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Abstract

This paper reviews the NTIRE 2022 challenge on night
photography rendering. The challenge solicited solutions
that processed RAW camera images captured in night
scenes to produce a photo-finished output image encoded
in the standard RGB (sRGB) space. Given the subjec-
tive nature of this task, the proposed solutions were eval-
uated based on the mean opinions of viewers asked to judge
the visual appearance of the results. Michael Freeman,
a world-renowned photographer, further ranked the solu-
tions with the highest mean opinion scores. A total of 13
teams competed in the final phase of the challenge. The
proposed methods provided by the participating teams rep-
resent state-of-the-art performance in nighttime photogra-
phy. Results from the various teams can be found here:
https://nightimaging.org/

1. Introduction
Cameras apply onboard processing to render RAW sen-

sor images to the final photo-finished images encoded in a
standard color space (e.g., sRGB). The goal of in-camera
processing is to produce visually appealing photographs.
Images captured at night present unique challenges that are
not typical in most daytime images. For example, in the
scenes of daytime images, it is often sufficient to assume
a single illuminant, while in the scenes of night images,
there are often multiple illuminants present. The unique

lighting environment present in night photography makes
it unclear which of the illuminants should be taken into ac-
count during the correction of scene colors, see Figure 1.
In addition, tone curves and similar photo-finishing strate-
gies used to process daytime images may not be appropriate
for night photography. Moreover, common image metrics
(e.g., SSIM [53] and LPIPS [59]) may not be suitable for
night images. Finally, there is significantly less published
research focused on image processing for night photogra-
phy [38]. As a result, there are fewer “best practices” re-
garding night photography than daytime photography. Be-
cause of that, the main motivation of this challenge was to
encourage the research targeting night photography. The
following sections describe the NTIRE challenge and solu-
tions for the various teams.

This challenge is one of the NTIRE 2022 associated
challenges: spectral recovery [6], spectral demosaicing [5],
perceptual image quality assessment [26], inpainting [46],
efficient super-resolution [35], learning the super-resolution
space [41], super-resolution and quality enhancement of
compressed video [55], high dynamic range [44], stereo
super-resolution [52], burst super-resolution [8].

2. Challenge
Our challenge required teams to develop automated solu-

tions that produce “visually pleasing” images. Teams were
provided with a wide range of RAW night images. Teams
had to submit corresponding rendered sRGB images. Given
the subjective nature of this task, the submissions were
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Figure 1. A graphical summary – prepared by Michael Freeman – of the main aesthetic issues in urban night scene photographs.

judged using mean opinion scores from observers who com-
pared and ranked the submissions based on their visual ap-
pearance. We were honored to have a world-renowned pho-
tographer, Michael Freeman1, who graciously volunteered
his time to judge the top-ranking solutions further.

2.1. Challenge Data

The RAW images of night scenes were captured using
the same sensor and encoded in 16-bit PNG files with ad-
ditional meta-data provided in JSON files. The challenge
started with an initial 50 images provided to participants for
algorithm development and testing. Additional images were
made available during the challenge. Participants were also
recommended to use the Cube++ [21] dataset for extra data
since it was collected using the same cameras used in this
challenge. We provided a baseline code to emulate the basic
in-camera rendering as a starting point.

2.2. Evaluation

The evaluation consisted of two validation checkpoints
during the contest and a final evaluation to determine the
winners. Mean opinion scores were obtained using Toloka
(a service similar to Mechanical Turk) for the checkpoints
and final evaluation. Toloka users ranked their preferred
solutions in a forced-choice manner. It is worth noting that

1http://www.michaelfreemanphoto.com/

Toloka mainly relied on observers from Eastern Europe and
Russia to perform the image ranking. As a result, there may
be a cultural bias in terms of the preferred image aesthetics
by the observers. Toloka users did not know the identity of
the participants.

The results obtained during the validation checkpoints
provided feedback to challenge teams on their solutions’
quality. During each validation checkpoint, 50 new test im-
ages were given. Each participating team was able to send
up to two distinct solution image sets, each ranked sepa-
rately. Note that each of these solutions had to consist of
exactly 50 images, namely one solution image per test im-
age. Having two validation sets was intended to help the
participants in testing the behavior of different solutions.

