
Research Highlights (Required)

• We investigate the use of CNN-based features for the purpose of food classification and retrieval.

• We compare different CNN architectures and we found that the most suitable architecture is a Residual Network with
50 layers (ResNet-50).

• We evaluate features extracted from the ResNet-50 fine-tuned and trained on food datasets having different food-domain
representativeness.

• We introduce a new benchmark food database, Food-475, which contains 475 food classes and 247,636 images.

• Our results show that the most robust features for food classification and retrieval are those obtained from the ResNet-50
fine-tuned on the Food-475 database.
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ABSTRACT

Features learned by deep Convolutional Neural Networks (CNNs) have been recognized to be more
robust and expressive than hand-crafted ones. They have been successfully used in different computer
vision tasks such as object detection, pattern recognition and image understanding. Given a CNN
architecture and a training procedure, the efficacy of the learned features depends on the domain-rep-
resentativeness of the training examples. In this paper we investigate the use of CNN-based features
for the purpose of food recognition and retrieval. To this end, we first introduce the Food-475 database,
that is the largest publicly available food database with 475 food classes and 247,636 images obtained
by merging four publicly available food databases. We then define the food-domain representativeness
of different food databases in terms of the total number of images, number of classes of the domain
and number of examples for class. Different features are then extracted from a CNN based on the
Residual Network with 50 layers architecture and trained on food databases with diverse food-domain
representativeness. We evaluate these features for the tasks of food classification and retrieval. Results
demonstrate that the features extracted from the Food-475 database outperform the other ones showing
that we need larger food databases in order to tackle the challenges in food recognition, and that the
created database is a step forward toward this end.

c© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Automatic food recognition is an important task for auto-
matic or semi-automatic daily dietary monitoring. Nowadays,
technology can support the users in keep tracks of their food
consumption in a more user friendly way allowing for a more
comprehensive daily dietary monitoring. Computer vision tech-
niques can help to build systems to automatically locate and
recognize diverse foods as well as to estimate the food quan-
tity. Many works exist in the literature that exploit hand-crafted
visual features for food recognition and quantity estimation
both for desktop and for mobile applications (He et al., 2014;
Nguyen et al., 2014; Bettadapura et al., 2015; Ciocca et al.,
2015; Akpro Hippocrate et al., 2016; Pouladzadeh et al., 2016;
Mezgec and Koroušić Seljak, 2017). Features learned by deep
Convolutional Neural Networks (CNNs) have been recognized
to be more robust and expressive than hand-crafted ones. They
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have been successfully used in different computer vision tasks
such as object detection, pattern recognition and image under-
standing. A number of studies have investigated the use of
deep neural networks also for food recognition as in Yanai and
Kawano (2015); Martinel et al. (2016); Fu et al. (2017); Ciocca
et al. (2017a,b); Mezgec and Koroušić Seljak (2017); Ciocca
et al. (2018). The most common food recognition paradigm
is classification. This parading requires a set of annotated im-
ages (Bianco et al. (2013, 2015)). However, in real applica-
tions the amount of examples needed to train a robust classifier
may not be always available. In this case, the food retrieval
paradigm can be used to find similar foods among the avail-
able ones and to suggest a possible food class. Retrieval can be
also exploited by humans to ease the tedious task of annotat-
ing food images. Regardless of the paradigm chosen, existing
food recognition methods are usually benchmarked on a single
database. Although this methodology is useful for evaluation
and comparison, this could limit the generalization properties of
the recognition algorithms. One of the reasons is that databases
may have an unintentional bias such as: similar image acqui-
sition conditions across image classes, similar compositions,
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point of view, etc (Tommasi et al., 2017; Torralba and Efros,
2011). Having a more heterogeneous food database would help
to perform a more general and less database-specific recogni-
tion benchmark. This would also allow the research community
to better evaluate the goodness of the existing and future recog-
nition approaches. Moreover, a more heterogeneous database
would help to train a CNN that can be then used to extract fea-
tures that are more robust than features obtained from a CNN
trained on a specific food database.

The contribution of the present work is twofold. Firstly we
introduce a very large and heterogeneous food database ob-
tained by carefully merging databases from the state-of-the-
art and thus creating the largest food database available in the
literature with 475 food classes and 247,636 images. This
database, denoted as Food-475, is an evolution of the Food-
524 database that we presented in Ciocca et al. (2017b). Food-
524 contains 524 food classes obtained by syntactically merg-
ing food class names of four existing databases. This means
that food classes denoted with a different name but representing
the same food dish were considered as separate classes. Food-
475, instead, contains 475 food classes obtained after apply-
ing a semi-automatic merging procedure that considers seman-
tically equivalent food classes.

