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COCOA: Combining Color Constancy Algorithms
for Images and Videos

Simone Zini ¥, Marco Buzzelli

Abstract—We present an efficient combination strategy for color
constancy algorithms. We define a compact neural network ar-
chitecture to process and combine the illuminant estimations of
individual algorithms, that may be based on different assumptions
over the input scene content. Our solution can be specialized to
the image domain, thus expecting a single frame input, and to
the video domain, exploiting a Long Short-Term Memory module
(LSTM) to handle varying-length sequences. To prove the effective-
ness of our combining method we limit ourselves to combine only
learning-free color constancy algorithms based on simple image
statistics. We experiment on the standard Shi-Gehler and NUS
datasets for still images, and on the recent Burst Color Constancy
dataset for videos. Experimental results show that our method
outperforms other combination strategies, and reaches an illumi-
nant estimation accuracy comparable to more sophisticated and
computationally-demanding solutions when the standard dataset
split is used. Furthermore, our solution is proven to be effective
even when the number of training instances available is reduced.
As a further analysis, we assess the individual contribution of each
underlying method towards the final illuminant estimation.

Index Terms—Algorithms combination, color constancy, CNN,
deep learning, illuminant estimation, information fusion, LSTM.

1. INTRODUCTION

OMPUTATIONAL color constancy aims at reducing the
C chromatic dominant in a digital image, originated from
the light source that illuminates the scene. This goal is typically
pursued through the development of an algorithm for illumi-
nant estimation. The research community has been tackling the
problem of computational color constancy for several years,
designing a disparate set of approaches, which range from
handcrafted methods based on low-level image statistics, to
data-driven methods based on middle-to-high level analysis.
Each individual approach necessarily exploits a specific set of
biases and rationales. Due to the ill-posed nature of the problem,
in fact, color constancy is not mathematically solvable without
relying on additional assumptions on the imaged content. For
example, the edge-based color constancy framework by van de
Weijer et al. [1] describes with a unified formulation several
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low-statistics algorithms that are based on different assumptions:
the gray-world hypothesis, which assumes that the average
reflectance in a scene is achromatic, the white patch hypothesis,
based on the assumption that the reflectance achieved for each
of the color channels is equal, or the gray-edge hypothesis,
according to which the average of the reflectance differences
in a scene is achromatic. More recent data-driven methods,
such as deep learning solutions, implicitly operate higher-level
abstractions, by both exploiting statistical biases in the training
data, as well as associations with the semantics of the image
content. However the most recent and most performing methods
are increasingly computationally and memory demanding, and
require large dataset to be properly trained. Many methods for
color constancy operate under the assumption that a single illu-
minant is present in the scene, assumption which is also adopted
within this paper. We refer the reader to Hussain et al. [2], for
an overview of multiple-illuminant color constancy methods,
which are classified as based on local light estimation, pixel de-
tection, convolutional neural networks, or biologically-inspired,
and for a solution that exploits image texture to select pixels with
sufficient color variation to be used for image color correction.

Since different color constancy methods often rely on dif-
ferent assumptions, they can be expected to provide different
and uncorrelated outputs, and to consequently perform better
on different types of input. The illuminants estimated by these
methods, being influenced by the underlying assumptions, can
then be considered as image-describing features, and thus prop-
erly combined through a fusion strategy for improved color con-
stancy. This approach has been successfully adopted in a wide
range of domains, from change detection algorithms for back-
ground segmentation [3], to saliency estimation methods [4], to
color constancy itself [5], [6], [7]. One of the main drawbacks
of the fusion approach is often represented by the inference
time, as it requires running multiple independent algorithms on
the same input, and subsequently combining the results with
a sufficiently-advanced fusion strategy. This aspect becomes
particularly problematic in a video-oriented domain, where time
is considered critical. In such a scenario, therefore, it is fun-
damental to 1) select efficient input methods, possibly sharing
common processing steps to reduce the computational overhead,
and 2) develop an efficient combination strategy. Barron et al. [8]
report a threshold of 30 frames per seconds (FPS) to consider
an algorithm viable for application in the camera viewfinder
stream. The same threshold is also commonly accepted in other
fields, such as responsive systems for assisted driving [9]. Even
in an off-line color constancy setup, where live-feedback is not
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required, a fast computation is still critical for the processing of
long video sequences.

In this paper, assuming to have a set of input color constancy
methods, not necessarily the most effective ones, we design a
very efficient late-fusion combination strategy that is able to
reach an accuracy close to the best algorithms in the state of
the art, keeping at the same time the computational burden
also suitable for the real time video domain. We apply our
single-frame lightweight combination strategy to a selection of
methods based on simple image statistics [1], proving to be
effective even when an extremely limited amount of training
data is available. We outperform other combination strategies
on a standard dataset for single-frame color constancy, and
reach an illuminant estimation accuracy comparable to more
sophisticated solutions.

We also present an extension of our fusion strategy that
exploits a Long Short-Term Memory (LSTM) module to han-
dle varying-length video sequences. Experiments on the re-
cent Burst Color Constancy dataset (BCC) [10] show that:
i) exploiting the temporal component after the combination
gives better results than exploiting it before the combination;
ii) the proposed method outperforms other strategies that can
be implemented to exploit the temporal component; iii) the
proposed method is able to reach an illuminant estimation accu-
racy on video sequences comparable to more sophisticated and
computationally-demanding solutions specifically designed for
video applications.

We also evaluate our solution in terms of inference time,
showing how the combination represents a negligible overhead
on the computational time required by the combined algorithms.
By exploiting and optimizing the redundancies of the underlying
set of input methods, we are able to reach real time performance
at 31 frames per seconds. Finally, we conduct a series of experi-
ments aimed at analyzing the behavior of the proposed combin-
ing method, and at assessing the individual contribution of each
underlying method towards the final illuminant estimation.

