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Abstract Image quality assessment (IQA) is a multi-
dimensional research problem and an active and evolving
research area. This paper aims to provide an overview of the
state of the art of the IQA methods, putting in evidence their
applicability and limitations in different application domains.
We outline the relationship between the image workflow
chain and the IQA approaches reviewing the literature on
IQA methods, classifying and summarizing the available
metrics. We present general guidelines for three workflow
chains in which IQA policies are required. The three work-
flow chains refer to: high-quality image archives, biometric
system and consumer collections of personal photos. Finally,
we illustrate a real case study referring to a printing work-
flow chain, where we suggest and actually evaluate the per-
formance of a set of specific IQA methods.

Keywords Image quality assessment · Image quality
metrics · Image production workflow chain · Printing
workflow chain

1 Introduction

Images play a more and more important role in sharing,
expressing, mining and exchanging information in our daily
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lives. Now, we can all easily capture and share images any-
where and any time. Since digital images are subject to a wide
variety of distortions during acquisition, processing, com-
pression, storage, transmission and reproduction, it becomes
necessary to have tools that make it possible to assess the
image quality (IQ) during the whole production chain. This
can be done interactively by subjective human rating or auto-
matically by objective methods. Different definitions of qual-
ity are found in the literature [25,48,55,103,123]. Accord-
ing to the International Imaging Industry Association [44],
IQ is the perceptually weighted combination of all visually
significant attributes of an image when considered in its mar-
ketplace or application. This is also stressed by the Techni-
cal Advisory Service for Images: “The quality of an image
can only be considered in terms of the proposed use. An
image that is perfect for one use may well be inappropriate
for another”. While many different methods for IQA have
been proposed in the literature, there is a lack of analy-
sis and discussion about when and which of these meth-
ods can be used within a specific image workflow chain.
Let us, for example, focus on an image workflow chain like
the one that starts with a scene to be captured by a imag-
ing device and published on the web. Which of the available
methods should be applied and at what precise point of the
chain, to get an estimation of the quality of the final output
image?

Many IQ metrics can be found in the literature, and in this
overview, we listed more than 50 of them. So, what metric
should be used for a given task? It is not easy to give a defin-
itive answer to such question since it depends on different
factors: the semantic content of the image, the application
task, and the particularly imaging chain applied. This paper
is aimed at users who want to have a broad overview of
the available metrics, and insights into their applications in
different domains. To this end, we provide a compendium
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2 G. Ciocca et al.

of the state of the art of the different IQA methods. We
classify and summarize the different available metrics outlin-
ing the relationship between the image workflow chain and
the image quality assessment (IQA) approaches. We show
how and when these different kinds of metrics can be applied
within a generic image workflow chain and within specific
application scenarios. Finally, several open issues currently
being addressed by the IQA community are presented and
discussed. We hope that, at the end, users will have: a more
clear view of the different faces of IQA, a comprehension of
the characteristics of the available metrics, and the tools to
make the proper choices for their tasks.

2 Modeling image quality

Some attempts have been made in the last decade to develop
a general, broadly applicable, IQ model that regards images
not only as signals but also as carriers of visual information,
which encode important and useful information about the
geometry of the scene and the properties of the objects located
within this scene [53,108,132].

Different properties contribute to define image quality
and different models have been proposed in the literature.
The fidelity-usefulness-naturalness (FUN) IQ model [86]
assumes the existence of these three major dimensions:

– Fidelity is the degree of apparent match of the image
with the original. Ideally, an image having the maximum
degree of fidelity should give the same impression to the
viewer as the original. As an example, a painting cata-
logue requires high fidelity of the images with respect
to the originals. Genuineness and faithfulness are some-
times used as synonyms of fidelity [44]. Dozens of books
and thousands of papers have been written about image
fidelity and image reproduction, e.g. [94].

– Usefulness is the degree of apparent suitability of the
image with respect to a specific task. In many application
domains, such as surveillance, automotive, medical or
astronomical imaging, image processing procedures can
be applied to increase the image usefulness [41].
The enhancement processing steps have an obvious
impact on fidelity.

– Naturalness is the degree of apparent match of the image
with the viewer’s internal references. This attribute plays
a fundamental role when we have to evaluate the quality
of an image without having access to the corresponding
original. Examples of images requiring a high degree of
naturalness are photos downloaded from the web, or seen
in journals. Naturalness also plays a fundamental role
when the image to be evaluated does not exist in reality,
such as in virtual reality domains.

Recently, Moorthy et al. [71] suggested extending the
dimensions of image quality by considering also its Visual
Aesthetic and Content. We may refer to their model as the
QAC model (quality, aesthetic, content).

– Visual aesthetics refers to the perceived beauty of an
image. Aesthetics is intrinsically subjective; different
users may consider an image to be aesthetically appeal-
ing for different motives based on their backgrounds
and expectations. Notwithstanding the subjective nature
of this dimension, several works tackle the problem
to estimate the aesthetic of a photo by developing
automatic computational procedures. These procedures
exploit visual properties and compositional rules trying to
predict aesthetic scores with high correlation with human
perception [7,30,75].

– Semantic content has an important impact on the eval-
uation of the quality of an image and thus it cannot be
discounted during assessment. The application in hand
and users’ previous experiences influence the judgment
of a good or bad image content. An image can be con-
sidered good if all the relevant (for the user) content is
clearly visible or if the image conveys the expected infor-
mation. On the contrary, an image can be considered of
poor quality if it depicts offensive or disgusting (for the
user) content.

3 Image quality assessment approaches

Different criteria can be used to classify the IQA approaches.
At the top level, we may divide the methods into two major
groups:

– Approaches that take into account the quality of the
image itself. We may call these approaches, “direct”
approaches (Engeldrum [32] calls them “beauty contest
models”) and are used when the images themselves must
be compared with other ones, either for competition or
reference (see section 3.1);

– Approaches that consider the quality of the images with
respect to the performances reached by the application
that uses them. We may call these approaches, “indirect”
approaches (in [32] are termed “detection/recognition
models”) and are also used to evaluate the whole system,
device or algorithm that process the image (see Sect. 3.2).

3.1 Direct image quality approaches

Direct image quality approaches can be categorized in
subjective versus objective methods. Subjective methods
are based on psychological experiments involving human
observers. Different techniques can be used, and the
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How to assess image quality within a workflow chain 3

methods indicating how to perform subjective quality assess-
ment are described in some standards, such as ITU-R BT.500-
13 [52,112]. Objective methods compute suitable metrics
directly from the digital image without human observers.
These objective methods can be further classified according
to many different criteria depending on the available data and
the type of assessment output.

3.1.1 Subjective approaches

The involvement of real people who view the images to assess
their quality requires that all the factors that influence per-
ception are taken into account to discount possible biases,
To this end, strict protocols have to be adopted. In the ITU
standards [52], different subjective test methodologies are
described. Regardless of the choice of the test methodology
used, the way in which responses of the tests are analysed
depends upon the judgment (e.g. detection) and the informa-
tion sought.

Test methods can be grouped into two main categories:
methods that use explicit references, and methods that do
not use any explicit reference. Single Stimulus (SS) meth-
ods belong to the first category, while Stimulus Compari-
son (SC) methods belong to the second one. In SS methods,
a single image or sequence of images is presented and the
assessor provides a quality score of the presentation, while
in SC methods, two images or set of images are displayed,
and the viewer provides a rating of the relation among the
images.

For both SC and SS methods, there are different variants
and the main difference is in the scale that the assessors use to
evaluate the presentations. For example, in adjectival categor-
ical judgments, observers assign an image or image sequence
to one of a set of categories that, typically, are defined in
semantic terms. The categories may reflect judgments about
the existence of a perceptible difference (e.g. “SAME”, “DIF-
FERENT”) or the existence and direction of perceptible
differences (e.g. “LESS”, “SAME”, “MORE”). Categorical
scales that assess image quality and image impairment have
been used most often, and in [52] readers can find some sug-
gested scales to be used in the evaluation process. For each
attribute/artifact, this method yields a distribution of judg-
ments across scale categories.

In non-categorical judgments, observers assign a numer-
ical value to each image or image sequence shown. These
methods can have two kinds of scales: continuous or discrete.
In continuous scaling, a variant of the categorical method, the
assessor assigns each image or image sequence to a point on
a line drawn between two semantic labels. The distance from
an end of the scale is taken as the index for each presentation.
In discrete scaling, the assessor assigns each image or image
sequence a number that reflects its judged level on a specified
dimension (e.g. image sharpness). The range of the numbers

used may be restricted (e.g. 0–100) or not. Sometimes, the
number assigned describes the judged level in absolute terms
without direct reference to the level of any other image or
image sequence as in some forms of magnitude estimation.
In other cases, the number describes the judged level relative
to that of a reference [56].

An important variant of the Stimulus Comparison is the
Pairwise Comparison (PC) which is based on the law of
comparative judgment studied by Thurstone [106]. In the
PC method, the images are organized in sequences, each of
which usually contains different versions of the same image.
The images in each sequence are presented in pairs in two
locations (for example one on the left and one on the right
of the display) in all the possible combinations. Thus, each
image is displayed twice in both locations. After each pair is
presented, a judgment is made on which element in the pair
is preferred based on some attributes. In PC, the tester does
not impose any scale for the assessment. The selection of one
image over the other is an exclusive Boolean choice.