For the final submission, 100 test images were made
available. Only a single solution image set for the 100 test
images was allowed for the final submission. Among these
100 images, only 50 images were used for further evalua-
tion. The indices of the selected images were the same for
all participants and given in advance in an encrypted form,
with the password provided only after the contest. Addi-
tionally, during the final evaluation, the submitted solutions
ranked among the top-10 based on the Toloka scores–and
that have results reproducible by the provided Docker code–
proceeded to the professional judgment stage. In this final
stage, Michael Freeman provided his selection of the final
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winners.
For the final solution submission, participants were given

the option to make their Docker container public after the
challenge. Providing a public Docker container was a pre-
requisite for winning a monetary prize. If the participants
kept their Docker container closed, they were still eligible
for winner certificates.

2.3. Submissions

As mentioned above, the participants were allowed to
submit 50 images in JPEG format (high-quality compres-
sion) for each checkpoint evaluation. Each team could sub-
mit at most two solution sets. Submissions were available
via Google form, which was sent to registered teams.

We expected images of size 1300x866 for landscape ori-
entation and 866x1300 for portrait orientations; images of
different sizes were rescaled.

For the final evaluation, a submission had to contain 100
processed images in JPEG format and a Docker container
with a runnable solution that could reproduce the submitted
results. Among these 100 images, only 50 images were used
for further evaluation. The indices of the selected images
were the same for all participants and given in advance in
an encrypted form, with the password being given only after
the contest.

3. Results

The section presents the ranking results obtained using
the Toloka service, as well as the ranking performed by a
professional photographer.

3.1. People Choice and Discussion

Table 1 provides the ranking of the mean opinion re-
ported by Toloka users for the different Team’s final submis-
sions. Our people’s choice experience showed that aesthetic
evaluation using Toloka provides close to professional rank-
ing, which makes it suitable for user preferences evaluation.

Before we started this challenge, we had concerns re-
garding three issues that we worried could impact the re-
sults. First, we could not control the observation conditions,
such as operating system and environment lighting. To help
reduce issues here, we selected only users with Windows
10 OS. Second, we had concerns regarding the quality and
variations in Tolokers. Despite the fact that the age, nation-
ality and language could be set, there was no guarantee that
the tasks were carried out by the same person registered on
Toloka. To control this factor, we chose only Tolokers, who
had a top 10% rating. Third, we were concerned that tech-
nical difficulties might make it hard to provide checkpoint
results and a timely final evaluation. This is one reason
we asked the solutions to be provided 1300x866 for land-
scape orientation and 866x1300 for portrait orientation. We

found these resolutions suitable for quick download. We
also gave the option for Tolokers to flag any images that did
not download correctly. Out of the several thousand images
downloaded and observed, this happened only a handful of
times.

In the end, we were happy with how smoothly the peo-
ple’s choice evaluation worked for both checkpoints and the
final judging.

Rank Team Mean Score Votes
1 MIALGO 0.8009 2603
2 Sorashiro 0.6298 2047
3 Feedback 0.6089 1979
4 OzU-VVGL 0.6045 1964
5 IVLTeam 0.5955 1935
6 NoahTCV 0.5742 1866
7 NTU607QCO 0.4798 1559
8 Winter 0.4631 1505
9 Sigma WHU 0.4411 1433
10 Namecantbenull 0.3965 1288
11 BISPL 0.3683 1197
12 baseline 0.2734 888
13 Low Light Hypnotize 0.0182 59

Table 1. People’s choice ranking results.

3.2. Professional Choice and Discussion

Table 2 provides the ranking provided by Michael Free-
man. The following describes several factors used to make
the final evaluation.
Characteristics of urban night scenes

Urban night scenes are now more significant in photog-
raphy, not only because lighting itself and signage have be-
come stronger, more varied and more colourful over the
years, but because improvements in camera sensors and
computational techniques allow easy capture without effort
or tripods for many people. Unlike daytime scenes, how-
ever, there has been little or no evolution of perceptual ex-
perience as to how such scenes should look in a photograph.
The principal characteristics are:

1. Large unlit areas.

2. Several-to-many point light sources and speculars.

3. Coloured illuminants, including some with restricted
spectrum.

4. Localised high contrast from light pooling e.g. build-
ing floodlighting

5. Lighting may be dominated by a single-hue illuminant,
or there may be dual-hue illuminants.

Likely rendering issues
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1. Artefacting, in particular noise in large featureless ar-
eas such as sky, banding, and sharp clipping edges and
colour banding around light sources.