Secondly, we evaluate different CNN-based features learned
from a CNN trained on different, publicly available, databases.
We categorize the databases based on their food-domain repre-
sentativeness. We define the food-domain representativeness of
a database in terms of total number of images, number of food
classes, and average number of images per classes. Among
the considered food databases, the features learned on Food-
475 and Food-524 databases, are the best performing ones in
all our experiments. The results of these experiments confirm
our intuition that, in order to have robust features for both food
classification and retrieval, we need a large database, such as
Food-475, for training that is truly representative for the food
domain.

2. Related work

In this section we describe previous work in food image clas-
sification and retrieval with a special attention to CNN-based
approaches.

One of the first works that used Deep Learning within the
context of food recognition was by Kawano and Yanai (2014b).
The food images are described with the features extracted from
the FC7 layer of an AlexNet-style architecture pretrained on
ImageNet. Also combinations of CNN-based features and
hand-crafted features are considered. Images are then classi-
fied using a Support Vector Machine (SVM). The approach is
evaluated on the UECFOOD-100 (Matsuda et al., 2012) and
UECFOOD-256 (Kawano and Yanai, 2014a) datasets. Yanai
and Kawano (2015), evaluated different CNN techniques for
food recognition. These techniques include using network pre-
trained with the large-scale ImageNet data, fine-tuned network
for food classification, and the use of the activation features ex-
tracted from the CNN. The fine-tuning techniques achieve the
best overall results on the UECFOOD databases as well as on

the Food-101 database (Bossard et al., 2014). In Ciocca et al.
(2017a) the AlexNet network is used as feature extraction mod-
ule for classification of food images acquired in a canteen en-
vironment. Classification is performed either using k-NN or
SVM classifier. The learned features outperforms all the hand-
crafted features considered even though they were not specifi-
cally learned on food images.

Hassannejad et al. (2016), used the Google’s image recog-
nition architecture Inception V3. The network, composed of
54 layers, was designed to tackle the ImageNet’s ILSVRC15
and it was fine tuned for classifying food images on the UEC-
FOOD databases. The network is able to greatly surpass the
performances of previous approaches. Also the approach of Liu
et al. (2016), DeepFood, is based on the Inception structure.
In this case, the Inception module is modified by introducing
1×1 convolutional layers to reduce the input dimension to the
next layers. These modifications allow a less complex network
but with some loss in performances. Martinel et al. (2016) de-
vised the WIde-Slice Residual Network (WISeR) designed to
specifically handle structures that can be found in food images.
The network is able to outperform the Inception V3 architec-
ture. CNNs can be used to tackle different tasks simultaneously.
Chen and Ngo (2016) used this ability to build a deep convo-
lutional neural network architecture for simultaneous food in-
gredients recognition and food categorization. Food classifica-
tion results are not improved with respect to the state-of-the art,
but the food ingredients recognition results are promising. The
more complex CNNs have many parameters and require much
time to train. Mezgec and Koroušić Seljak (2017) proposed a
modified version of the Alexnet architecture (NutriNet) which
uses fewer parameter compared with the original design, and is
trained on a very large food database of more than 130,000 im-
ages. The proposed architecture performs slightly worse than
methods based on the Residual Network architecture ResNet
(He et al., 2016). Finally, most of the CNN approaches in the
state-of-the-art are evaluated on single databases. In our previ-
ous experiments we investigated the use of a very large and het-
erogeneous food database in order to design a more robust food
classification approach Ciocca et al. (2017b). The database,
named Food-524, contains 524 food classes for a total of more
than 240,000 images.

Table 1 summarizes different food classification approaches.
The Top-1 and Top-5 accuracies are reported along with the
food databases used in the evaluation and the underlying CNN
architecture.

Compared to food classification, there are few CNN-based
approaches about food retrieval so we have included the most
recent methods using hand-crafted features as well. In Farinella
et al. (2016) different image representations are evaluated on
the UNICT-FD1200 database that has been specifically created
for the task of food retrieval. The database contains 1,200 food
categories and each food plate is acquired multiple times un-
der different geometric and photometric conditions. The image
representations are based on SIFT, Textons and LBP features.
Textons obtained the best results among the representations.
Ciocca et al. (2017b) evaluated a CNN-based image represen-
tation, extracted from a CNN model based on the ResNet-50



3

Table 1. Performances of food classification methods using deep learning
techniques.