The obtained scores can then be used as such, normalized
using the mean and standard deviation to obtain Z scores,
or Thurstone scaling [106] can be used to create an interval
scale, so that the scale represents equal perceptual distances.
Finally, the quality ratings from the evaluators are averaged
to obtain the Mean Opinion Score (MOS) or the Difference
Mean Opinion Score (DMOS). The latter is the difference
between the MOS scoring of the test image and the MOS
scoring of the corresponding reference image.

Notwithstanding the effectiveness of subjective
approaches, their efficiency is very low.

3.1.2 Objective approaches

Depending on the availability of the original image, the
direct image quality approaches can be categorized into
three groups: Full Reference (FR), No Reference (NR) and
Reduced Reference (RR) [9]. Taking into account the philos-
ophy followed when constructing their algorithms, the meth-
ods can be also classified as bottom-up or top-down. If we
consider the application scope, they can be general purpose
or context dependent. In the following, we summarize the
well-known metrics belonging to the different FR, NR and
RR categories.

3.1.3 Full-reference metrics

Full-reference (FR) metrics (see Fig. 1 straight line paths)
perform a direct comparison between the image under test
and a reference or “original” in a properly defined image
space. These methods are the first choice for subjective IQA.
Having access to an original is a requirement of the usabil-
ity of such metrics. Among the quality dimensions previ-
ously introduced, only image fidelity is assessed. The sim-
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Fig. 1 Objective image quality assessment approaches

Fig. 2 Example of how the perceptual quality is influenced by the
visibility of the distortion. Gaussian noise is applied to the top (a) and
bottom (b) regions of the image. The image in b is perceived as having
higher quality than the image in a

plest FR metric is the Mean Square Error (MSE) or Peak to
Signal Noise Ratio (PSNR). Even if they are the most used,
in general they do not correlate with subjective assessments
[40,113].

Consider, for example, Fig. 2. The same amount of
Gaussian noise is applied to the image, first on the sky/clouds
region and then on the sand/rocks one (Fig. 2a, b, respec-
tively). The perceived image quality is influenced by the
distortion visibility: when the distortion is applied to the
sand/rock region, it is less noticeable as the noise is masked
by the variations in the texture of the region. When the distor-
tion is applied to almost uniformly regions, as in the case of
the sky/clouds region, it stands out prominently. This effect
is called Noise Masking or Texture Masking [104,122] and it
is fundamental to take it into account when designing image
quality metrics.

Error sensitivity frameworks follow a strategy of mod-
ifying MSE-like measures so that errors are penalized in
accordance with their visibility. The evaluation of the vis-
ibility is accomplished by modeling some aspects of the
human visual system (HVS) like Channel Decomposition,
Contrast Sensitivity and Point Spread functions among oth-
ers [29,64,89,105]. All these techniques are bottom-up like
approaches.

Top-down approaches take into account, for example, the
image structure in defining the IQ since they assume that

finding the structure is the goal for the cognitive process.
The structural information in an image is defined as those
attributes that represent the structure of objects in the scene,
independently of the average luminance and contrast. The
image quality is measured as a function of the amount of
distortion that influences the image structure. To cope with
the fact that the human visual system processes a scene at
different level of details, some structural-based metrics have
been also extended to process an image with a multi-scale
approach. Quality at different scales contributes differently
to the overall quality. Other approaches consider the charac-
teristics of the natural images. They use natural scene statis-
tics to quantify the loss of information due to the distortions
present in the image.

A brief summary of FR metrics is presented in Table 1.
The performance of each metric in terms of correlation with
a ground truth, if available, is reported in the last column of
the table (see Sect. 3.3).

3.1.4 No-reference (NR) metrics

No-reference (NR) metrics (see Fig. 1 dotted line paths) are
also called blind metrics and assume that IQ can be deter-
mined without a direct comparison between the original and
the processed images. NR metrics can be used whenever the
original image is unavailable. While the FR metrics estimate
the image quality in an holistic way, NR metrics are often
targeted to estimate the presence of a specific image defect
introduced by the imaging device, some image processing
procedures or by the transmission channel. This implies that
some information about the application requirements and
users’ preferences are needed to contextualize the quality
measures. The overall image quality can be also evaluated
using an ensemble of different NR metrics. Different types
of defects can be considered [43]: blurriness, the attenua-
tion of the high spatial frequencies; blocking, discontinuities
generated by block-based compression algorithms such as
JPEG; graininess, random fluctuation of pixel values due to
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How to assess image quality within a workflow chain 5

Table 1 Full Reference methods

FR method Brief description Performance

MSE, PSNR Measures the fidelity to the original and does not take into account
HVS characteristics. It is the simplest and oldest measure. No
parameters are needed

–

Error sensitivity
frameworks Daly [29],
Lubin [64], Safranek and
Johnston [89], Teo and
Heeger [105], Waston
[121] (1989–1993)

Measure the fidelity to the original. These are bottom-up approaches
that simulate functional properties of the HVS. Consist essentially in
four modules: preprocessing (alignment, luminance transformation,
and color transformation), channel decomposition (different choices
are identity, wavelet, discrete cosine and gabor transform), error
weighting and error summation (Minkowski error pooling). Different
parameters have to be estimated

–

Spatial-CIELAB Zhang and
Wandell [135]

Measures color differences and is an extension of the CIELAB color
metric. The image data are transformed into an opponent color
space, followed by a CSF spatial filtering. An error map is evaluated.
Different parameters have to be estimated

–

MultiScale Structural
Similarity Index
(MS-SSIM) Wang et
al. [118]

An extension of the SSIM. Supplies more flexibility than previous
single-scale methods in incorporating the variations of viewing
conditions and image details

LIVE JPEG/JPEG2000
database

PCC = 0.969
RMSE = 4.91
OR = 0.016

Structure Similarity Index
(SSIM) Wang et al. [119]

Measures the fidelity to the original. The HVS is adapted to extract
structural information from natural visual scenes. Models image
degradation as structural distortions instead of errors. The SSIM
index is obtained as the product of three comparison components:
luminance, contrast and correlation. Different parameters have to be
estimated. Is a top-down approach [9, chap. 3]

LIVE database
PCC = 0.967
RMSE = 5.06
OR = 0.041
SROCC = 0.963

Visual Information Fidelity
Index (VIF) Sheikh and
Bovik [96]

Measures the information shared between the two images. The
construction of the VIF Index relies on the modeling of the statistical
image source, the image distortion channel, and the human visual
distortion channel. Different parameters have to be estimated

LIVE database
PCC = 0.949
RMSE = 5.083
OR = 0.013
SROCC = 0.949

Gradient structural
similarity (G-SSIM) Chen
et al. [16]

Image quality assessment is addressed by following the HVS’s
characteristic that human eye is very sensitive to the edge and
contour information of an image, and the edge and contour
information is the most important structural information of images

LIVE database
PCC = 0.917
RMSE = 6.284
OR = 0.055

Most apparent distortion
metric Larson and
Chandler [59]

Combines two different strategies. For high-quality images, local
luminance and contrast masking are used to estimate detection-based
perceived distortion. On the other hand, changes in the local
statistics of spatial-frequency components are used to estimate
appearance-based perceived distortion in low-quality images

TID, LIVE, Toyama, and
CSIQ databases

PCC = 0.8306 (TID), 0.9683
(LIVE), 0.8951 (Toyama),
0.9502 (CSIQ)
SROCC = 08340 (TID),
0.9675 (LIVE), 0.8908
(Toyama), 0.9466 (CSIQ)

Divisive normalization
metric Laparra et al. [58]

Measures the closeness to the original. The metric is based on divisive
normalization models [105] within discrete cosine transform and
wavelet domains

–

Discrete orthogonal
moments Wee et al. [124]

Measures the Moment Correlation Index. Up to fourth order moments
are computed on non-overlapping blocks for both the test and
reference images. Correlation indexes are computed on each pair of
block moments, and a single-quality score is obtained by averaging
all the correlation indexes. Two metrics are proposed: Q1 and Q2

LIVE, A57, IVC and MICT
databases

Q1: PCC = 0.608–0.937
SROCC = 0.606–0.947
Q2: PCC = 0.680–0.934
SROCC = 0.726–0.938

4-component gradient
structural similarity
(4-G-SSIM) Li and Bovik
[60]

A four-component image model is used to classify image local regions
according to edge and smoothness properties. SSIM scores are
weighted by region type, leading to modified versions of the original
G-SSIM index

LIVE database
SROCC = 0.9594, PCC =
0.9491, RMSE = 5.0016
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Table 1 continued

FR method Brief description Performance

Information
content-weighted
structural similarity
measure (IW-SSIM)
Wang and Li [114]

Information content weighting method built upon advanced statistical
image models and combined with multiscale SSIM. The rationale is
that when viewing natural images, the optimal perceptual weights for
IQ pooling should be proportional to local information content,
which can be estimated in units of bit using advanced statistical
models of natural images

LIVE, TID2008, IVC,
Toyama, A57, and CSIQ
databases

PCC = 0.9126 (average)
SROCC = 09063 (average)

Feature Similarity Index
(FSIM) Zhang et al. [134]