2. Colour balance of lit areas. Here, memory colours
(canonical colours) can help as references. In descend-
ing order of usefulness and reliability, for the night
scenes here, they are:

• Roads, pavements. Assumed to be neutral grey.
• Concrete. Assumed to be neutral grey.
• Snow. Assumed to be neutral white with light

grey shadows.
• Clouds, steam, smoke. Assumed to be neutral

grey.
• Clear sky. Assumed to be dark blue, with an HSB

hue angle about 216º.

3. Over-saturation of small, bright coloured areas (see be-
low).

4. Deciding overall brightness.

5. Deciding overall colourfulness.

6. Legibility of signage.

7. Suppression of flare around prominent light sources.

Aesthetic expectations

1. Artefact-free

2. Overall fairly neutral colour balance with colourful
small elements. If there is any colour cast, blue is more
acceptable, while greens (from cyan to yellow-green)
are by tradition less acceptable

3. Full tonal range from 1 % above black to white.

4. Unlit and weakly lit areas dark.

5. No clipping except for point light sources and specu-
lars.

6. Overall moderately colourful.

7. Saturation not to reach 100 %, which reads as unreal-
istic. This is particularly important for night scenes,
featuring both light sources and illuminated small ar-
eas against an overall dark background, which en-
hances brightness. Both the Hunt effect (colourfulness
increases with luminance) and Helmholtz-Kohlrausch
effect (saturation increases with brightness) help exag-
gerate these.

8. Signage and any significant lettering legible.

9. With all the above in mind, the scene should not look
like daytime. In most cases there should already be
sufficient clues that it is night-time, but in some cases
it might be desirable to lower the overall brightness.

The above represent a broad “envelope” of expectations,
but within this there is an as yet undefined latitude for in-
terpretation. This is likely to be in the overall brightness
of lit areas, overall colourfulness, and in a multi-illuminant
scene, the balance of hue between two (or possibly three)
equally important but different illuminants. In the last case,
the bias could be toward one of the illuminants or at some
point in between.

Rank Team
1 MIALGO
2 Sorashiro
3 Feedback
4 OzU-VVGL
5 Namecantbenull
6 IVLTeam
7 NoahTCV
8 NTU607QCO
9 Winter
10 Sigma WHU

Table 2. Professional choice ranking results.

3.3. Teams’ solutions

3.3.1 MIALGO team

MIALGO team proposes a three-stage cascaded framework,
which includes raw image denoising, white balance pro-
cessing, and bayer to RGB mapping, see figure 2.

Raw image denoising. Almost all raw images have noise,
especially night images. Denoising does not change the
brightness, color, and other information of the image, so
we denoise in the first stage. Based on U-net [47], we pro-
pose a small denoising network, which is more suitable for
denoising tasks, and use our own collected data for train-
ing. Although the noise distribution of training data and
test data is different, the artifacts caused by this gap can be
eliminated by the bayer to RGB mapping stage.

White balance processing. We first use a fully convo-
lutional network to estimate the white balance parameters
and apply them to the image. We use the Color Checker
Dataset [24] and the NUS 8-Camera Dataset [15] for train-
ing. Then we multiply the image by a fixed color correction
matrix to get a color-corrected image.

Bayer to RGB mapping. After getting the denoised and
color-corrected raw image, we process it with some of our
developed ISP modules to get an RGB ground truth image,
including denoising, demosaic, RGB space conversion, tone
mapping, etc. Then we construct a network to learn bayer to
RGB mapping between the raw image and the ground truth,
the network is modified from MW-ISPNet [31]. During the
test, the color-corrected raw image is used as input, and the
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Figure 2. MIALGO team pipeline schema.

Denoising 
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Post WB 
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Tone Mapped sRGBTone Mapped sRGBsRGB

Figure 3. Sorashiro team pipeline schema.

final RGB image can be obtained after processing by the
network.

3.3.2 Sorashiro team

Nighttime image processing faces many challenges because
of the low light and complex light sources for nighttime
photography. These mainly include the noise, the white bal-
ance problems brought about by the complexity of the light
source, and the tone mapping challenges caused by the great
difference between the dark and the light. For this purpose,
we have designed a special ISP for nighttime image pro-
cessing.