II. RELATED WORKS

A. Single-Frame Combinational Illuminant Estimation
Methods

Combinational illuminant estimation methods give an esti-
mate of the scene illuminant by combining the estimates given
by a set of input methods. Combinational illuminant estimation
methods have been reviewed in [11], where they have been
categorized into two main classes on the basis of the information
they use as input: direct combination methods (DC) provide their
final estimate as a combination of the estimates given by the
input methods to be combined; guided combination methods
(GC) exploit additional information extracted from the input
image, in terms of semantic class or features, together with the
the estimates given by the input methods to be combined. Direct
combination methods have been further grouped into supervised
combination (SC) and unsupervised combination (UC) methods:
the former ones have a training phase to learn how to combine
the estimates given by the input methods, while the latter ones
directly combine them without any training phase.
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Concerning the DC methods, Cardei and Funt proposed two
combining methods [5]: Simple Committee, belonging to the
UC methods since the combination is performed by simply
averaging the estimates of the combined algoriths, and LMS
Committee, belonging to the SC methods where the combination
weights are learned in a Least Mean Squares optimization.

Bianco et al. [6] proposed a set of different DC-UC methods
by exploiting the spatial positions of the estimations to be com-
bined. Considering the estimates as points in the space, Nearest-
X averages the estimates of the X algorithms that are closest
between each other. The Nearest-X% combination averages all
the estimates for which the distance between any pair of them
is below (100 4+ X )% of that between the two closest ones. The
No-N-Max method instead averages the estimates excluding the
N estimates having the highest distance from the other estimates.
The last method they propose is the Median combinational strat-
egy that selects the estimate having the smallest total distance
from all the others.

Li et al. [7] proposed two DC-SC methods: the first uses an
Extreme Learning Machine to perform the combination, while
the second exploits a Support Vector Regression.

GC methods exploit additional information extracted from the
image to drive the combination: in [12] each image is described
by a set of low-level features related to color, texture, and edge
distribution and exploits tree-based image classifier trained on
indoor, outdoor, close-up classes; [13] uses general-purpose fea-
tures and problem dependent low-level features without the need
of a proxy constituted by semantic classes; a similar approach
is used in [14], that exploits texture and contrast summarized
in terms of the Weibull parameterization; [15] uses high-level
visual information to improve illuminant estimation by mod-
elling the image as a mixture of semantic classes, such as sky,
grass, road, and building; [16] uses rough 3D scene geometry
to model an image in terms of different geometrical regions and
depth layers.

Given the success of the above combining methods Li
et al. [17] proposed a multi-cue method that combines the
information provided by different cues, e.g. properties of the
low-level RGB color distribution, mid-level initial illuminant es-
timates provided by subordinate method, and high-level knowl-
edge of scene content, within the framework of a tree-structured
group joint sparse representation.

Subhashdas et al. [18], [19] propose a hybrid multi-class
dynamic weight model with an ensemble of classifiers: their
method classifies images into several groups and uses a distinct
dynamic weight generation model (DWM) for each group. The
DWM generates dynamic weight using an image feature that has
a correlation with the capability of the input algorithms used for
combination.

B. Video Illuminant Estimation Methods

Although frame-based illuminant estimation methods can be
applied also to videos and/or image sequences on a per-frame
basis, there are only a few methods actually able to exploit
the temporal component to produce a more robust illuminant
estimate.
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Fig. 1.

\

Combination framework for illuminant estimation combination. The framework is composed of two different steps: the first one corresponds to the

collection of the statistics-based approaches estimations, the second one corresponds to the actual combination of the estimations previously collected. As can be
seen, the Single-Image model and the Video model shares the same architecture for the first combination part: the two models differs for the different heads. In the
Single-Image case, the head is made of only one linear layer, used to map the n f /4 features to the output dimensionality. For the Video model, the n f /4 features
are further processed by a LSTM to exploit the temporal nature of the video sequence. The details of the video sequence processing are shown in Fig. 2.

Yang et al. [20] extract illuminant color from two distinct
frames of the same scene exploiting highlights on specular
surfaces. Prinet et al. [21] propose a probabilistic and more
robust version of [20].

Wang et al. [22] propose a multi-frame illuminant estimation
method by clustering illuminant estimate coming from a stan-
dard method on each frame into a number of video shots and
then exploit a summary statistics to provide a global estimate
for the whole shot.

More recently, Barron et al. [8] extended their single frame
method to work on image sequences by building a smoothing
model inspired by Kalman filter in order to smooth wrong
predictions that may happen on individual frames.

The work of Quian et al. [23] is the first to actually exploit
the information available in the input sequence. They propose
an end-to-end trainable recurrent color constancy network that
exploits AlexNet features and a Long Short Term Memory
(LSTM) recurrent neural network to process sequential input
frames. Their method has been then improved [10] by exploiting
a more powerful backbone network for the semantic feature
extraction, and using a 2D LSTM that provides more effective
spatial recurrent information.

III. PROPOSED METHOD

We propose a framework for the non-linear combination of il-
luminant estimations, using a small neural network composed of
few hidden layers in a multilayer perceptron (MLP) architecture.
The general idea is to exploit the different assumptions related
to different illuminant estimation algorithms. We designed two
variants of this model: a single-image illuminant estimation ver-
sion, and a video estimation version operating on multiple input
frames. In this section we are going to present the framework
for both configurations, with the respective architectures and the
objective function adopted for training.

A. Single-Image Model

The proposed framework for illuminant estimations combi-
nation is illustrated in Fig. 1. The procedure is divided into two
steps: the first step consists in performing the initial illuminant
estimation using a given set of algorithms, in order to collect
the different estimations to be combined. The second step cor-
responds to using our multilayer perceptron, called COCOA, to
obtain the corresponding non-linear combination of the input
estimations.

The COCOA network is a multilayer perceptron model made
of four linear layers which uses Rectifying Linear Unit (ReL.U)
activation functions. The structure of COCOA is represented in
Fig. 1. As can be seen from Fig. 1 the number of perceptrons
per layer is defined as a function of the number of perceptrons
in the first layer. In our configuration we adopted nf = 256,
obtaining a four-layer model with respectively 256, 128, 64,
and 3 perceptrons.