An image quality map is obtained by combining phase congruency
(dimensionless measure of the significance of a local structure) and
gradient magnitude (contrast information). After obtaining the local
quality map, phase congruency is used as a weighting function to
derive a single quality score

TID2008, CSIQ, LIVE,
IVC, A57, and MICT
databases

SROCC = 0.8805
(TID2008)–0.9634 (LIVE)
PCC = 0.8738
(TID2008)–0.9597 (LIVE)

Perceptual image quality
assessment (PIQA) Fei et
al. [33]

A luminance comparison measure, a structure comparison measure,
and a contrast comparison measure are pooled together taking into
account the contrast masking and neighborhood masking effects of
the HVS perceptual process

LIVE, IVC and MICT data-
bases

PCC = 0.9024–0.9651
SROCC = 0.8890–0.9612

Machine learning approach
Charrier and Lebrun [11]

It is based on a learned classification process to respect human
observers. Support vector machine is applied for both classification
and regression tasks. The feature vector contains visual attributes
describing the images content

LIVE and TID2008 data-
bases

SROCC = 0.96 (LIVE),
0.90 (TID2008)

Fig. 3 Examples of image defects detected by no-reference metrics

the device sensor; contrast, the difference in the brightness
that makes an object in an image distinguishable from other
objects and the background; colorfulness, the perceived dif-
ference between a color and gray. Figure 3 shows some of
these defects. Please note that the defects have been accen-
tuated for ease of readability.

Blind methods can be classified as application dependent
since they are defined to handle with one or few specific
defect types. Some of the blind methods are carried out in the
frequency domain (like [20] for example) and make use of the
common statistical characteristics of the power spectra of nat-
ural images [109] to define the corresponding quality metrics.
A variety of statistical properties of natural images (intensity,
color, spatial correlation and higher order statistics) and their
relationship to visual processing has been extensively stud-
ied by [98]. A brief summary of different NR methods is

presented in Table 2. When possible we reported the overall
performance score in the last columns. If this score is not
available, we report some performance scores of the most
common defects either as a single value or as a range of
values.

3.1.5 Reduced-reference (RR) metrics

Reduced-reference (RR) metrics (see Fig. 1 dashed line
paths) lie between FR and NR metrics. They are designed to
predict perceptual IQ with only partial information about the
reference image. In their general forms, these methods extract
a number of features from both the reference and the image
under test, and image comparison is based only on the corre-
spondence of these features. Therefore, only image fidelity
can be assessed. RR metrics are commonly used to track the
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Table 2 No Reference methods

NR method Artifacts Brief description Performance

Peli [78] Contrast Assigns a contrast value to every point in the image as a function of
the spatial frequency band. The contrast is defined as the ratio of the
bandpass-filtered image at that frequency to the low-pass image
filtered to an octave below the same frequency (local luminance
mean)

–

Immerkaer [47] Noise Estimates variance of the normally distributed noise –

Wu and Yuen [126] Blockiness Generalized block-edge impairment (GBIM) metric, measures the
blockiness separately in horizontal and vertical direction, after which
the two directions are combined into a single-quality value. The
GBIM assumes that the artifacts occur on a grid of blocks of pixels,
which is common for most compression standards

LIVE database
PCC = 0.9562,
SROCC = 0.9522

Rank et al. [82] Noise Assumes Gaussian distributed noise. Estimates the noise variance.
First, the noisy image is filtered by a horizontal and a vertical
difference operator, then the histogram of local signal variances is
computed. The mean square value of the histogram gives a noise
estimation value

–

Vlachos [111] Blockiness Designed in the frequency domain. The blockiness measure is defined
as the ratio between intra- and inter-block similarity

–

Wang et al. [116] Blockiness Defined in the frequency domain. They model the blocky image as a
non-blocky image interfered with a pure blocky signal. The task of
the blocking effect measurement algorithm is to detect and evaluate
the power of the blocky signal. Luminance and texture masking
effects are incorporated

–

Bovik and Liu [8] Blockiness Discrete cosine transform-domain algorithm. Blocking artifact
modelled as a 2-D step function. Luminance and texture masking
taken into account

–

Wang et al. [117] Blockiness Feature extraction method in the spatial domain. Measures differences
across block boundaries and zero-crossings. Non linear regression is
applied where the parameters are estimated from subjective tests

LIVE database
RMSE = 7.76
PCC = 0.970
SROCC = 0.960

Marziliano et al. [66] Blur Defined in the spatial domain. An edge detector is applied. For pixels
corresponding to an edge location, the start and end positions of the
edge are defined as the local extrema locations closest to the edge.
The edge width is measured and identified as the local blur measure.
Global blur obtained by averaging the local blur values over all edge
locations

105 images from
LIVE and other
sources

PCC = 0.85–0.96
SROCC = 0.87–0.96

Corner et al. [24] Noise Laplacian and gradient data masks are used to estimate the additive and
multiplicative noise standard deviations in an image. The histogram
median value supplied the most accurate final noise estimations

–

Hasler and Süsstrunk [43] Colorfulness Study of the distribution of the image pixels in the CIELab color
space, assuming that the colorfulness can be represented by a linear
combination of a subset of different quantities (standard deviation
and mean of saturation and/or chroma). Parameters are found by
maximizing the correlation between experimental data and the metric

84 images
PCC = 0.871–0.942

Ong et al. [76] Blur The average edge spread in the image is measured by the average
extent of the slope spread of an edge in both the gradients’ direction
and also the direction opposing the gradients’ direction

624 images
RMSE = 0.1774

Pan et al. [77] Blockiness Measures horizontal and vertical inter-block difference. Takes into
account the blocking artifacts for high bit rate images and the
flatness for the very low bit rate images

LIVE database
PCC = −0.930
SROCC = 0.932

Wang et al. [120] Blur Defined in the frequency domain. Blur is interpreted as a disruption of
the local phase. The measure of phase coherence is based on
coarse-to-fine phase prediction. The computations bear some
resemblance to the behaviors of neurons in the primary visual cortex
of mammals

–
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Table 2 continued

NR method Artifacts Brief description Performance

Winkler and Süsstrunk
[125]

Noise Investigates the visibility of noise itself as a target and uses natural
images as the masker. Targets are Gaussian white noise and
band-pass filtered noise of varying energy. Psychophysical
experiments are conducted to determine the detection threshold of
these noise targets on many different types of image content (noise
visibility)

30 images
PCC = 0.95

Muijs and Kirenko [72] Blockiness The key algorithm is based on the principle that block discontinuities
can be characterized as edges that stand out from the spatial activity
in their vicinity. The visibility of a block edge is determined by the
contrast between the local gradient and the average gradient of the
adjacent pixels

LIVE database
PCC = 0.9613,
SROCC = 0.9514

Gabarda and Cristóbal [37] Blur and noise The method is based on measuring the variance of the expected
entropy of a given image on a set of predefined directions. Entropy
can be calculated on a local basis using a spatial/spatial-frequency
distribution as an approximation for a probability density function. A
pixel-by-pixel entropy value is calculated. The anisotropy measure is
used as an index to assess IQ

–

Brandao and Queluz [10] Quantization noise Based on natural scene statistics of the discrete cosine transform
coefficients, modeled by a Laplace probability density function. The
resulting coefficient distributions are then used for estimating the
local error due to lossy encoding. Local error estimates are also
perceptually weighted, using a perceptual model by [121]

LIVE database
RMS = 7.439, PCC
= 0.973, SROCC =
0.978

Choi et al. [18] Blur and noise Blur is estimated by the difference between the intensity of the current
pixel and the average of neighbor pixels, the difference is normalized
by the average

LIVE database
PCC = −0.91

Ciancio et al. [19] Blur An over-complete wavelet transform of the image is computed.
Coefficients of sub-bands with the same orientation are expected to
be located in similar positions. Coefficients are classified as coherent
or incoherent, and the blur estimation is calculated as the mean of the
standard deviations of the image components associated to the
incoherent coefficients

6,580 images with
simulated and real
blur

PCC = 0.5–0.75

Ferzli and Karam [34] Blur The metric integrates the concept of just noticeable blur into a
probability summation model which takes into account the response
of the HVS to sharpness at different contrast levels

LIVE database
PCC = 0.932,
SROCC = 0.936

Suthaharan [102] Blockiness Defined in the frequency domain. Considers a JPEG compressed
image (CE) as a combination of primary edges (PE), undistorted
image edges (UE) and blocking artifacts (distorted image edges and
block edges). The method estimates PE and UE and then filters them
out from CE to obtain an estimate for blockiness

Scores for 7 images
in the LIVE Data-
base

PCC = 083–0.99

Cohen and Yitzhaky [20] Blur and noise Evaluates noise impact in spatial and frequency domain and estimates
blur in the frequency domain. The common statistical properties of
power spectra of natural images are used to enhance the distortion
effects. The bending point location of the modified image spectrum
(smoothed power spectrum multiplied by the squared spatial
frequency) is used to define an index that measures noise and blur
impacts

–

Zhu and Milanfar [136] Blur and noise The metric Q is based on singular value decomposition of local image
gradient matrix, and provides a quantitative measure of true image
content (i.e., sharpness and contrast as manifested in visually salient
geometric features such as edges,) in the presence of noise and other
disturbances

