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ABSTRACT We propose a deep residual autoencoder exploiting Residual-in-Residual Dense Blocks
(RRDB) leveraging both the learning capacity of deep residual networks and prior knowledge of the JPEG
compression pipeline. The proposed method is blind and universal, consisting of a unique model that
effectively restores images with any level of compression. It operates in the YCbCr color space and performs
JPEG restoration in two phases using two different autoencoders: the first one restores the luma channel
exploiting 2D convolutions; the second one, using the restored luma channel as a guide, restores the chroma
channels exploiting 3D convolutions. Extensive experimental results on four widely used benchmark datasets
(i.e. LIVE1, BDS500, CLASSIC-5, and Kodak) show that our model outperforms state of the art methods,
even those using a different set of weights for each compression quality, in terms of all the evaluation metrics
considered (i.e. PSNR, PSNR-B, and SSIM). Furthermore, the proposed model shows a greater robustness
than state-of-the-art methods when applied to compression qualities not seen during training.

INDEX TERMS JPEG restoration, deep learning, residual network, autoencoder.

I. INTRODUCTION
Image compression represents a very active research topic
due to the high impact of the data in a large number of
fields, from image sharing on the web to the most specific
applications involving the acquisition of images and transfer
to elaboration nodes. Specifically, image compression refers
to the task of representing images using the smallest storage
space possible.

Compression algorithms play a key role in saving space
and bandwidth for the memorization and transfer of large
amounts of images. Two different compression paradigms
exist: the former is lossless image compression, where the
compression rate is limited by the requirement that the
original image must be perfectly recovered; the latter, more
diffused, is lossy image compression, where higher com-
pression rates are possible at the cost of some distortion in
the recovered image. Among the lossy compression algo-
rithms, the most diffused and used is the JPEG compression
algorithm.

The JPEG compression algorithm first converts the orig-
inal RGB image into YCbCr color space and processes
the luma and chroma channels separately. It divides the
luma channel of an input image into non-overlapping 8 × 8
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FIGURE 1. PSNR-SSIM comparison of the state-of-the-art-models and our
proposed method. For both metrics higher value means better visual
results.

blocks and performs the Discrete Cosine Transform (DCT)
on each block separately while downsampling the chroma
components with a bilinear filter. The DCT coefficients
obtained from the luma channel are then quantized based
on quantization tables and adjusted using the user-selected
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Quality Factor. The image is then reconstructed from the
quantized DCT coefficients by using the inverse DCT. The
described JPEG encoding operation introduces three kinds
of artifacts in the recovered images, related to the quality
factor used for the compression: i) blocking artifacts, which
come from the recombination of the 8 × 8 blocks, that are
independently compressed without considering the adjacent
blocks; ii) ringing artifacts, which are most visible along
the edges and are related to the coarse quantization of the
high-frequencies components; iii) blurred low-frequencies
areas, which is also related to the compression of the high-
frequencies in the DCT domain.

The presence of these kinds of artifacts represents a prob-
lem since the general quality of the images is degraded result-
ing unpleasing for normal users and for generic applications
(e.g. projection, print, etc.), or even useless for computer
vision applications where the loss of information can be
potentially critic for the task [1], [2].

With the purpose of reducing these artifacts, in the last
years, a lot of JPEG artifact reduction algorithms have
been proposed. These methods include both traditional
image processing pipelines [3]–[10] and machine learning
approaches [11]–[20], both making great steps in the restora-
tion of corrupted images. However, thesemethods suffer from
two main limits: the first one is that they need to train a dif-
ferent model for each possible Quality Factor (QF), making
them not generally applicable to general images downloaded
from the web unless the QF used for compression is known;
the second one, is that the great majority of methods in the
state of the art restores just the luma channel or do not fully
exploit the knowledge about the JPEG compression pipeline.

To address these problems we propose a new method for
the blind universal restoration of JPEG compressed images,
based on machine learning, specifically on convolutional
autoencoders. The proposed approach consists of two deep
autoencoders respectively used for luma and chroma restora-
tion, that are able to restore images independently from the
quality factor used for the compression. The main contribu-
tions are the following:

- the design of a method for the blind universal restoration
of JPEG compression artifacts that is independent from
the QF used;

- the design of a model trainable end-to-end that fully
exploits knowledge about JPEG compression pipeline;

- a thorough comparison with the state of the art on three
standard datasets at fixed QFs;

- an analysis of the robustness of restoration results at QFs
not used for training.