Given a set of algorithms for combination, we train the
COCOA model by giving as input the concatenation of the
estimations, in normalized RGB space, and compare the output
combination with the ground truth. The number of algorithms
used to obtain the starting estimations determine the dimension-
ality of the first layer of COCOA.

B. Video Model

We present a variant of the proposed model, specifically
designed for the processing of video sequences.

In this scenario, for each frame in a given sequence, our model
takes as input a set of estimations, performed with a set of input
illuminant estimation methods, and extracts a vector of nf/4
features. This part of the model corresponds to the first three
layers of the single-image illuminant estimation model. The
resulting features are are then processed by a Long Short-Term
Memory module (LSTM).
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Fig. 2. Combination of the illuminant estimations between frames of a video
sequence. For each frame the 6 estimations are first processed by the Combo MLP
component, then are given in input to the LSTM module. Finally the processed
features are sent to the last two layers, giving in output the final estimation.

For each frame, the LSTM module takes in input the repre-
sentation given by the MLP and generates a new set of features,
representing the frame sequence until the last processed frame.
For each frame of the sequence, the MLP feature extraction step
with the LSTM module temporal processing is repeated, using
as input the estimations of the input methods corresponding to
the new frame, and the hidden state coming from the previous
step of the LSTM module (with exception for the first frame).
The final results coming from the processing of each frame is
eventually passed to a final group of two fully connected layers,
which outputs the estimation for the entire sequence. The video
estimations combination process is depicted in Fig. 2. As can be
seen from Fig. 1, the model for the video estimation combination
is an extension of the original single-image model presented
in Section III-A. Instead of having a final layer which maps
the nf/4 representation to the output dimensionality 3, we have
the new components which handle the multi-frame nature of the
video sequence.

The LSTM is initialized with starting hidden state and starting
cell state at zero values, with hidden state dimension equal to
nf/4. For the last two layers, as can be seen in Fig. 1, the number
of output features for the two fully connect layers is respectively
nf/4 (64 in our configuration using nf = 256) and 3.

C. Loss Function

We train the two models by minimizing the recovery angular
error (expressed in degrees) between the output of COCOA and
the ground truth illuminant associated to the image or to the
video sequence. In the case of the single-image model, we have
a ground truth illuminant for each image in the dataset, while for
the video case scenario, for each video sequence in the dataset
we have a single ground truth illuminant triplet for the entire
video sequence. This is determined by the chosen datasets for
experimentation, as illustrated in Section I'V-B.

The recovery angular error, which quantifies the illuminant
estimation error, is represented by the angle between the vector
given by the target illuminant triplet p9* = (R9t, G9¢, B9) and
the one corresponding to the result of the combination p¥ =
(RE,G¥, BF). Given two illuminants p¥ and p9!, the recovery
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angular error can be calculated as:

(p" - pot)
0 = arccos [ ————— ()
<||PE|| “|lpgt|]

IV. EXPERIMENTAL SETUP

A. Training Setup

The COCOA architecture is written in Pytorch 1.7.0 and
trained on an NVIDIA Titan V with 12 GB of memory. Training
was performed using the Adam [24] optimizer; for the single
image scenario we selected a starting learning rate of 0.003 and
weight decay of 1e-5, while for the multi-frame training we used
a starting learning rate of le-4 and weight decay of le-5. Both
models were trained for a total amount of 3000 epochs.

B. Datasets

To train and evaluate the performance of the COCOA model
we adopted different setups and datasets for the image and
video tasks. For single-image illuminant estimation we used the
569 images of the Shi-Gehler reprocessed dataset [25], [26],
while for the video illuminant estimation task we used the 600
sequences of the Burst Color Constancy dataset (BCC) from
Qian et al. [10].

For single-image illuminant estimation on the Shi-Gehler
dataset we adopted the original three-fold cross validation di-
vision, as done previously by [8], [27], and we performed
validation by randomly selecting the 20% of the training images
for each fold. For the video dataset we used the original dataset
division provided by the authors, for training and test. To validate
the model we randomly selected 20% of the video sequences
from the training set.

C. Combined Input Methods

For each image or frame, we collect six different illuminant
estimations from different statistics-based algorithms:

e Shades of Gray (SoG)

General Gray World (gGW)
Gray Edge 1st order (GE1)
Gray Edge 2nd order (GE2)
Gray World (GW)

White point (WP)

This particular selection aims at creating an overall illuminant
estimation pipeline thatis also practical, i.e. by relying on simple
input methods, its computational complexity remains low and
suitable for a real-time application, as shown in Section V-D.
To perform the illuminant estimation using those models, we
adopted the framework from van de Weijer et al. [1], which
offers a single equation to perform the illuminant estimation
corresponding to different assumptions over the images. The
general hypothesis is described as:

n o’ 1/p
(22 ) s
dz"

where n identifies the derivative order, o is the standard deviation
for a Gaussian filter, implemented with a convolutional kernel
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TABLE I
PARAMETERS FOR EACH ILLUMINANT ESTIMATION ALGORITHM. THE FREE
PARAMETERS THAT CAN BE CHANGED WITHOUT SWITCHING TO A DIFFERENT
METHOD ARE HIGHLIGHTED IN BOLDFACE

COCOA COCOA-fast

n p o n p O

Shades Of Gray (SoG) 0 4 0 0 1 0
Gray World (GW) 0 1 0 0 1 0
Gray Edge 1st order (GE1) 1 1 6 1 1 1
Gray Edge 2nd order (GE2) 2 1 1 2 1 1
general Gray World (gGW) 0 9 9 0 1 1
‘White Patch (WP) 0 oo 0 0 oo 0

whose size is directly proportional to ¢ itself, and p is the order
of the Minkowski norm. These parameters can be controlled
to specialize the behavior of the six algorithms listed above.
More precisely, we define two configurations, as reported in
Table I, aimed respectively at optimizing estimation accuracy
or speed. The first configuration (COCOA) uses values reported
from the state of the art [28]. Although these parameters are
arbitrary, they are representative of a specific use case: a setup
that is potentially optimal in terms of estimation accuracy. The
second configuration (COCOA-fast) is obtained by reducing the
free parameters, focusing on efficiency more than effectiveness.
Here the specific choice of values is driven by the following
motivations: 1) to speed up the computation by sharing common
processing steps among multiple methods, 2) to further speed
up the computation by only exploiting a small convolutional
kernel for the Gaussian filter, and 3) to avoid relying on arbitrary
parameters that are potentially optimized to a specific dataset. As
it can be observed from the table, this second set of parameters
has the Shades of Gray algorithm collapse into a Gray World,
thus reducing the effective total number of input methods from
six to five.