–

Chen and Bloom [15] Blockiness For a given image, the absolute difference between horizontally
adjacent pixels is computed, normalized, and averaged along each
column. A one-dimensional discrete Fourier transform is thereafter
employed and a vertical blockiness measure is derived. A horizontal
blockiness measure is computed similarly. Finally, a blockiness
measure for the given image is formulated by pooling those two
directional blockiness measures

LIVE database
PCC = 0.9628,
SROCC = 0.9468
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Table 2 continued

NR method Artifacts Brief description Performance

Saad et al. [87] Distortion
generic

BLind Image Integrity Notator using DCT Statistics (BLIINDS)
index: it is based on predicting image quality based on observing
the statistics of local discrete cosine transform (DCT)
coefficients. The probabilistic model is trained on a subset of the
LIVE data. Four features are extracted from the DCT domain and
are applied to local image patched at two spatial scales.
Multivariate Gaussian distribution and the multivariate Laplacian
distribution are considered

LIVE database
SROCC = 0.7996

Liu et al. [63] JPEG and
JPEG2000

It is a Neural Network-based approach. A feed-forward NN is
employed to operate on the feature vector (blockiness and blur)
extracted from JPEG/JPEG2000 images

LIVE database,
For JPEG PCC = 0.9623,
RMSE = 0.109
For JPEG2000 PCC =
0.930, RMSE = 0.139

Chen and Bovik [17] Blur Natural scenes statistics models are combined with multi-resolution
decomposition methods to extract reliable features. The
algorithm is composed of three steps: (i) a probabilistic support
vector machine is applied as a rough image quality evaluator; (ii)
the detail image is used to refine the blur measurements; (iii) the
blur information is pooled to predict the blur quality of images

LIVE database
SROCC = 0.9352

Moorthy and Bovik [70] Distortion
generic

The Distortion Identification-based Image Verity and INtegrity
Evaluation (DIIVINE) index is based on a 2-stage framework
involving distortion identification followed by distortion-specific
quality assessment. Assumes that natural scenes possess
statistical properties which are altered in the presence of
distortion

LIVE and TID2008 data-
bases

SROCC = 0.916 (LIVE),
0.889 (TID2008)
PCC = 0.917 (LIVE)

Tang and Kapoor [42] Distortion
generic

The method uses a set of low-level image features in a machine
learning framework to learn a mapping from these features to
subjective image quality scores. Features are derived from
natural image statistics, texture features and blur/noise estimation

LIVE database, PCC =
0.89

Gabarda and Cristobal [38] Gaussian
noise and
Gaussian
blur

The von Mises distribution of the image information is evaluated.
Assuming that the concentration parameter decreases
exponentially with increasing the amount of degradation, it can
be used as an image quality assessment index

TID2008 database,
For Gaussian noise: PCC
= 0.8052, SROCC =
0.8083
For Gaussian blur: PCC
= 0.9600, SROCC =
1.0000

Mittal et al. [67] Distortion
generic

The Blind/Referenceless Image Spatial QUality Evaluator
(BRISQUE) operates in the spatial domain and is based on
natural scene statistics. No distortion-specific features such as
ringing, blur or blocking are modeled. The algorithm quantifies
the naturalness in the image due to the presence of distortions.
Machine learning-based approach requires training on database
of human-rated distorted images

LIVE database
SROCC = 0.9395, PCC
= 0.9424

Ye and Doermann [128] Distortion
generic

Approach based on visual codebooks. A visual codebook
consisting of Gabor-filter-based local features extracted from
local image patches is used to capture complex statistics of a
natural image. The codebook encodes statistics by quantizing the
feature space and accumulating histograms of patch appearances

LIVE Database,
PCC = 0.8955, SROCC
= 0.8954

Saad et al. [88] Distortion
generic

BLIINDS-II: it uses a Bayesian approach to predict quality scores
after a set of features is extracted from an image. The extracted
features are based on the Natural Scene Statistics (NSS) model of
the image DCT coefficients. Features are extracted over three
scales. The probabilistic model is trained on a subset of the LIVE
data

LIVE and TID2008 data-
bases

SROCC = 0.9306
(LIVE), 0.8442
(TID2008)
PCC = 0.9302 (LIVE)

Mittal et al. [68] Distortion
generic

The natural image quality evaluator (NIQE) is based on the
construction of a quality aware collection of statistical features
based on a space domain natural scene statistic model; without
training on human-rated distorted images

LIVE database,
PCC = 0.9147, SROCC
= 0.9135
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degree of visual degradation of image data that are transmit-
ted through communication networks. In image transmission,
the features must be coded and transmitted with the image
data on the same channel or through ancillary channels. The
receiver computes the same features on the received image to
verify if the original image has been corrupted during trans-
mission. RR metrics can be also used in the image acquisi-
tion or processing scenarios where the acquisition device and
the processing module can be assimilated to a transmission
channel prone to errors and distortions. In these scenarios,
the source and destination images can be of different nature,
but notwithstanding this, a measure of image fidelity is often
required. To this end, in many image domains, it is common
to acquire known targets (e.g. patches of colors or objects) on
which to compute the features to be evaluated and compared.
Similarly to the transmission scenario, the features are com-
puted before and after the acquisition or processing of the
image to verify if and to what extent any quality degradation
occurred. RR methods, in general, extract content-based or
distortion-based features. Compared with FR and NR, few
RR methods are available in the literature. In Table 3, a brief
summary of RR methods is presented.

3.2 Indirect quality evaluation

The aforementioned IQ approaches assess the quality by tak-
ing into account the properties of the images themselves in
the form of their pixels or feature values.

Image quality can also be indirectly assessed quantify-
ing the performance of an image-based task performed by a
domain expert and/or by a computational system. For exam-
ple, in the framework of medical imaging, an image is of
good quality if the resulting diagnosis is correct. In a bio-
metrics system, an image of a face may be considered of
good quality if the person can be reliably recognized, in
an optical character recognition (OCR) system a scanned
document is a good quality if all the words can be cor-
rectly interpreted. The European Commission has proposed
in 1999 an image quality standard for Computed Tomogra-
phy images [31]. In this standard, only two quality levels are
considered: (1) Reproduction: details of anatomical struc-
tures are visible but not necessarily clearly defined; and (2)
Visually sharp reproduction: Anatomical details are clearly
defined. Visual sharp reproduction does not affect the qual-
ity of the diagnosis. The quality evaluation could be done
by processing each image and assesses the fulfillment of the
constraints and requirements of the task [65]. This can be
done manually by domain experts and/or automatically by
a computational system. In the case of the face-based bio-
metric system, the quality evaluation could be done by a
face recognition algorithm that processes and evaluates each
image.

Regardless of the approach used (manual or automatic), by
comparing the predictions with the known correct responses,
several evaluation measures can be derived from an estimate
of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN) responses. Two common mea-
sures are sensitivity and specificity. Sensitivity denotes how
well the expert or the system detects positives and is defined
as TP/(TP + FN). Specificity quantifies how well false alarms
are avoided, and it is defined as TN/(FP + TN).

Indirect quality assessment can be carried out also by
assessing the performance of the imaging/rendering devices.
Using suitable sets of images and one or more direct meth-
ods (both objective and subjective), it is possible to assess
the quality of the imaging and rendering procedures. In this
case, IQ is related to some measurable features of imag-
ing/rendering devices, such as spatial resolution, color depth,
etc…These features can be quantitatively assessed using
standard targets (e.g. X-Rite ColorChecker® Classic [127],
or the ISO 12233 Chart Data [50] and ad-hoc designed soft-
ware tools (e.g. [46]). However, these measures alone are not
sufficient to fully assess IQ. The camera phone image qual-
ity (CPIQ) Initiative of the International Imaging Industry
Association (I3A) uses both objective and subjective charac-
terization procedures [44].

3.3 IQA validation

Despite the time required to perform the test in a carefully
controlled environment, subjective tests are at the base of
objective quality metrics benchmarking. In fact, any objec-
tive metric must be validated with respect to user judgments.
If the perceived quality of an image is not similarly detected
by the metric, that metric must be discarded.

Given a reference dataset, objective and subjective results
can be compared through different performance measures.
Typical measures of performance are related to the predic-
tion accuracy, the prediction monotonicity and the prediction
consistency with respect to the subjective assessments. Some
of these measures are listed below:

– The Pearson correlation coefficient (PCC) is the linear
correlation coefficient between the predicted quality and
the subjective scores. It measures the prediction accu-
racy of a metric. The PCC is computed after the objective
quality metrics has been fitted to the subjective quality
scores using non-linear regression functions. The cor-
relation coefficient ranges from minus one to one. An
absolute value of one implies a perfect correlation, while
a value of zero implies that there is no correlation.