II. RELATED WORKS
The task of JPEG compression artifacts removal has been
faced in different ways in the past years. The existing
proposed methods can be broadly classified into two groups:
traditional image processing methods and learning-based
methods.

The first group includes methods based on traditional
image processing techniques working both in the spatial and
in the frequency domain. For spatial domain processing,
different kinds of filters have been proposed, with the intent
of restoring specific areas of the images such as edges [3],
textures [4], smooth regions [5], etc. Algorithms usually rely
on information obtained by the application of the Discrete
Cosine Transform (DCT) transform [6]. SA-DCT, proposed
by Foi et al. [7], attempts to reconstruct an estimate of the
signal using the DCT of the original image together with the
spatial information contained in the image itself. However,
SA-DCT is not capable to reproduce details like sharp edges
or complex textures. To overcome this limit different restora-
tion oriented methods have been proposed, like the Regres-
sion Tree Fields based method (RTF) [8]. The RTF uses the
results of SA-DCT to restore images, taking advantage of a
regression tree field model.

Following the success of the application of Deep Convo-
lutional Neural Networks (Deep-CNNs) in image processing
tasks, such as image denoising [12] and Single-Image Super-
Resolution [21], Deep-CNNs have been applied with suc-
cess to JPEG compression artifact removal task. The basic
idea behind Deep-CNNs is to learn a function to map a set
of images from an input distribution, to the desired output
one [22]. In the artifact removal case, the objective is to
map degraded images into another distribution without the
presence of the noise. The trained neural network obtained at
the end of the training process represents an approximation
of the desired function for the translation of the images from
a distribution to another one.

The first attempt with this kind of model has been done by
Dong et al. [11] who proposed the ARCNN, a model inspired
by SRCNN [21], a neural network for Super-Resolution. This
first attempt has been followed by DnCNN [12], a CNN
for general denoising task that has also been used on JPEG
compressed images, and CAS-CNN [13], a model proposed
by Cavigelli et al., who presented a much deeper model
capable to obtain higher quality images. Wang et al. proposed
D3 [14], a deep neural network that adopts JPEG-related
priors to improve reconstruction quality which obtained an
improvement in speed and performances with respect with to
the previous models.

In 2018 several new models for JPEG artifact removal
have been presented, showing interesting improvements in
the quality of the results. Liu et al. [16] proposed a Multi-
level Wavelet CNN (MWCNN), a model based on the U-Net
architecture [23], trained and used for multiple tasks: com-
pression artifact removal, denoising, and super-resolution.
Zhang et al. [17] developed DMCNN, a Dual-Domain Multi-
Scale CNN, which gains higher results quality than the pre-
vious works, by using both pixel and frequency (i.e. DCT)
domain information. Galtieri et al. [15] and Yoo et al. [20]
tried to address the problem of JPEG compressed image
restoration by employing a generative adversarial network
(GAN) [24] for artifact removal and texture reconstruction.
Lastly, two interesting methods have been proposed: S-Net,
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by Zheng et al. [18], a method based on a ‘‘greedy loss
architecture’’ to train deeper models capable to outperform
the previous state-of-the-art, and JBCBCR, the most recent
method proposed by Chen et al. [25], which restores JPEG
images in YCbCr space, exploiting the correlation between
the information from both luma and chroma components of
the images.

III. PROPOSED METHOD
The methods in the state of the art mainly suffer from two
limits: the first one is that each machine learning model
needs to know the JPEG compression Quality Factor (QF)
of each input image to properly restore a compressed image;
the second one is that the great majority of them are capable to
restore only the luma channel without considering the chroma
components. Only the two most recent methods try to restore
also the colors of the images: S-Net [18]whichworks onRGB
space, and JBCBR [25] which tries to exploit the distribution
of the artifacts coming from the JPEG pipeline, working in
YCbCr space.