Database Network Reference Top-1 (%) Top-5 (%)

UECFOOD-100 DeepFoodCam Kawano and Yanai (2014b) 72.26 92.00
DeepFood Liu et al. (2016) 76.30 94.60
CNN-FOOD(ft) Yanai and Kawano (2015) 78.48 94.85
ResNet(APL) Fu et al. (2017) 80.60 95.90
Inception V3 Hassannejad et al. (2016) 81.45 97.27
MultiTaskCNN Chen and Ngo (2016) 82.12 97.29
WISeR Martinel et al. (2016) 89.58 99.23

UECFOOD-256 DeepFood Liu et al. (2016) 54.70 81.50
DeepFoodCam Kawano and Yanai (2014b) 63.77 85.82
CNN-FOOD(ft) Yanai and Kawano (2015) 67.57 88.97
ResNet(APL) Fu et al. (2017) 71.20 91.10
Inception V3 Hassannejad et al. (2016) 76.17 92.58
WISeR Martinel et al. (2016) 83.15 95.45

Food-101 CNN-FOOD(ft) Yanai and Kawano (2015) 70.41 -
DeepFood Liu et al. (2016) 77.40 93.70
ResNet(APL) Fu et al. (2017) 78.50 94.10
Inception V3 Hassannejad et al. (2016) 88.28 96.88
WISeR Martinel et al. (2016) 90.27 98.71

ChinFood1000 ResNet(APL) Fu et al. (2017) 44.10 68.40
VIREO MultiTaskCNN Chen and Ngo (2016) 82.12 97.29
NurtiNet-DB NutriNet Mezgec and Koroušić Sel-

jak (2017)
86.72 -

Food-524 ResNet-50 Ciocca et al. (2017b) 81.34 95.45

Table 2. Performances of food retrieval methods using both deep learning
techniques and hand crafted features.

Reference Features Database MAP (%)

Farinella et al.
(2016)

Bag of SIFT 1200 UNICT-FD1200 29.14
Textons (MR8) - RGB - Global UNICT-FD1200 77.00
Textons (Schmidt) - Lab - Global UNICT-FD1200 90.06

Ciocca et al.
(2017b)

F-ResNet-50 (ImageNet) UNICT-FD1200 94.15
F-ResNet-50 (Food-524) UNICT-FD1200 96.56

architecture and fine-tuned on the Food-524 database. The re-
sults obtained on the UNICT-FD1200 confirm the strengths of
the learned features with respect to hand-crafted ones.

Table 2 lists the works in the literature specifically dealing
with food retrieval.

3. From Food-524 to Food-475

In this section we introduce the Food-475 database that is an
evolution of the Food-524 database. The Food-524 was cre-
ated by combining the databases Food-50 by Joutou and Yanai
(2009), Food-101 by Bossard et al. (2014), UECFOOD-256
by Kawano and Yanai (2014a) and VIREO by Chen and Ngo
(2016). In Ciocca et al. (2017b) we combined these databases
and merged duplicated classes via syntactic analysis of the la-
bels. Food-524 resulted in one of the largest food database
available. However, some equivalent food classes, that passed
the syntactic analysis, still remains in the database. In this
work, before using it in our experiments of food recognition,
we decided to further process the images and merge semati-
cally equivalent food classes. Belonging to these classes are
those with different names for the same food either because
the names are translated differently (e.g. “gyoza” vs. “jaiozi”
vs “fried dumplings”, or “xiaolongbao” vs. “steamed bun”) or
because the naming convention used in different databases are
quite diverse (e.g. “fish & chip” vs. “fish and chips”, or “dish
consisting of stir-fried potato,eggplant and green pepper” vs.
“fried potato, green pepper & eggplant”). See Figure 1 for some
visual examples.

Manually comparing every pair of classes would require to
inspect 56,316 unique class pairs (ignoring the intra-class food

’Turnip cake’
(Food-50)

’Turnip pudding’
(UECFOOD256)

’Poached egg’
(VIREO)

’Egg sunny side’
(UECFOOD256)

’Jiaozi’
(UECFOOD256) ’Gyoza’ (Food-101) ’Deep-fried dough

sticks’ (VIREO)
’Crullers’

(UECFOOD256)

Fig. 1. Examples of semantically related food classes that can be found in
the Food-524 database.

pairs). In order to cope with this number, we devised a semi-
automatic procedure in order to speed up the identification of
the classes to be merged. The procedure is defined as follows:

1. Every image in the database is described in terms of CNN-
based features as in Ciocca et al. (2017b);

2. Every image is compared against all the other images in
the database using the Euclidean distance;

3. The images are sorted according to their distance from the
query and the top k images are selected (we set k=50). We
consider the top k images as the most similar to the query;

4. A co-occurence matrix M is constructed by accumulating
the evidences that an image of class i is similar (i.e. in the
top k) to an image of class j (i.e. the query). We accu-
mulate these evidences for all the queries and then trans-
form them into probabilities p(i, j) by dividing the number
of occurrences of the given pair of labels against the total
number of occurrences in the matrix M;

5. Starting from the highest p(i, j) with i , j, the images in
the corresponding classes are visually inspected to verify
that they are indeed semantically equivalent;

6. A list of “to-be-merged” classes is compiled.

With the above procedure we evaluated 10,385 class pairs
corresponding to about 18% of the total number of pairs, and
covering about 85% of the total number of food co-occurrences.
At the end of the inspection, we were able to identify 49 class
pairs that are semantically equivalent. These pairs are then
merged thus reducing the original 524 food classes to 475
classes. Figure 1 shows some examples of merged food class
pairs. During the inspection phase, we also found some very
challenging classes with images exhibiting strong visual simi-
larities that are very difficult to disambiguate even for humans.
Figure 2 shows some examples of these classes. For instance,
the two scrambled eggs images are quite similar (top left pairs)
and can be taken for the same food. However the loofah and
bitter melon pieces, under close inspection, present small dif-
ferences in shape. The donuts and bagels (top right pairs) have
the same shape and, depending on the dressing, they may have
the same visual appearance. The last two image pairs (bot-
tom row) can be distinguished only by the ingredients since
they are similarly prepared and presented. This kind of food
classes have not been merged. The database can be downloaded
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’Scrambled eggs with
loofah’ (VIREO)

’Scrambled eggs
with bitter melon’

(VIREO)
’Donuts’ (Food-101) ’Bagel’

(UECFOOD256)

’Ice cream’
(Food-101)

’Frozen yogurt’
(Food-101)

’Lamb Kebabs’
(UECFOOD256)

’Beef Kebabs’
(VIREO)

Fig. 2. Examples of visually challenging food classes containing images dif-
ficult to disambiguate.

from the following link http://www.ivl.disco.unimib.

it/activities/food475db/.

4. Proposed CNN-based features for food classification and
retrieval

CNNs are a class of learnable architectures adopted in many
domains such as image recognition, image annotation, image
retrieval etc. (Schmidhuber, 2015). CNNs are usually com-
posed of several layers, each involving linear as well as non-
linear operators, that are learned jointly, in an end-to-end man-
ner, to solve a particular tasks. A CNN architecture for image
classification includes several convolutional layers followed by
one or more fully connected layers. The output of the CNN is
the output of the last fully connected layer. The number of out-
put nodes is equal to the number of image classes (Krizhevsky
et al., 2012).

A CNN that has been trained for solving a given task can be
also adapted to solve a different task. It is not always possi-
ble to train an entire CNN from scratch, because it is relatively
rare to have a dataset of sufficient size. It is common to use a
CNN that is pre-trained on a very large dataset. For instance
the ImageNet dataset, which contains 1.2 million images with
1000 categories (Deng et al., 2009). The pre-trained network
is then used either as an initialization or as a fixed feature ex-
tractor for the task of interest (Razavian et al., 2014; Vedaldi
and Lenc, 2014). If the network is used as feature extractor, the
pre-trained CNN performs all the multilayered operations and,
given an input image, the feature vector is the output of one
of the last network layers (Vedaldi and Lenc, 2014). The use
of CNNs as feature extraction method has demonstrated to be
very effective in many pattern recognition applications (Raza-
vian et al., 2014; Napoletano, 2018; Bianco et al., 2017; Cusano
et al., 2016).

The first notably CNN architecture that has showed very
good performance upon previous methods on the image clas-
sification task is the AlexNet (Krizhevsky et al., 2012) After
the success of AlexNet, many other deeper architectures have
been proposed such as: VGGNet (Simonyan and Zisserman,
2014), GoogleNet (Szegedy et al., 2015), and Residual Net-
works (ResNet) (He et al., 2016). ResNet architectures has
demonstrated to be very effective on the ILSVRC 2015 (Im-

ageNet Large Scale Visual Recognition Challenge) validation
set with a top-1 recognition accuracy of about 80%.