The camera black level is subtracted from all images, and
these are subsequently rescaled to have their maximum side be
256 pixels long. After this pre-processing, we eventually feed
each image into each one of the algorithms, obtaining a total
amount of six estimations per image. These six estimations are
first normalized and then concatenated and used as input for
the COCOA model. We conducted a series of preliminary ex-
periments to define the most appropriate normalization strategy,
including L2 normalization, green channel normalization, and
conversion to various chromaticity representations. The final
configuration, adopted throughout all our experiments, relies on
green-channel normalization. The final output of the network
consists of an RGB triplet corresponding to the non-linear
combination of the input estimates.

V. EXPERIMENTAL RESULTS
A. Combinational Single-Image Illuminant Estimation

In this section we first present the improvement induced by
the proposed COCOA-IH with respect to the input methods
described in Section IV-C, and we then compare our results with
the application of other combinational methods in the state of the
art. The combinational methods belong to the three categories

TABLE I
RESULTS OF COMBINATIONAL SINGLE-IMAGE ILLUMINANT ESTIMATION
ALGORITHMS, IN TERMS OF ANGULAR ERROR (DEGREES) ON THE SHI-GEHLER
DATASET, AND COMPARISON WITH THE COMBINATIONAL ALGORITHMS IN THE
STATE OF THE ART. ALGORITHMS ARE DIVIDED INTO DIRECT COMBINATION
‘WITH UNSUPERVISED COMBINATION (DC-UC), DIRECT COMBINATION WITH
SUPERVISED COMBINATION (DC-SC), AND GUIDED COMBINATION (GC)

Method Mean Med. Trim. 95 Pctl. Max
Shades of Gray (SoG) (0,4,0) 458 258 326 14.18 22.79
Gray World (GW) (0,1,0) 478 3.65 394 10.76  24.91
Gray Edge 1st order (GE1) (1,1,6) 394 285 3.4 11.70 23.37
é Gray Edge 1st order (GEl-fast) (1,1,1) 4.09 315 340 1044 1891
£ Gray Edge 2nd order (GE2) (2,1,1) 412 331 351 1041 17.77
general Gray World (gGW) (0,9,9) 440 289 330 14.07 22.40
general Gray World (gGW-fast) (0,1,1) 479 3.67 396 1342 25.03
White Patch (WP) (0,00,0) 636 393 4.68 19.37 4578
Simple Committee [5] 4.18 3.00 3.42 11.15 20.55
Nearest-2 (global) (N2) [6] 393 288 3.5 11.00 19.99
Nearest-2 (per image) (N2) [6] 404 254 295 13.27 22.07
Nearest-10% (global) (N-10%) [6] 398 263 3.07 11.73  20.80
Nearest-10% (per image) (N-10%) [6] 401 255 296 12.84 21.97
O Nearest-30% (global) (N-30%) [6] 398 268 3.07 11.90 21.49
8 Nearest-30% (per image) (N-30%) [6] 402 265 301 12.84 22.65
A No-1-max (global) (NIM) [6] 403 284 327 11.49 20.57
No-1-max (per image) (NIM) [6] 396 271 3.10 12.15 21.32
No-2-max (global) (N2M) [6] 398 263 3.07 11.73  20.80
No-2-max (per image) (N2M) [6] 390 249 298 11.63 20.83
Median (global) (MD) [6] 394 285 3.14 11.70 23.37
Median (per image) (MD) [6] 389 266 3.03 11.71 20.83
LMS Committee [5] 427 262 295 11.95 68.72
Extreme Learning Machine (ELM) [7] 4.10 3.01 3.17 12.15 2271
%. Support Vector Regr. (lin) (SVRL) [7] 3.51 287 296 9.17 16.51
©  Support Vector Regr. (rbf) (SVRR) [7] 326 245 261 9.32 18.16
2 COCOA-IH (this work) 266 1.78 1.95 8.54 2145
COCOA-IH-fast (this work) 270 177 196 8.84 17.71
Natural Image Statistics comb. (NIS) [14]  4.07 2.98 20.37
© Bianco et al. 2010 [13] 4.09 293 20.44
O Bianco et al. 2008 [12] 389 2.63 20.68
Multi-Cue (MC) [17] 325 220 255

identified in Section II: direct combination using unsupervised
combination (DC-UC), direct combination using supervised
combination (DC-SC), and guided combination (GC). In or-
der to perform a fair comparison, all the compared methods
consider the same set of input methods (and parameters) as
our COCOA-IH solution. The only exception is the Multi-Cue
(MC) method by Li et al. [17], whose code is not available
for reproduction, and whose reported results are based on the
same methods although with slight variation in the choice of
parameters.

The results of illuminant estimation on the Shi-Gehler dataset
arereported in terms of average, median, trimean, 95th percentile
and maximum angular error statistics in Table I, comparing with
other combinational illuminant estimation methods. Additional
comparisons with state-of-the-art illuminant estimation meth-
ods are reported in Table III and commented in the following
Section. Our COCOA-IH model is able to reduce by 32%
the mean angular error with respect to the best input method
(GE1) and by 58% with respect to the worst one (WP), thus
suggesting a good ability at feature selection and combination.
An in-depth analysis of the impact of each underlying input
method is provided in Section V-E. From the reported results
it is possible to see that COCOA-IH is also able to outperform
by a large margin the other compared combinational methods
belonging to all analyzed groups. The version of our model with
fast parameters, COCOA-IH-fast, produces generally equivalent
results with respect to COCOA-IH in this setup.
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Visualization of the three images of the Shi-Gehler dataset on which COCOA-IH obtains the three worst results. Input image (a); collage image obtained

from the six images respectively collected the illuminant estimated by each of the six individual algorithms (b); image corrected with the illuminant estimated by
COCOA-IH, with the angular error overlaid in the top right corner (c); ground truth, i.e. image corrected with the ground truth illuminant (d).