In this work, we propose a method able to overcome both
the aforementioned problems. The first problem has to do
with the way the models are trained: all of the previously
existing methods make the implicit assumption that the com-
pression quality factor QF that has been used to compress
the input images is known at restoration time. In fact, most
of the previous models present networks trained on datasets
compressed on specific quality factors (the most common
being QF = 10, 20, 30 and 40). This way of training the
models leads to two limits:

- the models are capable to correctly restore only images
at a specific QF, with the consequence that specific
training for each quality factor is needed;

- the QF used for the compression of the images is needed
in order to select a model and correctly restore the
images since each model is trained at a specific com-
pression QF. This is usually an unknown information for
images coming from unknown sources (e.g. downloaded
from the web), thus largely limiting the usability of the
models.

In order to overcome the necessity to know the compres-
sion quality factor, we train our model on a dataset containing
images compressed at different QFs: this will make the model
more generic and able to restore images taken in the wild, i.e.
without knowing the actual QF used. This objective poses a
challenge, since the training of such a quality independent
model is much harder than training on a single quality factor:
for example, the model has to learn if a strong edge present in
the image is a JPEG artifact belonging to an image with a low
QF and thus should be corrected, or a real edge belonging to
an image with a high QF and therefore should be preserved.
Preliminary experiments, in fact, showed that just training a
state of the art method with images compressed at different
QFs significantly deteriorates the restoration performance
with respect to the same method trained for a single QF.

The second problem concerns the way the previous models
restore the images: almost all of the previous state-of-the-art
methods are trained on the luma channel (Y channel of the
YCbCr space) of the images. This approach is based on the
fact that the JPEG compression algorithm applies the DCT
to the Y channel, introducing ringing and blocking artifacts
on the luma channel, while the other Cb and Cr channels are
just sub-sampled the bicubic interpolation. The design and
training of a model for the specific restoration of the luma
component and its subsequent application for the restora-
tion of the chroma components (as done for example by
ARCNN [11]), introduces chromatic aberrations and artifacts
in the final result. S-Net [18] and JBCBR [25] are the only
methods considering this problem and instead of training a
model for the restoration of just the luma component, they
work respectively in RGB and YCbCr color spaces for restor-
ing both luma and chroma.

To overcome this second limit and restore also the color
information, similarly to Chen et al. [25] we exploit the
knowledge of how the JPEG compression pipeline works
and propose the use of two models for the image restora-
tion in YCbCr space: the first model restores the Y channel;
the second model then uses the result as a Structure Map
(i.e. a guide) for the restoration of the chroma components. A
schematic representation of the proposed method is depicted
in Figure 2. The input RGB image is converted into YCbCr
color space and the Y channel is separated from the Cb and
Cr channels. The Y channel is restored with a dedicated
network, and the result is channel-wise concatenated with the
original Cb and Cr channels. This stack is processed with
a second network that produces as output the restored Cb and
Cr channels using the restored Y channels as a guide. The
restored Y, Cb, and Cb channels, the former coming from
the first network and the latter ones coming from the second
network, are channel-wise concatenated and converted from
YCbCr to RGB to produce the final output.

A. LUMA AND CHROMA RESTORATION MODEL
The vast majority of learning based methods for JPEG com-
pression artifact removal in the state of the art [11]–[14],
[16], [17] focus exclusively on the luma component of the
images. Generally, these methods perform the compression
artifact removal working on the Y channel of the images, after
converting them in YCbCr color space. These approaches do
not take into consideration the chroma aspects of the images,
generating results with aberrations in RGB space and low
perceptual quality.

, the JPEG compression algorithm, when operating with
very low compression quality factors (e.g. QF ≤ 20) tends
to change the colors of the input images in two different
ways: hue change and spatial location change. As can be seen
in Figure 3, in the compressed version of the Cb and Cr chan-
nels, as expected, the color resolution is reduced and also, for
some elements, the color position does not correspond to the
one in the original uncompressed image.
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FIGURE 2. Schematic representation of the proposed method: the input image is first converted to YCbCr color space. The Y channel is restored with the
LumaNet and the result Y’ is concatenated with the original CbCr channels to restore Cb’Cr’ with the ChromaNet. Restored Y’Cb’Cr’ channels are then
converted back to RGB color space.