Firstly, as shown in the Figure 3, we take the denoising
in the RAW domain directly. The denoising model used
is the top ranked MWRCANet in NTIRE2020 RAW image
denoising [3]. We then demosaicing the denoised image
using simple bilinear interpolation. After this we trained
a white balance network on the dataset [23] of the same
camera to adjust the color contrast. For the white balance
model we used CAUnet [36], which was ranked first in the
2nd illumination estimation challenge [23]. After that we
convert the white balanced image into a CIE-XYZ domain
image by using the color conversion matrix. We believe that
tone mapping is a crucial step in nighttime image process-
ing. For this we tried two approaches, the first one we used
self-supervised Unpaired-HDR-TMO [51] and the second
one we manually labeled the results of tone mapping on the
training set and trained a SimuNet to simulate the human la-
beling process. Therefore, in the tone mappping step we get
two outputs, and we select one of them for further process-
ing by a image evaluation model using Resnet34 as back-
bone. Finally we found that there is a lot of common sense
information in night images that can be used to optimize the
white balance effect, such as white snow, white smoke, etc.
So we use Quai-WB [9] to extract these common sense to
further optimize the white balance result and get the final
output sRGB.
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Figure 4. Feedback team pipeline schema. DC Block denotes
Depth-wise Convolution Block. TSA Block denotes the Trans-
posed Self-Attention Block.

3.3.3 Feedback team

We address Ultra-ISP (U-ISP). To exploit full advantage
of the RAW data, we design our network after a tradi-
tional imaging signal processing (ISP) pipeline. Differ-
ent denoising levels are applied between different chan-
nels of the image in traditional ISP pipeline. Followed by
this idea, we propose using Depth-wise Convolution (DC)
Block to perform the denoising independently with chan-
nels on features. The DC Block was inspired by Liu et
al. [40]. Channel-wise Transformer [58] has made great
progress in the field of image restoration. Our Transposed
Self-Attention (TSA) Block was designed after Zamir et
al.’s work [58].

The overall architecture (Figure 4) of our model is based
on the U-Net [47] framework, which includes an encoder as
well as a decoder. With mainly responsible for the denois-
ing task, the encoder is composed with 4 stacked DC blocks
at different scales. The decoder consists of 4 stacked TSA
blocks, which handle the restorations task at different scales
corresponding to the encoders settings.

Most modern dataset for low-light image enhancement
in RAW domain need to be multiplied by a fixed enhance-
ment factor, which will limit the network to handle multiple
exposures of the same scene. We avoid this situation in two
ways: 1) The MESony100 Dataset: Only the image in the
SID [13] Sony dataset with fixed enhancement factor equal
to 100. Randomly assigned an enhancement factor of 10 to
100 during training 2) The Canon Dataset captured by our-
selves, including multiple scenes, with ISO settings from
100 to 6400. Notated that both the MESony100 and the
Canon Dataset are retouched by us to meet standards. Then
the network is trained end to end with the paired data in our
dataset with only L1 Loss apllied.

3.3.4 VVGL-OzU team

Night images often consist of the scenes with multiple illu-
minants and are prone to noise due to the inherent structure
of sensing tools. To render high-quality night photogra-
phy, the proposed pipeline blends the common processing
stages with more advanced white-balance correction and
denoising strategies. Particularly, VVGL-OzU team em-
ploys Mixed WB [4] for WB correction, specialized on the
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scenes with mixed lighting conditions. Also for denoising
the sRGB images, we pick SwinIR [37] to include the pro-
posed pipeline, which is a baseline image restoration model
based on Swin Transformer [39].

