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Abstract—Road direction signs depict textual and directional
information to convey instructions about how to reach a given
destination. Detecting and interpreting road direction signs
constitutes a key component in self-driving vehicles, therefore
we propose a hybrid pipeline that combines deep learning
with traditional handcrafted image processing, aiming for a
combination of effectiveness and efficiency. Our solution includes
a procedure for the identification of the orientation of arrows,
generalizing on a wide variety of pictorial styles for direction
signs across the globe. Our pipeline is evaluated in terms of
accuracy and inference time of its individual steps, demonstrating
excellent performance. Experiments are performed over two
variants of the pipeline, assuming the availability of different
levels of computational resources. We also test the system’s
dependence on annotated supervision by performing evaluation
with a varying number of training instances.

Index Terms—road direction signs, street scenes, object detec-
tion, arrow orientation

I. INTRODUCTION

A self-driving vehicle is a vehicle capable of analyzing and
understanding its surrounding environment, in order to develop
a strategy to bring passengers safely and in the shortest possi-
ble time to their destination. The perception system of such a
vehicle must be able to analyze and understand a potentially
infinite amount of different situations, having to adapt to each
of them in order to ensure maximum effectiveness, maximum
efficiency, and above all maximum safety. The behavior of
a self-driving vehicle can be, therefore, guided by a number
of inferences to be performed on street scenes, ranging from
depth estimation [1] to vehicle recognition [2]. In this paper
we specifically focus on addressing the presence of direction
signs, i.e. road signs that include two complementary pieces
of information:

• textual information, composed of written text indicating
which place or places will be encountered continuing in
a certain direction;

• directional information, consisting of one or more arrows
indicating which direction to follow to reach the destina-
tion indicated by the text.

The processing pipeline scheme is graphically represented
in Figure 1. To the best of our knowledge, this is the first
published instance of a method for the detection and inter-
pretation of road direction signs with a focus on arbitrarily
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Fig. 1: Overall pipeline for detection and recognition of road
direction signs.

shaped and oriented arrows. Wenzel et al. [3] employed a
scale-invariant approach based on ACF features (Aggregated
Channel Features) [4] to locate the four corners of a sign
and to train four models of Support Vector Machines, thus
obtaining four different detectors. These were used through
a sliding-window approach to generate hypotheses about the
presence of potential corners belonging to the signs. Finally
these hypotheses, consisting of pairs formed by coordinate
points expressed in pixels and a score value, were filtered on
the basis of the latter and geometric constraints. This work was
however limited to the detection of direction signs, without
further analysis or interpretation of their content, similarly to
the works by Choi et al. [5] and Tabernik et al. [6]. A pivotal
step in the interpretation of road direction sign is in fact the
classification of arrows based on the direction they indicate.
On this domain, limited research has been documented within
the scientific literature. Existing works [7]–[9] focus on an
extremely reduced set of arrows shapes and colors, exploiting
their geometric characteristics to define handcrafted features
with which to classify the type of arrow (and consequently the
direction represented). This limitation is in part attributed to
the different application domain, focusing on road markings
as opposed to road traffic signs.

II. PROPOSED METHOD

In the following, we describe our pipeline for the detection
and interpretation of road direction sign. Its design is moti-
vated towards generalizing for the wide variety of appearances
that may be encountered on different roads all around the
world, as depicted in Figure 2.
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Fig. 2: Sample of road signs from around the world, depicting
the intrinsic variability of this class.

A. Sign detection

The first step of our pipeline involves identifying all the road
signs present in the image. The YOLOv7 neural architecture
was used for this task [10], [11], due to the extensively
proven efficacy on a wide variety of detection applications.
In order to tune the solution to the problem at hand, domain-
specific data augmentation operations have been applied to
the data. Perspective deformations [12] simulate the effect of
the sign being acquired from different road lanes, at different
distances, and account for a misplacement of the imaging
device, whose positioning on the vehicle might change through
time due to the impact of road bumps. A combination of
CutMix [13], copy paste [14] and mosaic [15] operations is
used to recreate additional scenarios of multiple road signs
present in one image. Pseudo-random modifications of the
Hue-Saturation-Value representation of the input recreate the
impact of atmospheric phenomena, and generalize to the
acquisition with different cameras. Additionally, a random
application of the image negative of signs portions has been
implemented, to balance the amount of traffic signs that are
written with light text on a dark background, and vice-versa.
Preliminary experiments revealed that this solution reduced
the final model accuracy, possibly due to the larger amount
of one category in the test set, and as such it has not been
included in our final solution. Detection instances that are
entirely contained within others are removed (this occurs when
particular rectangular graphic elements with different colors
and writings appear inside a sign).