FIGURE 3. Visual example of how the JPEG compression algorithm, when
operating with very low compression quality factors, changes the colors
of the input images in two different ways: hue change and spatial
location change.

In the last years, only twomodels tried to restore the images
considering also the chroma components. These methods are
S-Net [18] and JBCBR [25]. While the first one tries to
restore the information contained in the images in RGB space,
the second one exploits the YCbCr space, the same used for
the compression by the JPEG algorithm.

Keeping the above considerations in mind we propose a
method for restoring both luma and chroma components of
the compressed images (see Figure 2). The method consists
of two steps: the first step, after the conversion of the input
image into YCbCr color space, involves the restoration of the
Y channel alone, using a first model named LumaNet, and
produces Y’ as output. The second step concatenates Y’CbCr
along the channel dimension and uses a second model named
ChromaNet, to restore the CbCr channels. This second step
uses Y’ as a map of the structures present in the image (i.e. a
sort of guide) to condition the second network to recover the

color hue and contours, and produces Cb’Cr’ as output. The
final output is obtained by concatenating Y’Cb’Cr’ and con-
verting them back to RGB. Both LumaNet and ChromaNet
are two different deep CNN Autoencoders both exploiting a
new revisited version of the Residual Blocks [26].

B. DEEP RESIDUAL AUTOENCODER ARCHITECTURE
Autoencoder architectures have been widely used in image
processing tasks like image-to-image translation [27], Super-
Resolution [28], image inpainting [29] and rain removal [30].
Autoencoders for image processing tasks generally present a
structure made by three parts: the encoder, which extracts fea-
tures from the n-dimensional input (usually one or three chan-
nels); a central part, that performs feature processing; and the
final decoder, which decodes the processed features into the
output image having the desired dimensions. Figure 4 shows a
schematic representation of the proposedmodel, while amore
detailed description of its architecture is reported in Table 1.

The encoder, which consists of two convolutions followed
by Leaky ReLU activations, is followed by a central part for
feature enhancement consisting in a sequence of Residual-
in-Residual Dense Blocks (RRDB) [31], a modified ver-
sion of the well known residual blocks originally introduced
in the ResNet architecture [26], that have been shown to
perform well in other image processing tasks, e.g. image
super-resolution [31], [32]. The RRDBs blocks combine
multi-level residual learning and dense connection architec-
ture: the RRDBs are designed without the use of the Batch
Normalization and the application of the residual learning
on different levels. The RRDBs are shown in Figure 5: each
RRDB is made of fiveDense Blocks, which use only convolu-
tions with Leaky ReLUs activation and dense skip connection
structures, combined together with other skip connections.
Finally, the decoder is designed in a symmetrical way with
respect to the encoder part.

The same architecture has been used for both the networks
for luma and chroma restoration, but with some differences:
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FIGURE 4. Graphical representation of the architecture of the autoencoders used for both the luma and chroma restoration.

TABLE 1. Detailed architecture of the autoencoders used for both the
luma and chroma restoration. The number of RRDBs is B = 5 for the Y-Net
and B = 3 for the CbCr-Net.

- different depth in terms of number of RRDBs used in the
central part;

- different feature extraction from the input in the encoder
part.

For the restoration of the luma (Y channel), the number of
central RRDBs is set to five, while for the CbCr restoration
the number of RRDB is decreased to three. The second and
more important difference is in the first layer of the CbCr
version of the network, which is a 3-dimensional convolu-
tional layer. Considering that the input of the CbCr-Net is the
concatenation (along the channel dimension) of the restored
Y’ channel with the Cb and Cr channels, we decided to use
a 3D convolution to make the model capable to correlate
information about color and structures with the use of the
same kernels for all the information coming from the three
input channels. The output of this second network are the two
restored Cb and Cr channels, which are then concatenated
with the restored Y’ channel, in order to obtain the complete
restored image.

In order to improve the quality of the generated results,
as well as to make the training process more stable, the pro-
posed architecture includes the following design choices:

- removal of Batch Normalization (BN) layers from the
Residual Blocks;

- use of a residual scaling parameter in each Residual
Block;

- initialization of the model weights using a scaled version
of the Kaiming initialization [33].