Fig. 3.

TABLE IIT
COMPARISON IN TERMS OF ANGULAR ERROR (DEGREES) WITH THE
INDIVIDUAL, SINGLE-IMAGE ILLUMINANT ESTIMATION ALGORITHMS IN THE
STATE OF THE ART ON THE SHI-GEHLER AND NUS DATASETS. AS A SUBSCRIPT
TO ALL THE MEAN AND MEDIAN ANGULAR VALUES, IT IS REPORTED ITS
POSITION IN A HYPOTHETICAL RANKING

ColorChecker NUS
Mean Median Max Mean Median Max
_ Bright Pixels (BP) [29] 398021 26119
£ Cheng et al. [30] 3.5219) 214015y 2835 302y 21205 2328
S Grey Pixel (edge) [31] 460(23)  3.10(22) 31502 22013
Grey Pixel (revised) [47] 30706 18712
& Buzzelli et al. (gl. norm) [32] 484(05) 41205 2080 4884 4179 187
Z  Buzzelli et al. (ch. norm) [32] 54826 48l(z) 1988 43203 3379 2236
= Quasi-Unsupervised [33] 34617y 22307y 2117 3.00(10) 225014y 19.16
Bayesian [25] 470000y 344(2q) 28115
Spatio-Spectral (ML) [34] 3.550) 29321 2.54(36)
Spatio-Spectral (GP) [34] 34718y 2.90(20) 2.39(15)
Natural Image Statistics [14] 4.09(22)  3.13(23) 2.69(17)
Exemplar-based [35] 2.8913)  2.27(18)
Chakrabarti (Empirical) [36] 28913  1.89(13)
Chakrabarti (End-to-end) [36] 2.56(9) 1.67(9)
g Chengetal [37] 24245 1.65%) 1.58(7)
2 Bianco et al. [38] 2.36(7) 1445, 16.98 1.77(s)
2 FFCC [8] 1.78(3) 0.96(1) 1625 1.99(5) 1.34(1) 19.8
& Ohand Kim [39] 2160, 1477 2415, 215019
CCC (dist+ext) [40] 1955, 122(5) 2384  148(y
FC4 (AlexNet) [27] 177, Ll 212¢4) 153
DS-Net (HypNet+SelNet) [41] 1900 112y 22435 1463
Quasi-Unsupervised + Fine Tune [33]  2.91(15)  1.98(15 1990  1.97(y) 141 (o) 20.5
SIIE [48] 277(12) 19314y 1845  2.0533 1.50(5)
COCOA-IH (this work) 26610) 17811 2145 241 18340 1847
COCOA-TH-fast (this work) 27001y 17700) 1771 23839y 179 1610
COCOA-IH-advanced (this work) 1.60(1) 1.04(5) 14.32

In Fig. 3 we report the three images of the Shi-Gehler dataset
on which COCOA-IH obtains the worst results, while the three
images on which it obtains the best results are reported in Fig. 4.
Itis possible to notice how the worst results correspond to images
with colored background/objects and to a scene with multiple
illuminants. The best results instead correspond to images in
which the underlying assumptions of the individual methods
used by COCOA-IH are more likely to be satisfied.

To further analyze the performance of the proposed combina-
tion framework we trained COCOA-IH with reduced versions of
the training set of the Shi-Gehler dataset. The sizes considered
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(d)

are determined by successively halving its original size from 1,
corresponding to the original size, to 1/32. For each training
set size, five different random selections (runs) are performed:
in Fig. 5 we plot the average angular error and its standard
deviation for each trained model, averaged over the different
runs performed. In the same plot we report the performance of
the best input algorithm combined by COCOA-IH (i.e. Gray
Edge 1st order) as a dashed line. As can be seen in the plot the
best performance are obtained when all the data available for
training in the original splits of the Shi-Gehler dataset are used
(i.e. about 378 images, averaged over the three cross validation
folds). As expected as we reduce the training set size the average
angular error increases. Nevertheless, even reducing the training
set to 1/8 of its original size, which corresponds to a total of
about 48 images (to be further split into the actual training set
and validation set according to a 80%-20% ratio), COCOA-IH
still performs better than the best input method combined. For
smaller training sets the average angular error rapidly degrades,
showing no advantage of using COCOA-IH over the best input
method combined for a training set size equal to 1/16 of its
original size, corresponding to a total of about 24 images to
be further divided into train and validation. The performed
experiment shows how the proposed method COCOA-IH can
improve over the best input method, even when the number of
images available for training is scarce.

B. State-of-the-Art Single-Image Illuminant Estimation

In this experiment we compare the performance of the pro-
posed COCOA-IH with respect to individual state of the art
algorithms for single-image illuminant estimation on the Shi-
Gehler dataset. The 21 compared methods belong to three
different groups on the basis of the type and level of train-
ing they need. The first group encompasses the parametric
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Visualization of the three images of the Shi-Gehler dataset on which COCOA-IH obtains the three best results. Input image (a); collage image obtained

from the six images respectively collected the illuminant estimated by each of the six individual algorithms (b); image corrected with the illuminant estimated by
COCOA-IH, with the angular error overlaid in the top right corner (c); ground truth, i.e. image corrected with the ground truth illuminant (d).
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Fig.5. Performance of COCOA-IH in terms of average angular error reducing
the training set size as a ratio of the classical data partition of the Shi-Gehler
dataset. The dashed line represents the performance of the best input algorithm
used by COCOA-IH, i.e. Gray Edge 1st order (GE1).

methods: Bright Pixels (BP) [29], Cheng et al. [30], and Grey
Pixel (edge) [31]. In the second group there are learning-based
methods that require no supervision in terms of illuminant
ground truth: Buzzelli et al. (global normalization and chan-
nel normalization) [32], and Quasi-Unsupervised [33]. The
third group comprises the fully-supervised methods, that need
a complete training on illuminant data to properly operate:
Bayesian [25], Spatio-Spectral (ML and GP) [34], Natural Image
Statistics [14], Exemplar-based [35], Chakrabarti (Empirical and
End-to-end) [36], Cheng et al. [37], Bianco et al. [38], FFCC [8],
Oh and Kim [39], CCC (dist+ext) [40], FC4 (AlexNet) [27],

DS-Net (HypNet+SelNet) [41], and Quasi-Unsupervised with
Fine Tuning [33].