– The Spearman rank order correlation coefficient (SROCC)
is the correlation coefficient between the predicted scores
and the subjective scores. It measures the prediction
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Table 3 Reduced Reference methods

RR method Features Brief description Performance

Saha and Vemuri [90] Features describing
aliasing and
blockiness effects

The active regions of an image (defined as those with strong
edges and textures) are quantified. The metric is based on the
wavelet coefficients from the different sub-band coding
schemes and is used to predict the PSNR of compressed
images

R-squared value =
0.9934

Kusuma and Zepernick [57] Features describing
blocking and
blurring artifacts

Hybrid IQ metric. The importance of blocking effect is
computed using the Wang and Bovik method [116], and the
importance of blurring is measured using Marziliano’s
method [66]

–

Wang and Simoncelli [115] Features describing
the histograms of
wavelet
coefficients

Based on a natural image statistic model in the wavelet
transform domain. The marginal distribution of the wavelet
coefficients within a given sub-band changes in different ways
for different types of image distortions. Uses an information
distance measure between probability distributions to quantify
such changes. No specific distortion model is assumed

LIVE database
PCC = 0.9695 (JPG),
0.8889 (noise),
0.8872 (blur), 0.9353
(JPG2K)
SROCC = 0.8908
(JPG), 0.8639
(noise), 0.9145
(blur), 0.9298
(JPG2K)
OR = 0.0341 (JPG),
0.1793 (noise),
0.1172 (blur), 0.069
(JPG2K)

Carnec et al. [13] Visual features
similar to those
used by the HVS:
orientation, length,
width and
magnitude of the
contrast at the
characteristic point

Implements an operating and organizational model of the HVS,
including important stages of vision (perceptual color space,
CSF, psychophysical sub-band decomposition, masking
effect modeling). The criterion extracts structural information
from the representation of images in a perceptual space.
Extracted features are stored in a reduced description which is
generic, as it is not designed for specific types of distortions

IVC, LIVE and
Toyama databases

PCC = 0.913–0.972
ROCC = 0.909–
0.953
OR = 0.02–0.05

Li and Wang [61] Statistical features
extracted from a
divisive
normalization-
based image
representation

Inspired by the success of the divisive normalization transform
as a perceptually and statistically motivated image
representation. Each coefficient of the transform is
normalized (divided) by the energy of a cluster of neighboring
coefficients. It is a general-purpose method, no assumption is
made about the types of distortions present in the images

LIVE database
PCC = 0.9162
SROCC = 0.9279
OR = 0.1079

Soundararajan and Bovik
[100]

Entropy of Wavelet
coefficients

Reduced Reference Entropic Differencing (RRED) index: the
algorithm measures the changes in suitably weighted
entropies between the reference and distorted images in the
wavelet domain

LIVE and TID2008
databases

SROCC = 0.8606
(LIVE) 0.824
(TID2008)

Rehman and Wang [84] Statistical features
extracted from a
multiscale
multi-orientation
divisive
normalization
transform

The method is based on natural image statistics modeling and
develops a distortion measure by following the philosophy in
the construction of SSIM

SROCC = 0.9129
(LIVE), 0.8154
(IVC), 0.7210
(TID2008), 0.8003
(Toyama), 0.8527
(CSIQ), 0.7301
(A57)

monotonicity of a metric, i.e. the degree to which the pre-
dictions of a metric agree with the relative magnitudes of
the subjective ratings. The range of Spearman Correla-
tion is from minus one to one with the same significance
as the Pearson correlation coefficient.

– The outlier ratio (OR) is defined as the percentage of the
number of predictions outside the range of ±2 times the

standard deviations of the subjective results. It measures
the degree to which the metric maintains the prediction
accuracy (i.e. prediction consistency). The range of the
ratio is from zero to one, with zero indicating the absence
of outliers.

– The Root Mean Square Error (RMSE). The RMSE lower
bound is zero indicating a perfect correspondence.
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Table 4 Image quality
databases Database Brief description

LIVE Sheikh et al. [97] 29 reference images, 779 test images, 20-29 observers/image.
Distortion types: JPEG compresses images (169 images), JPEG2000
compressed images (175 images), Gaussian blur (145 images), White
noise (145 images), Bit errors in JPEG2000 bit stream (145 images)

MICT Sazzad et al. [91] 14 reference images, 168 test images, 16 observers/image. Distortion
types: JPEG and JPEG2000

IVC Callet and Autrusseau
[12]

10 reference images, 235 test images, 15 observers/image. Distortion
types: JPEG, JPEG2000, LAR coding, Blurring

A57 Chandler and Hemami
[14]

Three original images and 54 distorted images (3 images, 6 distortion
types, 3 contrasts). Distortion types: additive Gaussian white noise,
Baseline JPEG compression, JPEG-2000 compression using
different settings, Gaussian blurring, quantization of the LH
sub-bands of a 5-level DWT of the image

Toyama’s Database [110] 182 images of 768 × 512 pixels. Out of all, 14 were original images
(24 bit/pixel RGB) in each group. The rest of the images were JPEG
and JPEG2000 coded images (i.e. 84 compressed images for each
type of distortion). Six quality scales and six compression ratios
were, respectively, selected for the JPEG and JPEG2000 encoders

TID2008 Ponomarenko et
al. [81]

25 reference images, 1,700 test images, observers/image. Distortion
types: noise (Gaussian, spatially correlated, masked, high frequency,
impulse, quantization, pattern), Gaussian blur, compression and
transmission (JPEG and JPEG2000), blocking, intensity shift and
contrast change

CSIQ Larson and Chandler
[59]

30 original images, each is distorted using six different types of
distortions at four to five different levels of distortion. Distortion
types: JPEG compression, JPEG-2000 compression, global contrast
decrements, additive pink Gaussian noise, and Gaussian blurring.
This results in 866 distorted versions of original images. 5000
subjective ratings from 35 different observers

LIVE multi-distortion
Jayaraman and Bovik [28]

15 reference images and 405 multiply distorted images. Four levels of
blur, JPEG compression and noise are considered. The multiple
distorted images consist of blur followed by JPEG and blur followed
by noise. The scores are collected from 37 observers

– The R-squared value reflects the proportion of variation
explained by a regression curve. The range of this index is
from zero to one with one indicating a perfect prediction.

Different standard databases are available to test the
algorithms’ performance with respect to the human subjec-
tive judgments. Among the most frequently used we can
cite: LIVE [97], MICT [91], TID2008 [81], IVC [12], the
Toyama’s database [110], CSIQ [59] and the A57 [14].
Table 4 describes these databases.

When available, several of these correlation measures and
the reference databases are indicated in the last column of
Tables 1, 2 and 3.

Although the performance measures above described may
give an idea of how well a given metric correlates with human
perception, it may be misleading to use only them to select
a metric to be used in a given domain for a given task. Con-
sidering, for example, the SROCC of different metrics on the
same dataset, we can rank methods. However, as it can be

seen from Tables 1, 2 and 3 not all the metrics are validated
on the same database.

4 Applying IQA in a production workflow

After reviewing the different types and criteria used to clas-
sify the available metrics, we pose at this point the question
of how to apply these metrics. Of course, the best general pur-
pose metric does not exist. In general, different metrics may
be required at different stages of the image production work-
flow chain. Even if a given task and scenario would require
specific metrics, we can sketch some general guidelines.

In Fig. 4 a generic image workflow chain is shown. It
starts with the source data (e.g. natural scene, phenomenon,
measured values, etc…) to be captured and coded by a digital
image. The source can be specific of a narrow domain (e.g.
resonance image where the images show a limited variability
in content and technical features of the imaging device) or
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Fig. 4 Relationship between the image production workflow chain and the image quality assessment approaches

broad domain (e.g. consumer photos acquired with different
digital camera, different environment conditions and with
heterogeneous content). In the first case, we can reasonably
expect that all the images are affected by similar distortions,
while in the second case the dis-homogeneity of the images
does not allow to make this assumption. Therefore, in the
narrow domain, it could be simpler to find/design a pool of
metrics that assess the quality of the acquired images.

The imaging block in Fig. 4 broadly refers to any imag-
ing device, hardware or software, that transforms the source
into a digital image. At this stage, quality evaluation is pos-
sible only using RR methods since the source and the digital
image cannot be directly compared (for example real scene
vs digital image).

The RR metric should be chosen among those in Table 3
that have been tested on datasets of images similar to the
current ones. It is important to check that the datasets used
to validate the RR metric chosen include images with sim-
ilar contents, type, range and distribution of distortions to
be detected/estimated within the given application. If one or
more metrics satisfying this constraint can be found, then
the performance correlations in the last column of Table 3
can be used as indicators to choose a metric. If not, a proper
database (representative of the source data) should be specif-
ically designed; psychovisual experiments should be run on
this database to obtain the subjective scores that will let us
validate the RR metrics. The metric showing the best perfor-
mance correlation is the one to be considered. This procedure
should be applied within the production workflow chain, each
time a metric has to be selected.

The digital image may go through a validation phase
that is aimed to have an initial assessment of the suitabil-
ity and/or quality of the image with respect to the applica-
tion needs (task constraints). This phase can be performed
by a visual inspection. Automatic validation can also be
performed using NR metrics to assess image quality or by
applying rules to check if semantic constraints (e.g. minimum
image size, completeness, etc.) are satisfied. The NR metrics
have to be chosen among those tailored to detect the expected

acquisition distortion artifacts and using the performance
measures indicated in Sect. 3.3 to choose among the can-
didate ones. Images that do not pass the validation phase are
rejected.