Due to its remarkable performances, the CNN-based features
proposed in this paper have been obtained by exploiting a deep
residual architecture. Residual architectures are based on the
idea that each layer of the network learns residual functions
with reference to the layer inputs instead of learning unrefer-
enced functions. He et al. (2016) demonstrate that such archi-
tectures is easier to optimize and it gains accuracy also when the
depth increase considerably. Our reference network architec-
ture is based on the ResNet-50 which represents a good trade-
off between depth and performance. The activations of the neu-
rons in the fully connected layer are used as features for the re-
trieval of food images. The resulting feature vectors have size
2,048 components.

5. Food classification and retrieval experiments

Our experiments are organized into several steps:

1. We compared different notable CNN architecture with the
aim to confirm that the ResNet-50 is the best performing
one for food classification of the Food-475; (cf. Subsec-
tion 5.1);

2. We compared a fine-tuned ResNet-50 with a trained from
the scratch (cf. Subsection 5.1);

3. We compared six ResNet-50 fine-tuned on the follow-
ing databases for the food classification task: Food-50,
UECFOOD-256, Food-101, VIREO, Food-524 and Food-
475 (cf. Subsection 5.2);

4. We evaluated the features extracted using the fine-tuned
CNNs obtained in the previous step for both food classi-
fication (cf. Subsection 5.3) and retrieval (cf. Subsection
5.4) tasks of the UNICT-FD1200 and Food-475 databases.
In this evaluation we also considered features extracted
from a pre-trained CNN on ILSVRC15 and the ones ob-
tained by considering features pooling strategies.

5.1. Best performing CNN architecture choice

As stated in section 4, we proposed to extract CNN-based
features exploiting the ResNet-50 architecture since residual
networks proved very effective for classification in different ap-
plication domains.

To validate our choice, we compared the ResNet-50 architec-
ture against some of the most notable CNN architectures in the
literature. To this end we focused only on the food classification
task exploiting the fine-tuning training strategy as previously
done in Martinel et al. (2016); Kawano and Yanai (2014b); Fu
et al. (2017). Our assumption is that a robust food classification
CNN is also able to extract robust features for food retrieval.

We used 75% of the Food-475 database for fine-tuning and
25% for performance evaluation. The network architecture in-
cluded in the evaluation are: AlexNet (Krizhevsky et al., 2012),
the reference Caffe implementation of the ImageNet (Jia et al.,
2013), GoogleNet (Szegedy et al., 2015), the very deep net-
works VGG-16 and VGG-19 (Simonyan and Zisserman, 2014),
and the Inception V3 (Szegedy et al., 2016).
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Table 3. Classification accuracy of the Food-475 database using different
CNN architectures and transfer learning. 75% of the total number of im-
ages of each database is used for fine tuning and 25% is used for test. Suffix
-S means that the network is trained from scratch.

Network Top-1 (%) Top-5 (%)

AlexNet (Food-475) 61.10 84.74
Caffe-Reference (Food-475) 61.43 85.20
GoogleNet (Food-475) 71.75 91.28
VGGNet-16 (Food-475) 73.94 92.28
VGGNet-19 (Food-475) 73.57 93.72
InceptionV3 (Food-475) 74.46 92.95
ResNet-50 (Food-475) 81.59 95.50

ResNet-50-S (Food-475) 69.45 91.01

After having experimented with different settings, we found
that the best classification results can be obtained by fine-tuning
the networks via stochastic gradient descent with a mini-batch
of 16 images, initial learning rate of 0.001 that decreases of a
factor 10 at every 20K iterations. All the networks have been
fine-tuned within the Caffe framework (Jia et al., 2014) on a PC
equipped with a Tesla NVIDIA K40 GPU.

Results, in terms of Top-1 and Top-5 classification accu-
racy, are reported in Table 3. Classification accuracies of our
ResNet-50 network are also reported. As it can be seen, the
ResNet-50 exhibits the best results for the Top-1 with an ac-
curacy of 81.59%. The runner up is the Inception V3 network
with 74.46%. The VGG networks have similar results with the
accuracy of the VGG-16 half a point better than the VGG-19
(73.94% against 73.57%). The AlexNet architecture shows the
worse results with a 61.61% accuracy that is more than 20%
percentage points lower than the accuracy of the ResNet-50.
The Top-5 results exhibits a similar behavior as the Top-1 re-
sults.

These results confirm our intuition that the ResNet-50 is the
most suitable architecture to be exploited for classification and
feature extraction for food recognition and retrieval tasks.