B. Text detection and recognition

The extraction and categorization of textual information re-
lies on EasyOCR [16]. The main steps of the pipeline proposed
by the authors consist of a feature extraction process with a
CRAFT feature approach [17], used for character identifica-
tion, which are then categorized using ResNet [18] as a feature
extractor, and LSTM (Long Short Term Memory) [19] and
CTC (Connectionist Temporal Classification) [20] to recognize
character sequences. In case the procedure produces a null
output, the current candidate road sign is discarded. Otherwise,
the road sign portion is given as input to the subsequent
arrow detection step. The decision to perform the Optical
Character Recognition (OCR) step first with respect to the

Fig. 3: Two example executions of the proposed arrow orien-
tation categorization procedure.

arrow detection step was taken on the basis of preliminary
studies, which proved that this procedure requires less time
than arrow detection, thus leading to a potential reduction in
calculation time. The output of this step includes both the
detected text and its position within the input: the spatial
information will be used later in the last step of the pipeline
to compose the final result.

C. Arrow detection and orientation categorization

Arrows inside road signs from all around the world show
an extremely variable range of shapes and colors, as shown in
Figure 2, making the use of handcrafted features for detection
impractical. For this reason, we relied on a second YOLOv7
model for the arrow detection (trained on an appropriate
custom dataset), and we defined a procedure based only on
traditional image processing techniques to categorize the ar-
row’s orientation, synthesized in Figure 3. The set of possible
directions indicated by the arrows is here discretized into eight



TABLE I: Results obtained with YOLOv7 and YOLOv7-tiny architectures for the two object detection models: road traffic
signs, and arrows.

Model Training
Instances Class Validation

Precision
Validation

Recall
Validation
mAP@.5

Validation
mAP@.5:.95

Test
Precision

Test
Recall

Test
mAP@.5

Test
mAP@.5:.95

10’033
all 0.707 0.601 0.65 0.447 0.697 0.596 0.633 0.431

d-or-i 0.68 0.672 0.704 0.513 0.662 0.659 0.671 0.484
other 0.733 0.53 0.597 0.382 0.732 0.533 0.594 0.378

5’017
all 0.718 0.574 0.619 0.42 0.7 0.554 0.595 0.399

d-or-i 0.691 0.646 0.667 0.479 0.662 0.609 0.621 0.442
YOLOv7 other 0.745 0.503 0.572 0.362 0.738 0.498 0.568 0.356

2’509
all 0.676 0.526 0.565 0.372 0.66 0.518 0.541 0.355

d-or-i 0.644 0.574 0.6 0.418 0.627 0.559 0.558 0.388
other 0.707 0.479 0.529 0.326 0.693 0.476 0.525 0.322

824 arrow 0.966 0.986 0.991 0.735 0.974 0.95 0.983 0.749

10’033
all 0.658 0.482 0.516 0.325 0.64 0.474 0.502 0.314

d-or-i 0.636 0.561 0.577 0.381 0.627 0.533 0.55 0.359
YOLOv7-tiny other 0.679 0.403 0.455 0.269 0.654 0.414 0.455 0.27

824 arrow 0.912 0.938 0.949 0.668 0.922 0.899 0.95 0.66

categories: up, down, left, right, north-west, north-east, south-
west and south-east.

The first step in orientation categorization is a binarization
of the arrow region. Since a threshold value could not be estab-
lished a priori, the Otsu binarization technique was used [21].
To account both for light-on-dark and dark-on-light arrows, it
is assumed that the region of the arrow is the “most central”
connected component, i.e. that it intersects the center of the
image.

The second step is identifying the arrow’s rotation angle,
regardless of its pointing direction. This is achieved by first
determining a set of four rotation candidates through the
application of Principal Component Analysis (PCA) [22], and
then performing a symmetry analysis on these candidates. PCA
is first applied to the binary mask of the arrow, obtaining two
resulting orthogonal eigenvectors, which provide information
about the direction of white pixels distribution within the
mask. This idea is based on the fact that every arrow, regardless
of its shape, has a head that takes up a great part of the
total area of the arrow; this head constitutes a morphological
component that extends towards a well-defined direction. Four
directions emerging from PCA are therefore taken into consid-
eration: the major and minor orthogonal eigenvectors, plus the
two intermediate rotations to account for mis-identifications.
To determine which of these rotations is the most likely, a
symmetry analysis is performed. The arrow binary mask is
rotated according to each candidate, and an inverse symmetry
metric is computed as the accumulated difference between the
left half and the reversed right half. The most symmetrical
rotation will be the one with the minimum accumulation.