If required, the image can be further processed to increase
its usefulness for the task at hand (e.g. contrast enhancement
or binarization) or to allow more efficient transmission and
storage (e.g. compression). In particular, in the latter case,
FR assessment techniques can be used since the two digi-
tal images (before and after compression) are available. The
image can now be transmitted and finally used either by a
human observer or by an application. At the receiver/user
side, further quality evaluation can be performed. Typically
this amounts to ensure that the rendering devices (displays
and printers) are properly calibrated and characterized for a
faithful image reproduction. This can be achieved, for exam-
ple, by including color profiles into the images themselves
[49] as metadata information. Other metadata information
can be also included along the production pipeline. Usually
this information refers to the source acquisition device, image
processing steps, and image content.

In what follows we illustrate IQA within three particu-
lar workflow chains. For these chains, high level IQA poli-
cies can be sketched with reference to broad categories of
IQA methods (FR, NR, RR). Finally, a real case study is
discussed in greater detail. The three workflow chains refer
to: high-quality image archives, biometric system and con-
sumer collections of personal photos. These scenarios have
been chosen to illustrate different declination of image qual-
ity and the different constraints and requirements that must
be observed while assessing it. As real case we have chosen a
printing workflow for which we suggest and actually evaluate
the performance of a set of specific NR IQA methods.

4.1 Quality assessment in high-quality image archives

Figure 5 illustrates an image workflow chain aimed for the
population of a generic image archive for professional users
such as institutional museums, photo agencies and any entity
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Fig. 5 Image workflow chain of a high-quality digital images archive

responsible for the management and distribution of high-
quality image archives. Notwithstanding that, in this sce-
nario, the main scope of the workflow chain is to collect
images with the maximum fidelity to preserve the character-
istics of the originals as much as possible. One of the major
issues institutions should consider, before the digitalization
process starts, is the anticipated use of their digital images
[36]. Since the images can be used with different scopes,
for each image several copies with different quality levels
are needed. For this reason, images in a high quality archive
can be classified into master, access, and thumbnail images
depending on their final usage [3]. Taking into account the
four categories (photograph, text, maps and graphics), some
basic guidelines exist on how to generate these three groups
for each of the categories [6].

In this scenario, the acquisition environment can be con-
sidered as only partially controlled. For example, in the case
of an art gallery, the environment cannot be excessively tam-
pered with to properly light the objects or move them in a
better place to facilitate the acquisition procedures, paintings
must be illuminated with lights that must not harm the colors
or the camera cannot be freely placed in front of the objects.
The acquisition is to be performed by high-end acquisition
devices. Special devices can also be used to acquire large sur-
faces at high (or extremely high) resolution (e.g. The Google
Art Project1). Since the fidelity of the acquired image is of
paramount importance, color charts are usually used to cali-
brate and characterize the acquisition devices [95]. They may
be also acquired along with the objects constituting reliable
references for RR IQs and subsequent processing steps. In
the validation phase, it is important to assess that the whole
object has been completely and correctly acquired as in the
case of the multi-view acquisitions of 3D objects or the sur-
face tessellation of very large paintings. At this stage, image
quality can be assessed using RR or NR methods.

Since the images collected may be distributed and used in
different ways, the processing phase may include resizing,
thumbnail creation, digital image format changes and com-

1 http://www.googleartproject.com/.

pression to derive access and thumbnail images. For images
that undergo processing steps, quality check is mandatory
and according to the type of processing FR, RR or NR meth-
ods can be applied. With respect to image resizing, in [85],
the problem of image quality for super-resolution images
is addressed. In fact, super-resolution introduces blurring,
aliasing, and added noise to the processed image. The qual-
ity assessment approach in [85] uses the SSIM metric to
compare an image with the corresponding super-resolution
one obtained by downsampling and upsampling the original.
In [130] instead, a more generic approach is used which is
based on natural scene statistics. Statistical models computed
on high-quality natural images are built and the departures
from such models are used to quantify image quality degra-
dations.

During fruition, the perceived image quality is affected by
the rendering device and the viewing conditions. For a faith-
ful reproduction of digital images, the rendering devices must
be carefully calibrated and characterized [95]. A best prac-
tice is to employ a color management system (CMS) based
on the International Color Consortium (ICC) color manage-
ment model [49]. At this stage, IQA can be carried out using
subjective methodologies to evaluate the perceived image
quality in the fruition environments.

In this high-quality image scenario, high dynamic range
(HDR) images are becoming more widely available since
they allow colors to be captured at the highest fidelity. How-
ever, this poses the problem of how to visualize HDR images
on standard displays designed for low dynamic range (LDR)
images. Usually a tone mapping algorithm is required to
obtain LDR images from HDR ones. Recently, [129] pro-
posed an objective IQA algorithm to evaluate tone-mapped
images by combining structural similarity and natural scene
statistics approaches.

The metadata associated with the acquired images are
of great importance in this application scenario. In [6],
four types of metadata schemes that institutions can use to
describe their artifacts are described: Descriptive Metadata,
Administrative Metadata, Structural Metadata and Technical
Metadata. Since all the stored textual data are intertwined
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Fig. 6 Image workflow chain of a generic biometric system exploiting facial information

and can refer to the same conceptual entities in complex and
complementary ways, the quality of the data stored into the
database should be also taken into account with appropriate
metrics (see [4,5]).

4.2 Quality assessment in a biometric system

In authentication and verification biometric systems, mea-
suring the quality of biometric samples is a crucial step
during the enrolment process. Biometric matching algo-
rithms depend on quality of sample features that can be
extracted from digitized samples. Good-quality biometric
samples obviously increase the performance of the matching
process. There are different causes that influence the quality
of the biometric sample image such as environment, acqui-
sition device, operator, and user cooperation. Maintaining
a consistent level of sample’s quality allows a more robust
discrimination among samples during authentication or
verification.

A general workflow chain for a biometric system for dig-
ital passports is shown in Fig. 6. Since the application needs
and constraints are strictly defined, very low variability in
the workflow chain is admitted. The source images are usu-
ally taken in a controlled environment. Lights and subject
pose are managed to reduce the variability in the acquisi-
tion at minimum and to focus on the face of the subject.
The acquisition device is usually a digital camera. It must
have enough spatial resolution to make it possible to record
all the relevant facial information, without visible artifacts.
The latter can be detected with NR and RR methods. Fur-
thermore, acquired images pass through a validation phase
that is aimed to discard those images that do not possess the
requirements adopted in digital passports. The International
Civil Aviation Organization (ICAO) based its requirements
[45] on the the ANSI INCITS 385-2004 standard [2], later
to become an ISO/IEC IS 19794-5 standard [51]. Among the
requirements for a good quality facial image are: be in sharp
focus and clear; show skin tones naturally; have an appropri-
ate brightness and contrast; be color neutral; show open eyes
and clearly visible (no hair across eyes); be taken with a plain

light colored background; be taken with uniform lighting; no
shadows or flash reflections on the face; no red-eye effect.
For the full set of 23 features that must be taken into account
for a compliant face image, see [51].

The validation phase can be carried out by a domain expert
or by an automatic procedure. For example, the FaceQM tool
[131] is able to automatically evaluate 15 out of 23 ANSI
2004 image requirements. A frontal token image can be cre-
ated to enable a facial recognition algorithm to operate more
efficiently. The token image must satisfy specific requisites.
The validated images can then be stored in a database with
biometrical features (eye location, eye to mouth distance)
or can also be extracted and stored during this stage. In the
case of face-based authentication system, the quality of the
acquired images can be also indirectly assessed using False
Accept Rate (FAR) and False Rejection Rate (FRR) indices.
From the above observations, we can see that in this scenario,
the task constraints are more important with respect to the
quality approaches described in Sect. 3.

4.3 Quality assessment in consumer collections of personal
photos

In personal photo collections, more than in the other scenar-
ios, the definition of what is intended by image quality is
rather fuzzy (see Fig. 7). In high-quality catalogues and in
biometric systems, the source and use of the images are well
defined. On the contrary, in personal collections, these fac-
tors are not well defined. Consequently, the variability in the
image production chain is much larger. The subject and the
scene depicted in the images are varied and unconstrained,
images can be acquired using a variety of devices, and the
resulting images can be used in different ways (stored, printed
or shared) that are not necessarily known in advance. In sum-
mary, personal photo collections belong by definition to the
broad image domain and thus it is very difficult to define a
general IQA.

Judging the quality of personal photos only on the basis
of the presence of low level distortions, such as noise or blur,
may be not sufficient since in this scenario there are no con-
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Fig. 7 Image workflow chain of a personal photo collection

straints on how the images have been acquired or why they
have been acquired in such a way. Personal photos are usually
taken to record special events and often users pay little atten-
tion to the acquisition conditions: images taken with very
low light are usually very noisy but they can be considered
acceptable if they depict properly the object of interest. An
out of focus image may be considered a good image if it
was taken with amusing or appealing intentions in mind or if
it preserves a cherished memory of some event [56]. Com-
positional rules such as the Rule of Thirds or the Equalized
visual weights [54] are seldom observed by occasional pho-
tographers. Thus, the validation phase is mainly subjective
and may vary from photo to photo. Among the defects that
can be automatically assessed on consumer photos, there is
the red-eye detection. Red eye is one of the most common
defects that even occasional photographers pay attention to
and is also a recoverable one, i.e., a computational proce-
dure can be applied to remove it from the images [39]. Gross
acquisition defects can be detected with NR IQ metrics and
could be used to filter out bad images. Other possible criteria
to automatically reject images are to discard near duplicated
ones. It is not uncommon to take many photos in sequence
(usually during some relevant occasions such as parties) and
an automatic procedure can be devised to detect them [133].