FIGURE 5. Schematic representation of the architecture of the
Residual-in-Residual Dense Block (RRDB) [31].

The removal of the batch normalization layers has been
proved, in image Super-Resolution [32] and image deblur-
ring [34] tasks, to increase the performances for the gen-
eration of images in terms of quality indexes (PSNR and
SSIM [35]). The removal of the BN layers, which improve the
stability of the training and the generated image appearance,
makes, on the other hand, the training of deep networks more
difficult. To solve that issues two solutions have been proved
to work well: the so-called residual scaling (in our model set
to 0.2), to scale each residual in order to not magnify the
input image in a wrong way, and a small weight initialization,
obtained by the application of the Kaiming initialization,
presented by He et al. [33], scaled by a factor 0.1. As can be
seen in Figure 5 the residual scaling is applied to the higher
level of the residual learning architecture, i.e. on the output
of each dense block and at the end of the RRDBs.

IV. EXPERIMENTAL SETUP
The training of the proposed method leads to two different
Deep-CNNs respectively for the restoration of the luminance
and chroma components of JPEG compressed images at
generic quality (i.e. QFs). In order to evaluate the results, our
models have been compared with the state of the art in four
different experimental setups:

1) known QF luminance restoration: comparison with the
state-of-the-art methods which work only on the Y
channel of the input images;
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2) unknown QF luminance restoration: comparison to test
the ability of the models to restore images at interme-
diate QFs never seen during training;

3) restoration of areas with high and low details density:
evaluation of the performances of the state-of-the-art
methods and the proposed one over specific areas of the
images, by dividing the images in patches classified on
high-to-low frequency (DCT domain) and high-to-low
detail density;

4) color restoration: evaluation of the color restoration
capability of themodel on the images converted in RGB
space after the processing.

A. DATASET
The dataset used for training is the DIV2K dataset, a collec-
tion of high-quality images (2K resolution), presented during
the NTIRE2017 challenge [36] for image restoration tasks.
This dataset is made of a total amount of 900 images: 800 are
used for training while the remaining 100 are used for val-
idation. The complete dataset contains also 100 images for
testing. The ground truth of this last part has not been released
after the challenge, and therefore are not used in this paper.

With the purpose of increasing the amount of different
texture and pattern to show to the model during training,
we have combined the DIV2K dataset with the Flickr2K
dataset [37], a collection of 2650 high-quality images (same
resolution as the DIV2K) collected from Flickr website.

In order to train the models on different quality factors,
for each image in the dataset we have applied 10 differ-
ent compression levels, corresponding to the quality factors
between QF = 10 to QF = 100, with step 10. The
images have been compressed with the MATLAB standard
library function. In the training phase of our model, as a pre-
processing operation, the compressed images are read and
converted into YCbCr space using the Python Scikit-Image
library (v0.14.0). The compressed version of the training
dataset contains 8000 images. The same operation has been
applied to the Flickr2K dataset for a total amount of 34k
training images.

The evaluation of our model, for the luminance channel
restoration, has been done on the LIVE1 [35], Classic-5,
BSD500 [38] and Kodak Lossless True Color Image
Suite [39], four benchmark datasets widely used for JPEG
artifact removal algorithm evaluation. For the evaluation of
the behavior of the models with the unknown compression
quality factorwe adopted the SDIVL [40], a dataset proposed
for Image Quality Assessment task.

The evaluation of the color channels restoration has been
done using the Kodak Lossless True Color Image Suite [39],
in the same way that has been done by Chen et al. [25].

B. EVALUATION METRICS
The globally adopted metrics for the evaluation of the quality
of images in artifact removal tasks are PSNR, PSNR-B [41]
(which focus the evaluation on the blocking artifacts) and
SSIM [35] indexes. For all of these three measures, a higher

value means better results. The PSNR and PSNR-B indexes
give information about the quality of the images in terms
of noise and perceived quality, with PSNR-B taking into
consideration also the blocking artifacts; SSIM index is an
indicator of the quality of edges and structures contained in
the image. For all the three indexes considered a higher value
means that the content and the structures in the reconstructed
image are more similar to the ones in the target image.