Overall pipeline for VVGL-OzU team’s framework is
shown in Figure 5. In the scope of this challenge, the in-
put is provided in the linearized 16-bit PNG format, so it
is assumed that the camera pipeline initially takes a RAW
image and applies the linearization as the first step. The
16-bit PNG image is normalized to correct the black level
by provided metadata. Defective hot pixels are corrected
with interpolated values based on neighboring pixels of the
same color channel. After this operation, the pipeline fol-
lows Directional Filtering algorithm proposed by Menon et
al. [42] for demosaicking the corrected pixel data, instead
of default CFA interpolation. The next step in this pipeline
is to apply a colorimetric conversion of raw-RGB images
to sRGB images. Raw-RGB images are transformed into a
standard perceptual color space (i.e. CIE XYZ), then con-
verted to sRGB color space. To ensure better WB correc-
tion on mixed-illuminant scenes in night images, we include
Mixed WB [4] that renders the sRGB images with a small
set of predefined white-balance settings and blends the es-
timated weighting maps to apply correction. Memory color
enhancement algorithm [10] is included to the proposed
pipeline, which improves the colors of skin, sky, grass, or
spot color by hue squeezing. Next, gamma correction is ap-
plied to the intermediate images where γ = 0.8. Flash [7]
is selected as tone mapping operator, and applied to the
images after gamma correction. Auto-contrast operator is
applied to the images for normalizing the image contrast
based on their histograms. Then, we include Transformer-
based image restoration strategy, namely SwinIR [37], to
our pipeline in order to handle the noise in night images.
Note that we infer the noise level from the noise profile in-
formation in provided metadata. Due to the computational
complexity of SwinIR, we have to reduce the size of images
(i.e. sub-scaling) before denoising. In the next steps, we fix
the orientation of the images according to the metadata and
further reduce the size of images to the expected image size
for the challenge output (i.e. 1300× 866). Finally, unsharp
masking is applied to the sRGB images to sharpen the edges
of the final sRGB output.

3.3.5 IVLTeam

The solution proposed by the IVLTeam [60] is based on tra-
ditional image processing techniques and is depicted in Fig-
ure 6. The entire pipeline can be divided into two parts: the
preliminary steps, which are the basic stages of a typical
processing pipeline, and the low-light specific part.

The first part works in the RAW domain and is made
of four steps: the black and white level image normaliza-

tion, demosaicing operation, automatic white balancing per-
formed using the simple Gray World algorithm [11], and
color space transform from camera specific color space to
sRGB color space. This first part corresponds to the orig-
inal baseline pipeline provided by the organizers, with the
denoising step removed.

The second part has been specifically designed to handle
images taken by night in low light conditions. The very first
step is the use of the Local Contrast Correction (LCC) algo-
rithm from Moroney et al. [43]. Here a local correction is
performed using a mask, obtained by blurring with a Gaus-
sian filter the luminance channel of the image (Y channel in
YCbCr color space) in order to brighten dark areas and to
not clip pixels that are already bright. Since this operation
tends to reduce the overall contrast and saturation, the sec-
ond step consists in a contrast and saturation enhancement
using the solution proposed by Schettini et al. [48]. After
these two operations, a black point correction step is per-
formed, since local contrast correction adjusts local statis-
tics but produces an overall washed-out result. In order
to restore the natural aesthetics of night images, the black
stretch operation is performed by clipping to zero the pix-
els below the 20-th percentile value. A gamma correction is
then applied using a gamma value empirically set to 1/1.4,
followed by a sharpening operation using unsharp masking.

The image is then converted to uint8 format, resized
according to the target resolution, and processed with the
Block-Matching and 3-D Filtering (BM3D) denoising algo-
rithm [17]. Here the strength of the denoising operation is
controlled by a parameter empirically determined depend-
ing on the noise profile value from the image metadata. The
denoised version of the image is blended with the origi-
nal noisy one using a mask generated from the luminance
channel of a YCbCr version of the original noisy image to
preserve part of the high frequency information in brighter
areas.

Before the final orientation fixing operation, another au-
tomatic white balance step is performed using the Grayness
Index [45] algorithm to reduce color casts in certain sce-
narios where the simple Gray World approach may have
failed. The image is then rotated in relation to the infor-
mation stored in the metadata and saved as JPEG image at
quality 100.

3.3.6 NoahTCV team

Rendering RAW sensor images captured during night envi-
ronments to visually pleasing photo-finished images is ex-
tremely challenging, because of the complex illuminants,
high dynamic range and heavy noise. Conventional im-
age signal processing (ISP) pipeline can not adaptively deal
with such complicated scenes. In this work, we propose
a two-stage night photography imaging pipeline that com-
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Figure 5. Overall pipeline proposed by VVGL-OzU Team.

Figure 6. Overview of the complete IVLTeam pipeline. The entire
pipeline can be divided in two parts: preliminary data preparation
steps and low-light processing steps. Metadata extra information
is exploited in the steps marked with the orange dot.

bines the classical ISP pipeline processing and advanced
deep-learning-based image enhancement methods.