The results in terms of average, median and maximum an-
gular error statistics are reported in Table III. It is possible to
notice how the best results are obtained within the group of
supervised algorithms. The proposed method with Image Head,
i.e. COCOA-IH, compares favorably with the state of the art,
placing itself in the upper part of an hypothetical ranking, close
to some early CNN-based methods, despite it only combines
unsupervised and parametric methods.

In addition to comparing methods across multiple statistics
(mean, median, maximum errors), an ideal assessment would
involve the Wilcoxon signed-rank test [42] to compare the entire
error distributions, and thus provide a level of statistical signifi-
cance. This was, however, not possible due to the unavailability
of illuminant estimations for the compared methods (aggregate
statistics are reported from the corresponding publications). On
the other hand, it is possible to observe that, according to a
literature survey by Gijsenij et al. [43], a deviation of 1° in
angular error with the ground truth is considered below the
level of what can be perceived by a human being [44], while
the range between 2° and 3° is considered detectable but still
acceptable [45], [46].

Our current experimental setup has been specifically designed
to exploit lightweight methods, resulting in a good compromise
between efficiency and effectiveness. However, the same ap-
proach can be effectively applied to combine more accurate (but
also more computationally-demanding) methods, if the under-
lying application values accuracy over speed. To this extent,
we provide an example of the combination of more advanced
color constancy methods from Table III for which either the
code or the estimations on the Shi-Gehler dataset are publicly
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available: FC4 [27], FFCC [8], DS-Net [41], the method by
Chakrabarti et al. (end-to-end) [36], SIIE [48], and QU (fine
tune) [33]. The results show that, by focusing on the combination
of more advanced methods, it is also possible to exploit their
specific features to achieve state of the art results in illuminant
estimation. This configuration, named COCOA-IH-advanced,
could potentially be applied to other datasets, such as the NUS
for images and BCC for videos, as long as estimations from the
underlying methods are available.

C. Exploiting the Temporal Component

We investigate several solutions to exploit the temporal com-
ponent, and thus to process video sequences. In general, they
can be classified as embedding the temporal component be-
fore or after the combination of input methods. Combining
before (B) allows exploiting the temporal component in each
single input method, while combining after (A) means exploiting
the temporal information only once, at the combination level.

The investigated solutions are the following.

® Frame average: itis the simplest approach where the output
illuminant for a video corresponds to the average of the
estimates on each frame. If it is applied before (B) the
combination, the estimates of each single input algorithm
are individually averaged to give the corresponding video
illuminant estimate; these estimates are then combined
by COCOA-IH to give the final estimate. If it is applied
after (A) the combination, COCOA-IH is applied to the
estimates given by the individual methods to each frame,
and the estimates by COCOA-IH for each frame are then
averaged to give the final estimate.

® Frame median: it is the same approach as the previous
one but considering the median instead of the average
operations to combine the per-frame estimates.

® Gaussian weights with free standard deviation: it is an
extension of the first approach, where the combination
weights are not uniform anymore but are taken from a
Gaussian distribution with a free standard deviation o.
The Gaussian distribution is centered on the last frame
and therefore decreasing weights are given to the older
frames. For simplicity, all the sequences are extended to a
common length by adding the necessary number of dummy
illuminant estimates at the beginning of each sequence.

® Gaussian weights with free standard deviation and center:
it is an extension of the previous approach, in which we let
also the center xy of the Gaussian to be a free parameter.
Similarly to the previous approach, all the sequences are
extended to a common length.

e LSTM - Long Short-Term Memory: in this approach the
temporal component is exploited using LSTMs. When
LSTMs are used before (B) the combination, one LSTM
is applied to each of the inputs of COCOA-IH and the
resulting model is trained end to end. When the temporal
component is exploited after (A) the combination, a single
LSTM is used and the model corresponds to the COCOA-
VH described in Section III. LSTM (B) has been initial-
ized with the same configuration as LSTM (A). The main
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TABLE IV
COMPARISON OF DIFFERENT SOLUTIONS TO EXPLOIT THE TEMPORAL
COMPONENT, TESTED ON THE BCC DATASET. THE “TIME” COLUMN REFERS
TO BEFORE (B) OR AFTER (A) THE COMBINATION OF INPUT METHODS

Method Time Mean Med. 95 Pctl.
Frame average B 4.20 3.15 12.32
Frame median B 4.10 2.68 13.12
Gauss. weights (o) B 4.23 3.03 12.37
Gauss. weights (o, x0) B 3.98 2.90 11.51
LSTM B 2.77 2.06 8.46
Frame average A 2.83 2.11 7.79
Frame median A 2.88 2.05 9.12
Gauss. weights (o) A 2.88 2.17 7.82
Gauss. weights (o, x0) A 2.67 1.91 8.08
LSTM (COCOA-VH) A 2.61 1.66 8.81
TABLE V

COMPARISON IN TERMS OF ANGULAR ERROR WITH THE VIDEO ILLUMINANT
ESTIMATION ALGORITHMS IN THE STATE OF THE ART ON THE BCC DATASET

Method Mean Med. 95 Pctl.
Prinet et al. [21] 7.51 6.94 20.70
Temporal extended GI (T.GI from [10]) 4.73 2.96 17.42
Temporal extended FFCC [8] 3.35 1.70 17.41
RCC-Net [23] 2.74 2.23 8.21
BCC-Net [10] 1.99 1.21 6.34
COCOA-VH (this work) 2.61 1.66 8.81
COCOA-VH-fast (this work) 2.66 1.88 8.44

architectural difference is in the input and output feature
size that in LSTM (B) have been set to 3, corresponding
to the dimensionality of the input estimations to be time
processed.