As a further experiment, we compared the fine-tuned
ResNet-50 with a trained from scratch one by using the same
evaluation setup as before. We trained this network via stochas-
tic gradient descent with a mini-batch of 24 images, initial
learning rate of 0.1 that decreases of a factor 10 at every 50K it-
erations. The network have been trained within the Caffe frame-
work on a Server machine equipped with two Tesla NVIDIA
K80 GPUs.

For this network configuration, ResNet-50-S in Table 3, we
obtained a classification accuracy of 69.45% that is more than
12 percentage points lower than accuracy of the fine-tuned
ResNet-50. This is probably due to the fact that some of the
food categories in the Food-475 database contain too few im-
ages to effectively train the network.

In the following, we will present experiments carried out us-
ing the fine-tuned ResNet-50 network.

5.2. Building food-domain CNN-based features
To evaluate different food-domain CNN-based features we

compared six ResNet-50 networks fine-tuned on the follow-
ing databases: Food-50, UECFOOD-256, Food-101, VIREO,
Food-524 and Food-475. Each database has different charac-
teristics: a different number of food classes, ranging from 50

# images for class 

#
 i

m
a

g
e

s
 

ImageNet 

Food-475 Food-524 

VIREO 
Food-101 

UECFOOD256 

Food-50 

Fig. 3. Diagram of food-domain representativeness. The size of the circle
is proportional to the number of food classes. The x axis represents the
average number of images for each class. The y axis represents the total
number of images contained in the database.

Table 4. ResNet-50 classification accuracy on the food databases under con-
sideration. 75% of the total number of images of each database is used for
training and 25% is used for test.

Training and Test database Top-1 (%) Top-5 (%)

ResNet-50 (Food-50) 93.84 99.44
ResNet-50 (UECFOOD-256) 71.70 91.33
ResNet-50 (Food-101) 82.54 95.79
ResNet-50 (VIREO) 85.86 97.32
ResNet-50 (Food-524) 81.34 95.45
ResNet-50 (Food-475) 81.59 95.50

to 524, and a different average number of examples for each
class, ranging from about 100 to about 1,000. Considering these
characteristics, the databases under consideration can be cate-
gorized in terms of food-domain representativeness, that is the
more classes and examples for each food class are included in
the database and the more the database is representative of the
food domain. Figure 3 is a diagram showing the number of
food classes (size of the circle), average number of image for
each class (x axis) and total number of images (y axis). For
sake of comparison, the diagram includes all the databases con-
sidered and the ILSVRC15 database (ImageNet) Russakovsky
et al. (2015), which does not contain food images but has been
widely used as basis for domain transfer learning. From the dia-
gram is quite clear that the ImageNet database, that is the small-
est possible circle, contains the lowest number of food classes,
the highest total number of images and highest number of im-
ages for each class. Food-475 and Food-524 contain the highest
number of food images among all food databases, while Food-
50 is the smallest food database considered. We have divided
each database in approximately 75% training and 25% test ac-
cording to the splits provided by the authors of the correspond-
ing papers. In the case of Food-524 and Food-475, the training
and test split has been obtained by merging the training and test
sets of Food-50, UECFOOD-256, Food-101, and VIREO. All
the networks have been fine-tuned using the same parameters
as in the Subsection 5.1.

Table 4 shows the classification accuracy of the six ResNet-
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F-ResNet50-(UECFOOD-256)

F-ResNet50-(Food-101)

F-ResNet50-(VIREO)

F-ResNet50-(Food-50)

F-ResNet50-(AVG-POOL)

Fig. 4. Conceptual diagram of the average pooling (AVG-POOL) strategy
for CNN-based feature extraction.

50 fine-tuned using the various food databases for both training
and test. In the case of Food-50, UECFOOD-256, Food-101,
and VIREO, the Top-1 and Top-5 accuracies are coherent with
those obtained from state-of-the-art methods based on the same
database. These results are not surprising if evaluated taking
into account the food dataset characteristics showed in Figure
3. The results of ResNet-50 trained on the Food-524 database
here reported differs from the results reported in our previous
work Ciocca et al. (2017b), where we trained the network using
different parameters.

As baseline we have also considered the features extracted
from a ResNet-50 pre-trained on the ImageNet database. Fi-
nally, for the sake of comparison, we have also experimented
a meta feature vector obtained by combining the features ex-
tracted from each CNN trained on Food-50, UECFOOD-256,
Food-101, and VIREO. We have experimented max and aver-
age pooling as ways to combine, and we report here only the
results obtained with the best performing one, that is average
pooling (AVG-POOL). Figure 4 shows how these features are
obtained. In total we evaluated eight different CNN-based fea-
tures.