Specifically, we decompose our night photography imag-
ing pipeline into following two stages, namely traditional
preprocessing stage and tone enhancement stage based on a
convolutional neural network (CNN). The input RAW data
is sequentially processed by preprocessing and CNN en-
hancement to generate the final enhanced sRGB image for
display. We firstly adopt classical ISP pipeline to transform
the input RAW image from linear domain into sRGB do-
main. The modules we apply here are from the officially
provided baseline code [1], including (i) black level correc-
tion (BLC), (ii) white level normalization (WLN), (iii) de-
mosaicing using simple averaging the two green channels,
(iv) white balance (WB) correction, (v) XYZ color space
transformation, (vi) followed by sRGB color space transfor-
mation and (vii) gamma correction with parameter γ = 2.2.

We skip the tone-mapping procedure in previous pipeline
because a simple tone-mapping function can not adaptively
handle such complex environments. Instead, we develop
a enhancement model driven by large-scale paired night
imaging dataset. Specifically, after we acquire the basic
sRGB images, we refine them by Adobe Camera RAW [2]
to generate the ground-truth images, which are used for
later supervised model training. The backbone of our en-
hancement neural network is RSGUnet [30], which is of a
standard Unet structure with one global feature vector and
a novel range scaling layer. Moreover, in order to achieve
better visual sharpness and definition, we replace all resid-

ual blocks with Laplacian enhancement unit (LEU) [29].
We implement our neural network using Pytorch and

Adam [33] is selected as the optimizer. All the images are
cropped to patches with size 1024×1024 in order to guar-
antee essential global information during training. And we
train the images with the batch size 8 by using the learning
rate of 0.0001 on a single NVIDIA-V100 GPU for 10000
epochs. L1 loss function is applied during training.

3.3.7 NTU607QCO team

Our solution is based on traditional image processing tech-
niques. Our method consists of two main parts: the low-
light rendering part and the noise suppression part.

For low-light rendering, first, we adopt the technique
in [56] as the backbone which applies multiple stages to
achieve effective night-time rendering results. Specifically,
it consists of Exposure evaluator, Under-exposed recovery,
Exposure optimization, and Exposure fusion.
Exposure Evaluator. The key of night-time image render-
ing is to improve the low contrast problem in under-exposed
regions while maintaining the well-exposed regions. To
this end, it is necessary to identify the exposure of each
pixel. For the well-exposed regions, we need to assign
large weights to maintain the raw image contents. For the
under-exposed parts, the smaller weights are adopted since
these regions require the image with better exposure to gen-
erate desired results. To compute the exposure of each
pixel, given an image I, we adopt scene illumination map
K. We set the initial value of K to the lightness compo-
nent M. M (x) = max

h∈{r,g,b}
Ih (y) , where x is the index

of each pixel. Then, we further optimize the M to gener-
ate the scene illumination map K based on the optimization
scheme [56].
Under-exposed Recovery. This stage aims to enhance the
under-exposed regions by the Camera Response Function.
We adopt the Beta-Gamma Correction Model [57] U which
can be defined as: U(I, p) = expi(1−pj) Ip

i

, where i and j
are two camera parameters and, p denotes the exposure rate.
Exposure Optimization. To achieve better low-light en-
hancement results, we need to select the appropriate ex-
posure ratio p in our framework. Initially, we need to
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Figure 7. Overall Architecture of RSGUNet [30].

Figure 8. The structure of Laplacian Enhancing Unit (LEU) [29]

find the under-exposed regions. Specifically, we extract
these regions by thresholding the estimated scene illumi-
nation map K. The values in K which are smaller than
0.5 are identified as the under-exposed pixels R. Then,
we calculate the geometric mean for the enhanced result
by the under-exposed recovery in three channels. Qp =
3
√
U(Rr, p)⊙U(Rg, p)⊙U(Rb, p), where ⊙ presents

the element-wise multiplication. Rr, Rg , and Rb denote
the red, green, and blue channels of the thresholding results.
Qp is the under-exposed regions with under-exposed recov-
ery in exposure ratio p. Then, we identify the best exposure
ratio p∗ which can generate the most desired results for the
final fusion stage. p∗ = argmin

p

∑
k

Nk(Qp)log(Nk(Qp)),

where Nk(·) denotes the normalized histogram counts at
value k (we fix k ∈ [0, 255])
Exposure Fusion. Based on the operations in previous
stages, we adopt the original image I and enhanced-exposed
component U to fuse the final result F. F(x) = W ⊙ I +
(1−W)⊙U, where W denotes the weight map for expo-
sure fusion and it can be computed by W = Kγ . γ presents
the enhanced ratio.