The different approaches considered to exploit the temporal
component are tested on the BCC dataset [10]. The numerical
results of this comparison are reported in Table I'V: it is possible
to see that the best performance in terms of both average and
median angular errors are obtained by the COCOA-VH which
uses an LSTM to exploit the temporal component. More in
general, it is possible to see how the approaches that exploit
the temporal component after the combination (A) obtain better
results than the corresponding versions that exploit it before (B)
the combination: on average this improvement is 1.1 degrees on
the mean angular error, 0.8 degrees on the median angular error
and 3.2 on the maximum angular error, respectively correspond-
ing to a 26.6%, 27.7% and 25.9% improvement.

D. State-of-the-Art Video Illuminant Estimation

In this experiment we compare the proposed COCOA-VH
against state-of-the art video illuminant estimation methods on
the BCC dataset. We focus on methods specifically designed for
videos/image sequences (i.e. Prinet et al. [21], RCC-Net [23]
and BCC-Net [10]), as well as two existing temporal extensions
of supervised single-frame algorithms (i.e. T.GI for Grayness
Index [47] and T.FFCC for Fast Fourier Color Constancy [8]).

The numerical results in terms of average, median and 95th
percentile angular error statistics are reported in Table V. The
results show how the proposed COCOA-VH ranks second in
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Worst 3 results of COCOA-VH on the BCC dataset. Column 1: plot of the estimates given by the different combined algorithms across the sequence;

the blue dot represents the illuminant estimated on the shot frame by COCOA-VH, while the red cross represents the ground truth. Column 2: sequence frames
corrected with the estimate given by the different combined algorithms, respectively SoG, GE1, GE2, GGW, GW, and WP. Column 3: shot frame corrected with
the estimate by COCOA-VH. Column 4: shot frame corrected with the ground truth illuminant.

terms of both the average and the median error, surpassing more
complex methods.

In Fig. 6 we report the three sequences of the BCC dataset
on which COCOA-VH obtains the three worst results. For each
sequence we draw the plot of the illuminant estimated by each
of the six combined algorithms on each frame of the sequence
plotted as chromaticities in the ARC space [49] together with the
final estimate by COCOA-VH and the ground truth. The plots
show how in the initial frames the six estimates are closer to
the ground truth and then start to diverge from it, thus causing
the drift of the final COCOA-VH estimate. In Fig. 7 we report
the three sequences of the BCC dataset on which COCOA-VH
obtains the three best results. From the plots it is possible
to notice how these cases correspond to sequences on which
the combined algorithms already provide a good illuminant
estimate. Concerning the content of the sequences obtaining
the worst and best results we can observe a strong similarity
with those reported in Figs. 3 and 4. This is not surprising since
both COCOA-IH and COCOA-VH exploit the same set of input
illuminant estimation methods and they have the same backbone
architecture, just differing in the regression head.

As a further analysis we measure the computational com-
plexity of the compared methods, focusing on video illuminant
estimation due to the critical role that efficiency assumes in this
domain: fast online processing allows a direct feedback in the
camera viewfinder, and fast offline processing enables handling

large amounts of video data. Given the heterogeneous nature of
the code available for the different methods, and the different
hardware on which they run (i.e. CPU vs GPU), in order to
perform a fair comparison we decided to calculate the number of
floating point operations for each compared method. In Fig. 8 we
plot the average angular error reached by each method reported
in Table V with respect to the number of operations. From the
plot we can observe how the proposed methods are in the bottom
left corner of the plot, providing the best trade-off between
illuminant estimation accuracy and computational complexity,
with COCOA-VH-fast being the one requiring the lowest num-
ber of operations, i.e. 16.6 millions of operations (M-Ops) of
which just 0.56% are due to the actual nonlinear combination.
In practice, COCOA-VH and COCOA-VH-fast work at 21.97
FPS and 31.48 FPS respectively, the latter fully reaching the
real-time threshold of 30 FPS [8], [9], with the bottleneck being
the CPU-based implementation of the input methods. A lower
illuminant estimation error is obtained by BCC-Net [10], that
requires a number of operations that is two orders of magnitude
higher, i.e. 3277.1 M-Ops.

E. Sensitivity Analysis

In this experiment we carry out a sensitivity analysis of
COCOA-IH in order to understand how a change in one of the
six inputs affects the output.
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Best 3 results of COCOA-VH on the BCC dataset. Column 1: plot of the estimates given by the different combined algorithms across the sequence;

the blue dot represents the illuminant estimated on the shot frame by COCOA-VH, while the red cross represents the ground truth. Column 2: sequence frames
corrected with the estimate given by the different combined algorithms, respectively SoG, GE1, GE2, GGW, GW, and WP. Column 3: shot frame corrected with
the estimate by COCOA-VH. Column 4: shot frame corrected with the ground truth illuminant.

Aprinet et al.

7 -
‘o
]
S 6
@
S,
=
g 5
w A Temporal extended GI
3

4 =
2
< A
g 3 Temporal extended FFCC
o ° A

A .

g COCOA-VH-fast  COCOA-VH RCCNet

21 ABCCNet

1 T

10 100 1000 10000
Operations [M-Ops]
Fig. 8. Plotrepresenting the average angular error (in degrees) with respect to

the computational complexity (in terms of millions of operations) of the methods
reported in Table V. The ideal point is in the bottom-left corner.