The next two sections report the results of the eight CNN-
based features evaluated for the tasks of food classification
and food retrieval respectively. The evaluations are performed
on the Food-475 and UNICT-1200 databases. The UNICT-
FD1200 database (Farinella et al., 2016) has been chosen be-
cause it was specifically designed for food retrieval. It is com-
posed of 4,754 images and 1,200 distinct dishes of food of dif-
ferent nationalities.

5.3. Food classification using CNN-based features

In order to test the effectiveness of the extracted CNN-based
features for food classification, we chose to use a very simple

Table 5. Classification results on the UNICT-FD1200 and Food-475
databases using k-NN.

UNICT-FD1200 Food-475
CNN-based Features Top-1 (%) Top-1 (%)

F-ResNet-50 (ImageNet) 91.84 40.46
F-ResNet-50 (Food-50) 91.26 37.76
F-ResNet-50 (UECFOOD-256) 94.54 42.17
F-ResNet-50 (Food-101) 95.31 57.95
F-ResNet-50 (VIREO) 94.96 57.92
F-ResNet-50 (AVG-POOL) 95.98 53.69
F-ResNet-50 (Food-524) 96.56 67.78
F-ResNet-50 (Food-475) 96.49 68.01

k-Nearest Neighbour (kNN) classifier with k = 1. Features are
compared using the Euclidean distance. As evaluation mea-
sure, we adopted the top-1 classification accuracy, that is the
percentage of images correctly classified with respect to the to-
tal number of images. In the case of the Food-475 database,
we considered its test set that contains approximately the 25%
of the entire database, that is 65,404 images. The classification
experiment was conducted as follows. Let N be the number
of available test images. We considered each image as a test
sample and performed the k-NN classification using the remain-
ing N − 1 images as training samples. For the UNICT-FD1200
database, we followed the original evaluation protocol. Specif-
ically, the food database is divided into a training set of 1,200
images and in a test set with the remaining ones. The three
training/test splits provided by the authors of the database are
considered. The overall classification accuracy is measured as
the average accuracy on the three splits.

Classification results are shown in Table 5. For both
databases the Top-1 accuracy suggests that CNN-based features
obtained using Food-475 and Food-524 perform better than
CNN-based features extracted form the ImageNet even though
the training database is very large. In the case of the UNICT-
FD1200 database the improvement obtained by the CNN-based
features trained using Food-475, i.e. F-ResNet-50 (Food-475),
with respect to ImageNet features, denoted as F-ResNet-50
(ImageNet), is not so high and it is about 5%. This is due to the
fact that the UNICT-FD1200 database is made of many classes
but a low number of examples of classes (4.7 on average). For
this reason, the classification task of UNICT-FD1200 is not as
challenging as in the case of Food-475.

The Top-1 accuracy reached by the CNN-based features
trained using Food 50, that are denoted as F-ResNet-50 (Food-
50), is quite similar to the top-1 accuracy reached by F-ResNet-
50 (ImageNet). This is explained by fact that the Food-50
database contains a very low number of food classes (see also
Figure 3). In the case of the Food-475 databases the improve-
ment with respect to no food-domain features is quite high and
it is about 28%. ResNet-50 trained using Food-475 and Food-
524 achieve similar classification accuracy. The results ob-
tained in both databases using the aggregated features, denoted
as F-ResNet-50 (AVG-POOL), are lower than the F-ResNet-50
(Food-475) and F-ResNet-50 (Food-524). This shows that is
more effective to have features obtained on merged databases,
than merging the features themselves.
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Table 6. Retrieval results on the UNICT-FD1200 and Food-475 databases.
UNICT-FD1200 Food-475

CNN-based Features mAP (%) mAP (%)

F-ResNet-50 (ImageNet) 94.15 7.43
F-ResNet-50 (Food-50) 93.76 7.57
F-ResNet-50 (UECFOOD-256) 96.25 8.84
F-ResNet-50 (Food-101) 96.79 19.97
F-ResNet-50 (VIREO) 96.54 24.92
F-ResNet-50 (AVG-POOL) 97.29 15.81
F-ResNet-50 (Food-524) 97.71 30.03
F-ResNet-50 (Food-475) 97.66 31.56

Fig. 5. Comparison of retrieval accuracies of the different CNN-based fea-
tures on the UNICT-FD1200 database.