Then, we adopt the denoised method called trilateral
weighted sparse coding (TWSC) [54] to generate the de-
noised results.

3.3.8 Winter team

In general, we use a pretrained model to do denoising,
white balance and tone mapping, use AdaIN layer to do
further color correction and use some traditional method,
like gamma correction and auto-contrast, to brighten and
enhance the output images.The details of our solution are

as follows.

Figure 9. Overall pipeline proposed by Winter Team.

Firstly, we pack the 1-channel raw data into 4 channels
(R,G,B,G) following the RGGB bayer pattern and then put
the 4-channel data into the pretrained SID model [14] to get
the RGB output and then calculate the mean of each image.
Then we use some thresholds to divide the images into two
groups based on their means. After that, we use different
methods to render the images of different groups.

The reason why we do this is that the details of the out-
puts obtained by the pretrained model are different for the
inputs of different means. For example, if the raw data with
a larger mean value is highlighted first and then input, it will
cause overexposure and lose some details.

The two methods we use are as follows:
SID + gamma correction. After packing the raw data
into 4 channels, we let all the images with mean in the
range (0,0.1) go through the pretrained SID network and
then output. And let all the images with mean in the range
(0.25,0.29) go through the pretrained SID network after
packing the raw with (R,1.01G,1.01B) and then use gamma
correction with coefficient 0.7 to light up the output images.
Gamma correction + SID + AdaIN. We use gamma cor-
rection with coefficient 1

2.2 on the packed raw data first and
then go through the pretrained SID and use baseline to cor-
rect the color with AdaIN layer. Specifically, AdaIn layer
transfers the color of the image without color cast obtained
by the traditional method to the denoised but color cast im-
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age obtained by SID by transferring the mean and variance
of the reference image.

After using the above two methods, we rotate the images
to the right direction and use auto-contrast and filter sharp-
ening to further enhance images’ quality.

3.3.9 Namecantbenull team

Following the basic camera ISP, our solution pipeline per-
forms image demosaicing, denoising, white balance, and
tone-mapping sequentially, as shown in Figure 10. We use
traditional methods to realize the first two operations and
use CNN-based methods for the latter two operations.

Demosaicing Denoising White 
Balance

Tone 
mapping

Figure 10. Overall pipeline proposed by Namecantbenull Team.

Image demosaicing. Under the basic RGGB Bayer Pat-
tern, we reshape the RAW image to a three-channel map
by copying the R, B component and averaging the two G
components.
Image denoising. To perform image denoising, we em-
ploy bilateral filter [49], which is an edge-preserving and
noise reducing filter. It averages pixels based on their spa-
tial closeness and radiometric similarity.
Image white balance. This operation aims to discover the
real white part of the image and discard the color incor-
rectness. White balance is more challenging at night than
daylight. Thus we use a state-of-the-art model proposed
in [16], which is a cascaded framework sharing backbone
while learning attention specifically in each stage. Since
there is no white-balance algorithm developed specifically
for night scenes, we train the model on the SimpleCube++
dataset [22] (2234 images, mostly in daytime). To further
improve the white balance effect for night scenes, we addi-
tionally utilize a statistical algorithm [12] after the network.
Image tone-mapping. In order to get paired data for train-
ing the tone mapping network, we use Adobe Photoshop
to colorize white-balanced images through the above steps.
Then, the white-balanced images are used as the input for
the tone mapping network, and the colorized sRGB images
are utilized as the ground-truth. We choose HDRNet [25]
to train the tone-mapping model.

We implement our network by Pytorch 1.8.0 on GeForce
RTX 3090 GPU. We train the white-balance network for
300 epochs with batch size of 16. The Learning rate is set
to 3e-4. For the tone-mapping network, we train the model
for 1000 epochs with batch size of 4.

Figure 11. Architecture of BINResNet

3.3.10 BISPL team

A model propose by BISPL is BINResNET(Batch-Instance
Normalization ResNet) which is depicted in Figure 11. To
train the model, we have pre-processed Cube++ dataset
[22], using ground truth illumination value, and obtained
raw noisy and white balanced images. The images without
mean ground truth values were abandoned. The training
process was done by randomly adjusting contrast, satura-
tion and exposure of the white balanced images which are
used as target labels. Only the images from Cube++ dataset
were used for training, and the images of night scenes were
used for fine tuning after the training.