If we want to take into account also aesthetics, several
approaches can be used to evaluate it. For example, in [30],
low level features are used to classify images into aesthet-
ically pleasing and displeasing. Exposure of light, color-
fulness, saturation, hue, the rule of thirds, familiarity, size,
aspect ratio and low depth of field are some of the features
exploited. At a less tangible level, we can even consider an
image from the point of view of color preference and color
harmony [92,99] or how to detect combinations of pleasing
colors or sets of colors that inspire particular moods [26].

Some of the images passing the validation phase may
undergo an enhancement process. Apart from the usual geo-
metric processing such as scaling, cropping and rotation,
users may desire the images to look good or even funny
or conspicuous disregarding the fidelity with respect to the
scene depicted. The perceptual or subjective impression is
considered more important than the objective quality. Con-

sequently, the processing is mainly aimed to enhance the
image appeal, even if the processing steps may introduce
defects or distortions such as halos or unnaturally high color
saturation. The processing procedures may also include the
application of digital effects to make the image more attrac-
tive for potential viewers. In this scenario, images are mostly
stored in JPEG format since this is the most common output
of mid- low-end cameras and it is a suitable format for image
sharing.

This dependence requires the design of IQ metrics that
take into account different distortions simultaneously.

4.4 A case study: IQA in a printing workflow

In this section, we describe our experience in IQA within
a printing workflow chain for a real case study. The case
study originated from an investigation whose aim was to inte-
grate IQA metrics within one Océ-Canon 2 printing workflow
chain. Specifically, the goal was to automatically classify dig-
ital images into three classes: high quality ones, that can be
directly printed; low quality ones, that do not deserve print-
ing; and medium quality images, where the printing decision
would be taken by a manual operator. Without an automatic
procedure, images are either all printed (with a waste of ink,
paper and materials), or subjectively evaluated by an expert
(with a considerable wasting of time). In Fig. 8, a representa-
tive flowchart of this printing chain is depicted. A quality val-
idation module is introduced that, using NR metrics, permits
to classify the images as high, medium or low quality. High-
quality images will be directly printed. Low quality ones will
be rejected, while the rest of them will be forwarded to the
human judgment. After this step of subjective quality evalu-
ation, some images could have been evaluated good enough
to be printed, others will be discarded, while some of them
can be sent to a processing module where image enhance-
ment can be performed using basic software or professional
ones. Among all the possible distortions, the company was
mainly interested on JPEG and noise artifacts and the com-
bined effect of noise followed by JPEG compression.

2 http://www.oce.com.
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Fig. 8 IQA in the analyzed printing workflow chain

As we have previously emphasized (see Sect. 4), it is
important to individuate a proper database where the per-
formance of the NR metrics to be chosen for this specific
application will be evaluated. By proper we mean a data-
base where both type and range of distortions are represen-
tative of the real case studied. After reviewing the available
databases (see Table 4), we have found that none of them is
suitable for this application [22]. In general, the distortion
range in the available databases varies from images of high
quality to images highly corrupted, with a greater emphasis
with respect to degraded images. This is due to the fact that
most of these databases were generated for academic pur-
poses. However, images considered in the real application
under study present a narrower range of distortions, more
concentrated in the medium and high quality. To this end,
a proper database [22,23] was specifically generated to sat-
isfy the constrains of the printing company. This database
originates from 20 reference images of 886 × 591 pixels (15
× 10 cm at 150 dpi, typical printing parameters for natural
photos), chosen to sample different contents both in terms of
low level features (frequencies, colors) and higher ones (face,
buildings, close-up, outdoor, landscape). The corresponding
thumbnails are shown in Fig. 9.

Starting from these images, the whole database is com-
posed of:

– Noise database: 200 noisy images obtained as follows:
for each of the 20 reference images, we have created 10
corrupted versions with: 1, 2, 3, 4, 5, 6, 8, 10, 12 and
14 gray levels of standard deviation on the luminance
channel.

– JPEG database: 180 JPEG compressed images gener-
ated using the Matlab imwrite function. As the Q-factor
depends on the specific JPEG compression algorithm
used, we have adopted the bit per pixel (bpp) Ratio (bppR)
with respect to a reference, finding iteratively the Q-
factors that better match the corresponding bppR values.
As reference we have adopted the Q = 100 compressed

image, where the compression is mainly due to the sub
sampling of the chroma channels and to lossless algo-
rithms. For each of the 20 original images, we have cre-
ated 9 compressed versions with the following bppR: 1
(Q = 100), 0.707, 0.5, 0.25, 0.177, 0.125, 0.105, 0.088,
0.0625.

– MD database: 800 Multiply Distorted images generated
as follows: each of the 200 noisy images were further
processed by 4 different levels of JPEG compression,
corresponding to Q factor values of 100, 50, 30, and 10.

For collecting the subjective data, in terms of Mean Opin-
ion Scores (MOS), a Single Stimulus method was adopted,
where all the images are individually shown. Observers were
asked to provide their perception of quality on a continu-
ous linear scale that was divided into five regions, marked
with adjectives (Bad, Poor, Fair, Good, and Excellent). The
scale was then converted into 1–100 linearly. The experi-
ments were performed following the recommendations in
ITU [52].

In what follows we report in details the results on the JPEG
database, and then we summarize the results obtained for the
noise database, and the MD database. For what concerns the
objective data that have to be correlated with the subjective
evaluations, working on JPEG, the following NR metrics are
here considered (M1–M4 for single distortion, M5, and M6
general purpose).

– M1: by Wu and Yuen [126]
– M2: by Wang et al. [116]
– M3: by Muijs and Kirenko [72]
– M4: by Chen and Bloom [15]
– M5: BRISQUE metric, by Mittal et al. [67]
– M6: NIQE metric, by Mittal et al. [68]

The metrics and the subjective scores have been correlated
using a logistic function. Metrics that correlate highly with
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Fig. 9 The 20 reference images
of the database

Fig. 10 Logistic regression for NR metrics and JPEG database. First row M1, M2, and M3, second row M4, M5 and M6

human ratings typically yield high Pearson and Spearman
correlation coefficients (greater than 0.9).

In Fig. 10, we report the logistic correlations between each
of the M1–M6 metric and the subjective scores. In Table 5,
the corresponding correlation coefficients are shown.

Keeping in mind our classification task within high,
medium, and low quality classes, we have grouped the MOS
scores so that images evaluated as Bad and Poor correspond
to our low quality class, images evaluated as Excellent and
Good correspond to high quality one, while images Fair are
assigned to class medium. These groups correspond to the

ground truth of our classification problem. The predicted
classes are obtained applying thresholds to the regression
curve between an NR metric and the subjective scores.

As example we here report in detail the classification
obtained using the M2 metric, as it shows the highest cor-
relation coefficients (see Table 5). In Fig. 11 (left), we show
the MOS scores corresponding to images evaluated, respec-
tively, as high, medium and low quality ones. The predicted
classes obtained by thresholding this regression curve are
shown in Fig. 11 (right). The performance of this classifi-
cation is reported in Table 6 in terms of confusion matrix.
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Table 5 Pearson and Spearman correlation coefficients for NR JPEG-blockiness (M1–M4) and general purpose metrics (M5, M6) on the JPEG
database

Correlation M1 M2 M3 M4 M5 M6

PCC 0.9028 0.9059 0.8789 0.8685 0.5747 0.3593

SROCC 0.8662 0.8922 0.8714 0.8689 0.5387 0.3534

Fig. 11 MOS scores versus M2 metric. Left ground truth with respect to the three classes, high, medium, and low. Right the corresponding predicted
classes obtained thresholding the regression curve

Table 6 Confusion matrix obtained using the regression curve of M2
metric and JPEG database

Class Predicted

real Low Medium High

Low 85 8 0

Medium 9 18 10

High 0 10 40

Error = 20 %

Table 7 Classification errors for NR JPEG-blockiness (M1–M4) and
general purpose metrics (M5, M6) on the JPEG database

Metric M1 M2 M3 M4 M5 M6

Classification error (%) 22 20 19 23 49 57

Each column of the matrix represents the instances in a pre-
dicted class, while each row represents the instances in an
actual class. All correct predictions are located in the diago-
nal of the table. All the non-zero elements outside the diag-
onal represent misclassifications. The performance error is
obtained as the ratio between the misclassified elements and
the total number of images. Summarizing, for the M2 metric
and JPEG database, the error performance for the classifica-
tion task is 20 %. The classification results considering all
the 6 NR metrics above cited, summarized in terms of clas-
sification errors, are reported in Table 7.

In conclusion, for our classification task, distortion spe-
cific metrics (M1–M4) perform better than general purpose
ones (M5, M6) as also suggested by the correlation coeffi-
cients (see Table 5). Among distortion specific metrics, tak-
ing into account the values of PCC and SROCC and the clas-
sification errors, metrics M2, and M3 are the most suitable
metrics to be adopted within the considered workflow (see
Fig. 8).