5.4. Food retrieval using CNN-based features
The retrieval experiments are also conducted on the UNICT-

FD1200 and Food-475 databases. For the UNICT-FD1200, as
in the original paper, the images in the training set are consid-
ered as database images, while the images in the test set are the
queries. Moreover, for each query there are up to four correct
images to be retrieved. For the experiments on the Food-475
database, retrieval is performed using only the test set and a
one-vs-rest approach. An image of the test set is considered a
query, and the remaining images in the test set as the target
database. All the images in the test set have been evaluated
as queries. The retrieval performances are measured using the
P(n) quality metric and the Mean Average Precision (MAP).
The P(n) is based on the top n criterion: P(n) = Qn/Q, where
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Fig. 6. Comparison of retrieval accuracies of the different CNN-based fea-
tures on the Food-475 database.
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Fig. 7. Comparison between P(n) curves of the CNN-based features in the
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Fig. 8. Comparison between P(n) curves of the CNN-based features in the
case of the Food-475 database.

Q is the number of queries (test images) and Qn the number
of correct queries among the first n retrieved images (Farinella
et al., 2016).

Table 6 shows the retrieval results obtained on the UNICT-
FD1200 and Food-475 databases. As it can be seen, the fea-
tures computed on the Food-524 and Food-475 databases out-
performs the other ones. Again, the more heterogeneous food
database perform better than no food-domain features in both
databases. In the case of UNICT-FD1200 the improvement is
quite low, about 3%, while in the case of Food-475 the improve-
ment is about 25%. As in the case of the classification task, fea-
tures computed on the Food-524 and Food-475 databases have
small performance differences.

Figures 5 and 6 summarize the MAP behaviour in both
UNICT-FD1200 and Food-475 databases. In both cases can
be observed that the larger is a food database the higher is the
retrieval accuracy. Figures 7 and 8 show the P(n) curves of the
CNN-based features considered for both the UNICT-FD1200
and Food-475 databases. To make the curves more readable
we show just a portions of them. It can be appreciated how the
features extracted from databases with high food-domain repre-
sentativeness are able to effectively retrieve the relevant images
in the first positions.

From the results in Table 6, and Figures 5, 6, 7, and 8, it is
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Fig. 9. Pseudo-relevance feedback experiments performed on the Food-475
database.

quite evident that the higher is the food-domain representative-
ness of the database is, the more the features learned using such
database greatly improve the precision of the retrieval with re-
spect to the other methods, allowing more relevant images to be
returned in the first positions. As already noted in the classifica-
tion task, the meta features, that is F-ResNet-50 (AVG-POOL),
does not perform better than the F-ResNet-50 (Food-475) or F-
ResNet-50 (Food-524).

To further evaluate the usefulness of these two features
we have experimented with the pseudo-relevance feedback re-
trieval scheme. Following this scheme, after the initial query,
the first n items returned by the system are considered as rele-
vant to the initial query and then used to re-query the system.
The final list of returned items is obtained by combining each
list returned with respect to each query. As a result, if the ini-
tial query returns a high number of relevant items in the first
positions, the result of the new query is likely more accurate.
We performed these experiments on the Food-475 database be-
cause the UNICT-FD1200 database contains, on average, only
4.7 images for each food class. Figure 9 shows the results ob-
tained by experimenting the pseudo-relevance feedback (PRF)
by exploiting different values of relevant images n ranging from
1 to 10. The use of PRF leads to an improvement of about 4%
with two relevant images added to the initial query. Then the
improvement remain constant as the number of relevant images
added increase.

6. Conclusion

In this paper we present an evaluation of CNN-base features
for food classification and retrieval. We use a Residual Network
with 50 layers as a reference architecture to learn food-domain
features. We argue that, in order to have robust features for
food-related tasks, we need food-domain representative food
database. To test this, we consider different food databases
publicly available and categorize them according to their food-
domain representativeness that we expressed through the total
number of images, number of classes of the domain and number
of examples for class. We also introduce a new food database,
Food-475, that is a refinement of our previously proposed Food-

524 food database. This database exhibits a higher food-domain
representativeness with respect to the other databases consid-
ered. The features learned on the proposed database outper-
forms those learned on other food databases and on the very
large ImageNet image database. Specifically, experiments on
the test sets of the Food-475 and UNICT-FD1200 databases
show that these features exhibits large improvements in accu-
racy for food classification and recognition tasks. This demon-
strates that the more is representative the database for food do-
main and the more is accurate the recognition and retrieval of
features obtained from a CNN trained on that database. The
Food-475 is the largest, publicly available, database in the state
of the art. We think that it will be of great interest for the scien-
tific community for the design of more robust food recognition
and retrieval algorithms. For this reason we will soon make the
database available for download.
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