The combination of batch and instance normalization al-
lows the model to capture structure and color of images
well. As this task is a highly ill-posed problem, there is no
absolute answer that the model should predict. In that rea-
son, it was unable to capture color properly when trained
with ResNet [27] generator with batch normalization [32]
which is commonly used in many generation tasks. Espe-
cially, we could observe that the structure of the original
images were well preserved, but the colors were almost lost
in many regions. On the other hand, when replaced with
instance normalization [50], the colors were preserved, but
not the structure. So we have combined those two normal-
ization techniques using repeatedly dividing and concate-
nating strategy, not to loss both information.

BINResNet receives the input images and start with di-
rectly passing them through batch and instance normaliza-
tion residual block separately. The outputs of each block are
concatenated and divided again to repeat the same process.
The final outputs of each normalization layer are passed
through one convolution layer without any normalization
and reconstruct 3-channels RGB image.

As the model predicts the white balanced images with
randomly contrast, saturation and exposure adjusted image,
we manually modified those values using provided night
scene images for fine-tuning after training was done. As
a result, the model was able to render the images without
using actual night scene images despite only images from
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Cube++, which does not contain any data similar to the
competition photos, were used. The training was done with
learning rate of 0.0005 on a single GeForce GTX 1080 Ti
for 100k iterations with the batch size of 8. The images
were cropped into 256x256 when training as a loading time
of raw image files was too long for efficient training.

3.3.11 Low Light Hypnotize

Images captured in low light conditions finds wide range
of applications like night vision in autonomous driving
systems, traffic surveillance, wild life photography, drone
surveillance, underwater coral reef monitoring and protec-
tion. Typically, in underwater scenario intensity of light
decreases gradually with depth. Based on this intensity of
light and irradiance, Jerlov classified the water types into 10
classes. Authors in [20] [19] [18] [28] consider the classifi-
cation of water-types as a clue to perform enhancement and
restoration of underwater images accordingly. Classes 5C,
7C and 9C belong to the murkish water and intensity of light
further decreases nearing to zero. Hence, enhancement and
restoration of underwater images specifically belonging to
class 5C, 7C and 9C is the need of the hour, towards moni-
toring and surveillance of aquatic flora and fauna.

LightNet

Hierarchical
Generator 

Patch 
Discriminator

Generated 
Enhanced Image

Captured Low 
Light Image

Ground truth

Perceptual Loss + MS-SSIM

Real/ Fake 
With Discriminator Loss 

(BCE Loss)

Figure 12. LightNet: Generative model for enhancement of im-
ages captured in low-light conditions.

In this work, we propose a generative model for enhance-
ment of images captured in low-light conditions. Camera
sensors are often sensitive to the light source during image
or video capture. Images of low light conditions find chal-
lenges to capture details due to in-sufficient amount of light.
Towards this, different deep learning algorithms aim to en-
hance poorly lit images to generate a high quality image.
However, these algorithms capture global features ignoring
the underlying local features and hence limiting the perfor-
mance.

Towards this, we propose a generative model for en-
hancement of low lit images considering local and global
information, and call it as LightNet as shown in Figure
12. The proposed architecture includes an encoder-decoder

module to capture global information and a patch discrim-
inator to capture local information as a key towards im-
proving the quality of enhancement. The encoder-decoder
module downsamples the input low light image into differ-
ent scales, to facilitate learning at different levels. Learn-
ing at different scales helps to capture the local and global
variance of features thereby suppressing the unwanted fea-
tures (noise, blur). We demonstrate the results of proposed
methodology on NTIRE 2022 challenge dataset. We show
the enhancement results using different quality metrics.

Unlike the authors in [34], the proposed methodology in-
cludes hierarchical generator with corresponding patch dis-
criminator ensuring the retention of local and global fea-
tures as shown in Figure 12.

Figure 13. Results of proposed methodology (LightNet). 1st row
shows input images, 2nd row depicts results of proposed method-
ology (PSNR: 24.2210 SSIM:0.5766, PSNR: 24.0243 SSIM:
0.7071, PSNR: 25.1962 SSIM:0.7363, PSNR: 26.4667 SSIM:
0.7860, PSNR: 27.1109 SSIM: 0.8134, PSNR: 22.4618 SSIM:
0.7393), 3rd row shows the corresponding ground-truth images.

Results and Discussions The results of proposed Light-
Net are shown in Figure 13 with corresponding PSNR and
SSIM scores.
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