C. TRAINING DETAILS
All the training phase has been done on an NVIDIA Titan
V GPU with 8 GB of memory using PyTorch framework at
version 0.4.1. The mini-batch size has been set to 8 and each
input image has been cropped to a patch size of 100 × 100
pixels. During the experiments we tried to train the network
with different crop sizes (32 × 32, 50 × 50, 100 × 100 and
400 × 400), observing how training deeper networks with
bigger patch size gives a boost on performances over both
PSNR and SSIM indexes.

We also explored the use of different numbers of RRDBs
in the model: we observed how with deeper models, using
this specific kind of residual blocks, the results got better
and better, increasing the PSNR and SSIM values on the
validation set. The final structure uses five RRDBs for the
Y channel restoration model and three RRDBs for the CbCr
model, where each convolution has 64 filters. We found this
configuration to be the best one, with respect to the patch size,
the amount of RRDBs, the number of filters and the limits due
to the memory offered by our board.

We trained the model using Adam optimizer [42] with
β1 = 0.9, β2 = 0.999, with learning rate initialized at
2 × 10−4 decreased after 200 epochs of training by a factor
of 2. The training has been performed using the L1 Loss since
allows us to achieve better PSNR results and to make the
training more stable.

V. EXPERIMENTAL RESULTS
A. RESTORATION WITH KNOWN COMPRESSION QUALITY
FACTOR
We compared our model with the state-of-the-art models
ARCNN [11], CAS-CNN [13], D3 [14], and the more recent
DMCNN [17], MemNet [19], MWCNN [16], ARGAN [15],
S-Net [18] and JBCBR [25].

Since the state-of-the-art methods operate only on the Y
channel of the images, in order to make a fair compari-
son, we used only the result coming from the application
of the LumaNet, without any integration of data from the
color components. The metrics are evaluated on the Y chan-
nel recovered by the first network with the corresponding
target images, using the MATLAB standard libraries, over
five different compression qualities: 10, 20, 40, 60, 80. For
each method, on all the datasets considered, we report the
results taken from the corresponding publication, except for
ARCNN and MWCNN which provide the source-code, that
are then used for the evaluation. Since the training of the
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FIGURE 6. PSNR-SSIM comparison of the state-of-the-art-models and our proposed method. For both metrics higher value means better visual results.

TABLE 2. Comparison on test set LIVE1: for the methods in the state of the art a different model is trained for each QF considered. The proposed method
uses the same model for all the QFs.

TABLE 3. Comparison on test set BSD500: for the methods in the state of the art a different model is trained for each QF considered. The proposed
method uses the same model for all the QFs.

proposed methods leads to a single model that can be used
for all the quality factors, we used the same model for the
evaluation at all the qualities previously mentioned. All the
state-of-the-art methods compared, instead, have a different
trained model for each QF considered.

Table 2, 3, 4 and 5 respectively report the comparison
on the LIVE1, BSD500, Classic-5, and the Kodak Lossless
True Color Image Suite datasets for all the three metrics
considered. As can be seen, our model outperforms the state
of the art on all the metrics. With the proposed model we
obtained improvements with respect to the state-of-the-art

methods on both general perceptual quality (PSNR/PSNR-B)
and structure reconstruction (SSIM) on the first two datasets.
On the third and fourth ones, we obtain improvement in both
PSNR-B and SSIM, with comparable results with respect to
the best method in terms of PSNR.

Since each index focuses on different aspects of the restora-
tion quality, each index alone is not capable to summarize
all the aspects of a good reconstruction. Therefore, we also
compare the methods in a graph style-view, reported in Fig-
ures 1 and 6 to correlate the two indexes. In order to obtain a
more pleasing perceived quality, both the metrics must obtain

VOLUME 8, 2020 63289



S. Zini et al.: Deep Residual Autoencoder for Blind Universal JPEG Restoration

TABLE 4. Comparison on test set Classic-5: for the methods in the state of the art a different model is trained for each QF considered. The proposed
method uses the same model for all the QFs.

