memory unit E 32 

14 Formation light power supply E 13 

15 Hydraulic filter package (left side) F 18 

16 Hydraulic filter package (right side) F 19 

17 Navigation light power supply G 22 

18 VOR ILS receiver G 21 

19 Valve fuel shut off DC motor operated G 19 

20 Container assy fire extinguisher H 8 

Total 474 
contour have been given in a counterclockwise order, then they
must still be in a counterclockwise order after the reprojection).

When a panel is found, the boundary of the corresponding
template is backprojected on the input image. The keypoints inside
the backprojected boundary are passed to the part detection
module. Then, the templates representing the mechanical parts
that are known to be located in the panel are matched against the
input image with the same approach used to detect the panels. A
graphical overview of the system is depicted in Fig. 7.

4. Experimental results

To assess the performance of the proposed system we
conducted an experimentation on a set of images portraying a
selection of panels and mechanical parts. More in detail we
considered 248 images portraying 20 different mechanical parts
located in eight different panels. The parts have been selected by
experts from Alenia-Aermacchi to be representative of the
elements involved in various kind of maintenance operations.

We used some additional images to provide the panels and
parts ground-truth. Each panel and part has been manually
annotated by drawing a polygon around the region of interest. The
final ground-truth includes a very low number of examples of both
panels and parts (from 1 to 5). The system has been developed in C/
C++ and it has been embedded in the smart maintenance system as
web service.

The computational cost of the visual recognition part is low. The
time required to recognize a single mechanical part is about
500 ms on a Linux Ubuntu machine equipped with an Intel Core i7-
4790 (3.60 GHz � 8 CPUs) and a 16 GB RAM. This time increases as
the number of mechanical part samples used as ground truth
increases. In this case the number of possible comparisons
increases and this influences the computational time. However,
we also noticed that the use of a high number mechanical part
samples as ground truth does not influence too much the accuracy
of the visual recognition module and it is relevant only for those
parts that can be captured under large variations of the view point.
For this reason we decided to keep this number very low.

As performance measures for the evaluation of the mechanical
parts recognition, we considered the detection rate (i.e. the fraction
of instances of the part that have been correctly localized by the
system) and the number of false positives (i.e. the number of wrong
erent mechanical parts.

s No. of instances Detection rate (%) False positives

62 66.1

62 93.5

37 59.5

21 90.5

21 71.4

16 81.2

31 96.8

31 100.0

14 78.6

25 96.0 1

20 95.0 2

43 90.7

41 78.0

28 46.4

19 94.7

21 90.5 2

22 100.0

22 95.5 1

22 86.4

8 100.0

566 83.7 6



Fig. 10. The six false positives found by the system on the 248 test images.

Fig. 8. One example of correct detections for each of the eight panels (A–H from top

to bottom). The identifier and the boundary of the detected parts are displayed on

top of the input images.

Fig. 9. Examples of factors causing missed detections: (a) reflections on a display;

(b, d) occlusion of the part of interest; (c) motion blur. See Fig. 8 for an indication of

the parts that the system was supposed to find.
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detections found by the system, including the cases where the
wrong ID has been assigned to a part, those where the correct part
was detected but at a wrong location, and those where non-
existing parts where found). In agreement with the requirements
from Alenia-Aermacchi, and taking into account the nature of the
use case described in Section 1, the parameters of RANSAC where
tuned to produce as few false positives as possible, even at the cost
of a decrease in the detection rate.

The results obtained are summarized in Table 1. For most parts
the detection rate is quite high, and in three different cases (parts
#8, #17 and #20) 100% of the instances have been correctly
detected. On average the detection rate was of about 83.7%, Fig. 8
shows on example of correct detections for each panel. Most of the
errors were missed detections of displays (#1 and #3), where
highlights and reflections can disrupt the local descriptors.
Another part with a low detection rate is the ‘Formation Light
Power Supply’ (part #14), which has a very simple design: due to
the low amount of details, very few keypoints are extracted for a
possible matching; therefore, even a small amount of mismatches
result in a missed detection. Other missed detections often depend
on low-quality images (underexposed, with motion blur etc.). Fig. 9
shows a selection of missed detections.

We obtained a very small number of false positives (only six).
All of them can be considered as partial detections, where the
correct part was correctly identified, but badly localized. This
happens when all the keypoints detected are clustered in a small
region of the input image. In these conditions the estimation of the
homography cannot be accurate enough, with the result that only
part of the boundary is correctly located in the input image. Fig. 10
show the six false positives produced by the system.

The performance observed in the experimentation confirms that
the proposed recognition module is suitable for the use case
addressed in this work. In fact, the very small number of false
positives (only six on a test set containing 566 detectable parts)
ensures a very low chance of providing the wrong documentation to
the operator that is using the application. More frequent are the
cases in which the system fails to recognize the parts of interest (it
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happens in 16.3% of the cases), but this kind of failures has simply
the effect of encouraging the operator to take better pictures. In fact,
most of the missed detections are caused by an insufficient quality
of the input image and we expect that the frequency of these cases
will naturally drop as the operator learns to use the tool.

5. Conclusion

Maintenance and inspection operations represents a large
portion of the costs related to an aircraft. Without compromising
their reliability, they can be made more cost-effective by exploiting
advanced information and communication technologies. Comput-
er-vision techniques can be used to recognize and track a given
mechanical part, making it possible to show related information to
a technician on a suitable display. Previous works investigated the
feasibility of computer-vision based techniques on a single
maintenance operation, and without providing objective recogni-
tion performance.

In this paper we proposed a visual module that is able to
recognize and to localize various mechanical parts of the aircraft.
The module has been included in a prototype system designed for
the smart maintenance of the Alenia-Aermacchi M346. The
evaluation has been carried out on real aircrafts and addressed
different kind of maintenance operations. We considered
248 images portraying eight different panels and 20 different
mechanical parts taken under different imaging conditions:
orientation, scale and illumination. The experimental results
allowed us to verify the feasibility of our recognition module in
a such a very challenging scenario.
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