For what concerns the noise database, we here consider as
distortion specific metric only the NR metric by Immerkaer
[47] (hereafter called M7), as this metric highly correlates
with the subjective data in case of Gaussian noise. The met-
ric implementation by Foi [35] is used in what follows. As
general purpose metrics, we consider the same M5, and M6
applied also in the case of JPEG compression.

In Fig. 12, the logistic regressions of these NR metrics with
the subjective scores of the noise database are reported. The
corresponding PCCs and SROCCs and classification errors
are summarized in Table 8.

Finally for what concerns the MD database, we here con-
sider the metric M7 for noise and M2 for specific JPEG dis-
tortion as it is the best one among those considered for the
JPEG database. Also the two general purpose metrics M5
and M6 are taken into account. In Fig. 13, the subjective
scores of the MD database are plotted versus the M2, M7,
M5, and M6 metrics, respectively. Note that in case of M7,
it was not possible to find a reasonable logistic regression.
From these plots, we observe that neither metrics specifically
developed for single distortion nor general purpose ones are
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Fig. 12 Logistic regression for M7, M5, and M6 NR metrics and noise database

Table 8 Performance evaluation of the M7, M5, and M6 metrics on
noise database

Metric M7 M5 M6

SROCC 0.9660 0.9096 0.7300

PCC 0.9688 0.9262 0.7393

Classification error (%) 15 16 36

able to properly fit the subjective data in the case of multiple
distortion noise-JPEG as also confirmed by the correspond-
ing PCC and SROCC in Table 9. For this reason, we think
that it has no sense to perform the classification task here
proposed, for the case of MD database. This is an open issue
that has to be addressed in the near future with the develop-
ment of proper metrics that take into account the presence of
simultaneous distortions.

Summarizing, we can sketch the following guidelines con-
cerning the choice of NR IQA metrics:

– If the kinds of distortion corrupting the images are known,
the corresponding distortion-specific metrics are the most
suitable ones. Based on our experience and on the case
study here presented, we propose to use:

– the metric developed by Wang et al. [116] for JPEG
artefacts;

– the metric by Immerkaer [47] for Gaussian noise dis-
tortion;

– the metric by Marziliano et al. [66] for Gaussian blur-
riness;

– the metric by Chen and Bovik [17] in case of real
blurriness (simple and complex motion blur, out-of
focus, etc.);

– the metric by Zhu and Milanfar [136] if both blurri-
ness and noise are present.

– In case of multiple distortion or when the kinds of dis-
tortion present in the images are unknown, the following
two blind metrics are suggested:

– the Opinion-aware metric BRISQUE [67] that has
been trained on the LIVE database;

– the Opinion-unaware metric NIQE metric [68] for
which no training phase is required.

5 Open issues

In this section, we consider some open issues that are being
addressed at present by the IQA community.

A challenge task is how to design a general purpose NR
IQ metric capable of assessing different artifacts simultane-
ously. It is not surprisingly that the major part of the NR IQ
metrics are designed to measure only a single distortion. The
few that consider two distortions simultaneously are mainly
concerned with the case of noise and blur that are corre-
lated. A first idea could be to combine different IQA metrics
into a single method. However, before considering differ-
ent combination strategies, the normalization problem of the
single metrics should be addressed. Both the normalization
and combination of multiple metrics are still open problems
within the IQA community. The same issue applies if we aim
to increase the performance of detecting a given artifact by
combining several metrics. To cope with this problem, gen-
eral purpose metrics (or universal metrics) have been pro-
posed by [42,67,128]. Despite these methods show promis-
ing results as generic metrics, they have been tested mainly
on the LIVE database and on other databases where each
corrupted image is affected by a single distortion. Recently,
a multi-distortion database [28] has been introduced where
the multiple distortions consist of blur followed by JPEG and
blur followed by noise.

Another aspect that has not been fully addressed up to
now in the literature is the interference created by the two
signals that compose an image: the content and the distor-
tion. As the distortion increases, the visibility of the content
decreases and, for the case of natural images, these two sig-
nals may not be clearly separated or their mix is spatially
varying. This poses a problem when designing, for example,
an NR metric. Even if the metric was properly designed to
identify a given distortion, the content of the image can still
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Fig. 13 Logistic regression for M2, M7, M5, and M6 NR metrics and MD database

Table 9 Performance evaluation of the M2, M7, M5, and M6 metrics
on MD database

MD M2 M7 M5 M6

SROCC 0.5575 – 0.6541 0.4371

PCC 0.6515 – 0.6583 0.4407

influence the metric estimation because the metric is blind to
the content of the image and cannot distinguish between con-
tent signal and distortion signal. In fact, as we have already
noted, an IQ measure computed on the overall image may
not be representative of the perceived quality (see Fig. 2). A
more suitable way could be to compute the IQ measure on
selected regions chosen on the basis of their properties and
of the application task. The selection of these regions can be
done manually using interactive tools (e.g. [21]), and only in
some cases could be automatically performed by applying a
region annotation method like the one described by Cusano
et al. [27].

To overcome the differences between the subjective and
the objective quality metrics, many researchers have tried to
integrate human vision cognition models within the quality

metrics. Taking into account low level features of the Human
Vision System (like for example luminance sensitivity, con-
trast sensitivity and texture masking) has led to the devel-
opment of many HVS-based metrics [29,64,89,105]. On the
other hand, the high-level features of the HVS have lately
become of interest for researchers committed in image qual-
ity perception modeling. Among them, we can cite the visual
attention mechanism. This feature makes the observer focus
on a selected or salient region while ignoring other areas of
the image. Many attempts have been done to integrate the
visual saliency information within the quality metrics but
the results are contradictory up to now [69,74]. Different
issues arise while integrating visual saliency within quality
metrics. One of them is the fact that the quality assessment
task in itself can affect the way people look at an image
[1,73]. Another important point to be considered is the type
of saliency map used: different computational models can be
used to generate these maps but also the ground truth maps
can be considered (obtained from eye tracking experiments
where the gaze direction is recorded) [62,83].

Besides the visual attention, other high level features, for
example, prior information regarding the image contents,
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affect the evaluation of the image quality. Subjective experi-
ences and preferences may also influence the human assess-
ment of image quality: it has been shown that the perceived
distortions are dependent on how familiar the test person is
with the observed image. For example, it is well known that
one of the objects attracting most of our attention is people
and especially human face. Some objective metrics have been
proposed that try to include this information in a top-down
way (see for example [107]).

Following numerous psychophysical studies, Larson et
al. [59] assume that the HVS performs multiple strategies
when determining quality. They argue that, given a single
task of judging image quality, a human observer employs
different strategies when confronted with different image
conditions. In the high-quality regime (i.e. for evaluation
high quality images), the HVS attempts to look for distor-
tions in the presence of the image, whereas in the low-quality
regime, the HVS attempts to look for image content in the
presence of the distortions. These two fundamentally dif-
ferent strategies require two separate computational models.
With this goal in mind, the authors proposed an FR method
called Most Apparent Distortion. It operates using both a
detection-based model and an appearance-based model. For
detection, they employ a spatial domain model taking into
account the contrast sensitivity, local luminance and contrast
masking. For appearance, they employ a model that follows
from the texture-analysis literature. The overall quality of the
distorted image is computed by taking a weighted geometric
mean of the detection-based and appearance-based qualities,
where the weight is determined based on the amount of dis-
tortion. For highly distorted images, greater weight is given
to the appearance-based quality, whereas for images contain-
ing near threshold distortions, greater weight is given to the
detection-based quality. Therefore, it should be beneficial to
consider the possibility of extending this two-strategy model
to the case of NR and RR metrics.

Finally, video quality assessment (VQA) should be men-
tioned as a natural extension of IQA. Most of the contem-
porary video coding standards use motion compensation and
block-based coding schemes for compression. As a result,
the decoded video suffers from one or more of the compres-
sion artifacts, such as blockiness, blurriness, color bleeding,
ringing, false edges, jagged motion, chrominance mismatch,
and flickering. Transmission errors such as damaged or lost
packets can further degrade the video quality. Furthermore,
the pre- or post-processing stages in the video transmission
system, such as domain conversion (analog to digital or vice-
versa), frame rate conversion, and de-interlacing degrade the
video. Therefore, the methods for evaluating video quality
play a critical role in quality monitoring to maintain Quality
of Service (QoS) requirements. Ad-hoc metrics have been
designed for videos (e.g. [79,80,93]), as well as many IQ
metrics have been extended to videos (e.g. [87,101]).

6 Conclusions

Image quality assessment is a very active and evolving
research area. In this paper, we provided an overview of the
state of the art of the IQA methods, putting in evidence their
applicability and limitations in different application domains.
It should be now evident to the readers that the selection and
use of the different metrics depend on the semantic content
of the image, the application task, and the particularly imag-
ing chain applied. To design more reliable and general pur-
pose image quality metrics, an interdisciplinary approach is
the challenge for the next years. Evidence from the biolog-
ical studies will help us to understand how our brain works
when involved in the quality assessment task. Computational
models of the visual system that account for these cognitive
behaviors could be integrated within the perceptual qual-
ity metric design. Last but not least, semantic models from
the image understanding community can certainly help us
improve the metrics’ design and performance.
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