TABLE 5. Comparison on test set Kodak Lossless True Color Image Suite: for the methods in the state of the art a different model is trained for each QF
considered. The proposed method uses the same model for all the QFs. The values marked with the symbol (?) are taken from [25] while the other ones
are obtained using the codes officially released by the corresponding authors, and the evaluation code from [11].

high values. It is easy from this kind of view to see how
the proposed method outperforms the current state-of-the-art
models even if a single model is used for all the QFs.

B. RESTORATION WITH UNKNOWN COMPRESSION
QUALITY FACTOR
Another kind of evaluation has been done about the capability
of the models to recover images at compression quality fac-
tors never seen during training. In most of the real use-cases,
the JPEG compression quality factor previously applied to an
image is not known: it is then important that a model can
recover the images without this prior information. On the
other hand, if we are able at least to estimate the compression
quality factor of the input compressed image, following the
previous approaches we should train new models for each
specific quality factor needed, or use the model trained for
the closest QF to the desired one.

We compare our model with the two state-of-the-art
models for which the code is available (i.e. ARCNN and
MWCNN) in a specific selection of cases. Since previous
models have been trained on specific quality factors, and
our model has been instead trained over quality factor from
10 to 100 in steps of 10, without the use of images with
QFs in between, we decided to test the model robustness on
‘‘never seen’’ artifacts. In order to perform the evaluation
coherently, for the state-of-the-art algorithm we used the
pretrained models for the nearest quality factor, for example,
if the input image has been compressed with QF = 17
we used the models trained for QF = 20. The evaluation
has been done only on the Luminance channel restores only
with the LumaNet, in the same way, that has been done for
the known QFs. For this evaluation we adopted the SDIVL
dataset: for each image of the testset, we applied all of the
compression factors in the interval 5− 25. The evaluation is

done in the same way it has been done in the previous section,
by extracting Y channel and measuring PSNR, PSNR-B, and
SSIM indexes.

In Figure 7 are shown the results of the models on the
SDIVL with all the quality factors compression. As can be
seen in those graphs our model shows a more stable behavior:
the model is capable to restore images at different QFs with
more coherent and smooth behavior in relation to the increase
of the QF, in comparison with the other methods. More-
over, the previous state-of-the-art models have difficulties to
restore images at quality factors distant from the trained one.
It is particularly interesting to see how the other models have
difficulties to restore images at higher qualities with respect
to the QF used in training, in terms of structures in the images
(Figure V-B), due to the more complex textures never seen by
the models during the training phase.

C. HIGH AND LOW FREQUENCY AREAS RESTORATION
In order to better understand if the proposed method performs
better than approaches in the state of the art only on certain
image types, we conduct a further experiment: we divide the
images from LIVE1 testset, compressed at QF = 10, into
64×64 patches and classify each of them into five categories.
The categories are obtained by equally diving the patches into
five bins with respect to both frequency and detail density.
Patch frequency is computed as the weighted average of the
2D Fourier Transform normalized magnitude. Patch detail
density is computed as the 2D average of the result of the
Canny edge detection. The results for the considered eval-
uation metrics over the five categories of the frequency and
detail density are respectively reported in Table 6 and 7. From
the results reported it is possible to notice that the proposed
method consistently outperforms the state of the art on all the
frequency and detail density categories.
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FIGURE 7. Comparison on QFs not seen during training. For ARCNN and MWCNN the models trained for QF=10 and QF=20 are tested on QF in the
range [5, 25]. The proposed model is trained for QF in the range [10, 100] with steps of 10, and is tested on the same intermediate QFs not seen in
training.

FIGURE 8. Visual comparison of image restoration result. The first and third lines show the Luma channel (Y) restored by the models with the
associated PSNR and SSIM values, computed on the whole image; the second and forth lines show the RGB colored version. For the models that can
only recover the Y channel (identified by the * symbol), the Cb and Cr channels are taken directly from the original high quality corresponding ground
truths crops.