The sensitivity analysis is performed exploiting the ARC
color space [49], that has the property that euclidean distances
correspond to angular errors. We modified each of the six inputs
individually, by modifying the estimate given by the correspond-
ing algorithm from O to 0.1 radians (i.e. approximately 5.7°)

in steps of 0.01 radians. The modification is performed along
36 directions, in order to cover the possible hues in 10° steps.
The considered datasets are the reprocessed Shi-Gehler [25]
and the NUS [30], and for each possible input modification the
average angular error is computed. The six surfaces obtained by
considering all the possible input modifications of each input
individually are reported in the top row of Fig. 9 for Shi-Gehler,
and the top row of Fig. 10 for NUS. The bottom row of the same
figures report the level curves of these surfaces. In all the plots the
corresponding crop of the ARC space is reported as a reference
in order to understand the sensitivity with respect to different
hues. The center point of all the six plots correspond to the
case where no input is modified and thus the result corresponds
to the average angular error reported in Tables III and II for
COCOA-IH (i.e. 2.66°).

From the reported plots it is possible to notice how in general
there are inputs with respect to which COCOA-IH is more
sensitive, i.e. the third and the fifth inputs respectively corre-
sponding to GE2 and GW. This is also numerically confirmed in
Table VI where the average slope for each surface is computed.
Furthermore we can observe how the sensitivity is not isotropic
for any of the inputs, but the surfaces are approximately sym-
metric with an axis of symmetry passing close to the center of
the plot and with a different direction for each of the inputs.
The approximate direction of the axis of symmetry is reported
for each surface in Table VI. In particular COCOA-IH is very
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TABLE VI
STATISTICS OF THE SENSITIVITY ANALYSIS OF THE COCOA-TH MODEL WITH
RESPECT TO THE INDIVIDUAL INPUTS ON SHI-GEHLER DATASET (LEFT) AND ON
NUS DATASET (RIGHT): AVERAGE SLOPE, THE HIGHER THE MORE SENSITIVE
IS THE MODEL WITH RESPECT TO THE CORRESPONDING INPUT. DIRECTION OF
AXIS OF SYMMETRY, THAT APPROXIMATELY CORRESPONDS TO THE DIRECTION
OF LOWEST SENSITIVITY

Input  Avg. slope  Axis of Avg. slope  Axis of
symm. symm.

SoG 1.4410 30° 1.2218 20°

GE1 2.9751 10° 1.2795 40°

GE2 6.1226 80° 2.5606 50°
gGW 2.3920 30° 1.0348 30°

GW 4.3267 30° 3.1130 50°

WP 1.4736 20° 2.4321 130°

sensitive to changes in the red-cyan direction for what concerns
GE2 with an axis of symmetry approximately oriented at 80°,
while the most sensitive direction with respect to GW is the
green-purple direction with an axis of symmetry approximately
oriented at 30°. We can also observe how COCOA-IH has a very
low sensitivity with respect to the first and the sixth inputs, i.e.
SoG and WP. It is also possible to notice how there is a region
for each input able to obtain a lower average angular error with

respect to the one obtained when no change is applied to the
inputs. This is due to the fact that in the classical three-fold
subdivision of the Shi-Gehler dataset, the training and testing
illuminants have a different distribution.

E. Performance Analysis With Different Input Cardinalities

In this experiment we want to investigate the behavior of
COCOA-IH when a different number of inputs is available.

We start considering the case when a lower number of inputs
is available: starting from COCOA-IH we remove one input at
a time in order of increasing sensitivity (i.e. the one with the
lowest sensitivity is removed first). The performance in terms
of average and median angular errors are reported in Fig. 11
a. It is possible to observe a general trend of the average error
increasing with alower number of inputs, while the trimean error
shows an oscillatory behavior.

To consider the case of more input methods, we identified
three categories for the values that the free parameters p and
o in Table T can assume: 1 (Low, exactly corresponding to
the COCOA-IH-fast configuration), 5 (Medium), and 9 (High).
Fig. 11 b thus shows the impact on the average and trimean
recovery error statistics by considering an ever increasing
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number of input methods: Low (L); Low and Medium (L&M);
Low, Medium, and High (L&M&H). It is possible to observe
a general trend of the error increasing with the number of
inputs. These results suggest that additional variations of the
same input methods do not provide any added value, as the
corresponding estimations are possibly highly correlated. We
therefore hypothesize as future development the formulation
of input feature selection. Furthermore, an optimization of the
network architecture based on different input cardinalities could
allow for a better exploitation of such inputs.

VI. CONCLUSION

Computational color constancy has been addressed through
the years with a wide variety of approaches, often relying on
different assumptions over the input image. These approaches
are increasingly computation demanding, memory demanding,
and data greedy. In this paper we have proposed a fusion strategy
that efficiently exploits a variety of simple learning-free algo-
rithms for computational color constancy, combining them in
order to provide a lightweight solution that still achieves high
performance. Our solution, which can be specialized to either
the image domain or the video domain, has been thoroughly
evaluated in a wide range of experimental setups on standard
benchmark datasets. We have compared our combination strat-
egy for still images against other combining solutions achieving
top performance, and reaching an illuminant estimation accu-
racy comparable to more sophisticated solutions. We have also
explored different solutions to exploit the temporal component
available when analyzing a full video sequence, and experi-
mentally defined a version of our model that exploits a LSTM
module to handle varying-length videos. This solution has been
tested against other algorithms for video color constancy, both in
terms of angular error and computational complexity, achieving
state-of-the-art performance. Knowing that adaptation to new
devices is a real need in the application domain, we have shown
that reducing the number of training images with respect to the
standard dataset partition, our method is still able to effectively
combine the input methods. Finally, we have conducted a sen-
sitivity analysis aimed at interpreting the combination strategy
learned by our model, and understanding how a change in the
inputs affect the output.
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As future developments, we intend to further explore the
possibilities of input combination when dealing with different
camera sensors, as well as the combination of more complex in-
put algorithms to further reduce the illuminant estimation error.
Furthermore, in this paper we focused on color constancy meth-
ods that are based on the assumption of a single illuminant, i.e.
producing a single estimate per image. However, a combination
technique similar to the proposed one could be applied to meth-
ods designed for multiple illuminant estimation, possibly under
the constraint that they produce estimations in a consistent form.
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