D. COLOR RESTORATION
The final evaluation is focused on the color restoration capa-
bility of the models. The comparison has been done eval-
uating the Cb and Cr channels of the recovered images,
in the same way that has been done by Chen et al. [25]: we
compared the chroma component of the restored images from

the Kodak Lossless True Color Image Suite, with QF = 10
and QF = 20. From the results reported in Table 8 in terms
of PSNR it is possible to see that the proposed model obtains
better results than the other methods. This is remarkable
since, analogously to what has been done for the previ-
ous experiments, the compared methods trained a different
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TABLE 6. Comparison on test set LIVE1 by subdividing the image patches on the basis of the frequency content in five classes from high to low.

TABLE 7. Comparison on test set LIVE1 by subdividing the image patches on the basis of the detail density in five classes from low to high.

TABLE 8. Color restoration comparison on test set Kodak Lossless True
Color Image Suite. Evaluation of Cb and Cr channels restoration in terms
of PSNR.

FIGURE 9. Inference time for a 512× 512× 3 image on a NVIDIA Titan V
GPU. In the top plot the average PSNR on the Cb and Cr channels is
reported, in the bottom plot the PSNR on the Y channel is reported.

method for each QF considered, while the proposed method
uses a single model for all QFs. A visual comparison of color
image restoration results is reported in Figure 8. In particular,
it is possible to see how themethods that are trained to recover
full color images obtain much better visual results even on the
luma channel alone. In order to not perform an unfair visual
comparison, for themethods designed to recover just the luma
channel, the Cb and Cr channels are taken from the original
uncompressed image.

VI. MODEL COMPLEXITY
In this section, we perform a comparison of model complex-
ity. In particular, we compare the inference time for a single
512× 512× 3 on an NVIDIA Titan V GPU, the PSNR score
and the model size in terms of learnable parameters. The
results are reported in Figure 9. They are divided into two
plots: the bottom one reports the comparison for the restora-
tion of the Y-channel, the top one reports the comparison for
the restoration of the Cb and Cr channels. For some methods,
two sizes are reported: the full circle represents the size for
a single model (i.e. trained for a single QF) while the empty
circle represents the size of ten models, simulating the fact
that at test time we need to have more models to cover all
the possible QFs. The plots show that our solution compares
favorably with respect to the state of the art on all the aspects
considered, showing also a very good tradeoff between PSNR
and model size.

VII. CONCLUSION
In this paper we proposed a deep residual autoencoder
exploiting Residual-in-Residual Dense Blocks (RRDB) to
remove artifacts in JPEG compressed images. The proposed
method is blind and universal, i.e. it is independent from
the QF used. The proposed model operates in the YCbCr
color space and performs a two-phase restoration of JPEG
artifacts: in the former phase, a first autoencoder exploiting
2D convolutions is used to restore the luma channel of the
input image. In the latter phase, the restored luma is stacked
along the channel dimension with the chroma channels of
the input image; then, a second autoencoder employing 3D
convolutions uses the restored luma channel as a guide to
restore the chroma channels.

The main contributions of this paper are: i) the design
of a blind universal method for the restoration of JPEG
compression artifact that is independent from the QF used;
ii) the design of a model trainable end-to-end that fully
exploits knowledge about JPEG compression pipeline;
iii) a thorough comparison with the state of the art on four
standard datasets at fixed QFs; iv) an analysis of robustness
of restoration results at QFs not used for training.
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Extensive experimental results on four widely used bench-
mark datasets (i.e. LIVE1, BDS500, CLASSIC-5, and
Kodak) show that our model is able to outperform the state
of the art with respect to all the evaluation metrics considered
(i.e. PSNR, PSNR-B, and SSIM). This result is remarkable
since the approaches in the state of the art use a different
set of weights for each compression quality, while the pro-
posed model uses the same weights for all of them, making
it applicable to images in the wild where the QF used for
compression is unknown. Furthermore, the proposed model
shows greater robustness than state-of-the-art methods when
applied to compression qualities not seen during training.
Since preliminary experiments with the same architecture
proposed showed good results for the restoration of other
artifacts (i.e. noise removal, in the CVPRWNTIRE2019 chal-
lenge [43]), as future work we plan to investigate its extension
to other single and multiple distortions [44]. To this end,
techniques that are able to better interpret and understand
what the model has learned, such as what has been done in
the framework of image classification [45], [46], should be
studied to be applied also in the image processing domain.
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