The third step is a categorization of the arrows pointing
direction, given its rotation. We start by rotating the binarized
arrow to be horizontal, following the information estimated
at the previous step. The goal is to determine the position
of the vertex (left half, or right half) by studying the trend
of the sums per column of the arrow mask. These sums are
used to create two plots, one for each half. The ascending
(or descending) curve of maximum extension identifies the
arrow half containing the vertex, thus uniquely classifying the

pointing direction. In this case, the extension is computed as
the sum of columns with a monotonic trend. In some cases,
arrows without a body contain a convexity that leads to a
failure in this algorithm. For this reason, vertical convexities
are filled before computing the column sums.

D. Output composition

The output of the various steps of the pipeline just described
are eventually combined to obtain the final output of the
system. It was decided to associate textual and directional
information based on their spatial position within the sign, by
resorting to Euclidean distance. This is calculated between all
the text-arrow pairs in order to determine which of these are
closest to each other. Eventually, the pipeline output is grouped
by direction, so as to have textual data composed of pairs of
elements where the first represents the discretized direction,
and the second all the destinations that can be reached by
proceeding in that direction.

III. EXPERIMENTS AND RESULTS

In this section we describe the experimental setup and
results, as documented in Table I.

A. Experimental setup

The dataset “Mapillary Traffic Sign Dataset” (MTSD) [23]
has been used for method training and assessment. The circa
42,000 examples provided with relative annotation file, in
fact, guarantee the possibility of experimenting with different
configurations of the training data for the sign recognition
models. All analyzed images have an excellent general quality,
ensuring sufficient legibility of the contents of the signs.
Furthermore, the data was collected from many different coun-
tries, guaranteeing a very high variety in terms of immortalized
scenes. Key aspect of this dataset is the presence of a class
of sign instances called “direction or information”, which
includes, but is not limited to, direction signs.

Training, validation and test sets were defined for sign
detection. These were created by selecting the instances of
the MTSD dataset for which the related annotation file reports



TABLE II: Quantitative results related to the OCR procedure
performed using the EasyOCR library.

Metric considered Resulting value

Minimum edit distance 0
Maximum edit distance 15
Average edit distance 2.16

Minimum text length (ground truth) 4
Minimum text length (OCR results) 4
Maximum text length (ground truth) 106
Maximum text length (OCR results) 106
Average text length (ground truth) 24.24

Average text length (OCR results) 24.0

the presence of at least one sign instance belonging to the
“direction or information” class. In total these turned out to
be 12,539, and were divided as follows: training set 10,033
images (80%), validation set 1,253 images (10%), test set
1,253 images (10%). Two classes were used to train the
detector: “direction or information”, and “other” in which are
aggregated all the other classes of signs present in the MTSD.
During the OCR step there is no discrimination on the input
regarding the classes to which the bounding boxes belong:
this aims to handle the case in which a direction sign has
been recognized as a “sign” but not as a “direction sign”.
The metrics considered for detection evaluation are: accuracy,
recall, and mean average precision (mAP). mAP is com-
puted respectively at 0.5 Intersection over Union (mAP@.5)
and averaged between 0.5 and 0.95 Intersection over Union
(mAP@.5:.95).

Evaluation of the OCR procedure required the creation of
a set of images with relative annotations, since MTSD does
not provide this piece of information. Fifty bounding boxes of
signs from the dataset were selected, automatically extracted
by the object detection procedure. For each bounding box,
a text file was manually produced containing a single line
of text which represents the transcription of all the textual
information present in the sign. The Levenshtein distance [24]
(or “edit” distance), was used for evaluation, converting both
annotation and prediction to lowercase, and removing blank
spaces between words.

For the arrow direction categorization, fifty instances of
arrow images were automatically extracted by the object de-
tection procedure from images of the MTSD test set, and their
orientation was manually annotated. Assessment is measured
as absolute matched classes over the eight possible directions,
ignoring the intensity of the orientation error.

To the best of our knowledge, no other methods for the
detection and interpretation of road direction signs have been
published. As such, our results constitute an initial benchmark
for future comparison by other methods.

B. Experimental results

Table I reports the results on object detection, both for
road signs and arrows. Results are presented divided ac-
cording to the set of data on which they were produced

TABLE III: Quantitative results related to the process of
arrows direction categorization.

Direction Total Correct Wrong

All 50 47 3
up 7 6 1

down 6 6 0
left 7 7 0

right 7 5 2
north-west 6 6 0
north-east 7 7 0
south-west 5 5 0
south-east 5 5 0

(validation/test), according to two variants of the YOLO
detector (YOLOv7 and YOLOv7-tiny), the number of train-
ing instances, and the class for evaluation (“d-or-i” is short
for “direction or information”). The YOLOv7-tiny variant is
considered to account for limited computational resources and
battery consumption, in an hypothetical scenario of on-board
processing. The different configurations of training instances
are evaluated to test the system’s dependence on annotated
supervision.

The experimental results show that the values of the metrics
for YOLOv7-tiny are lower than those of the models with
the use of YOLOv7. This is coherent with the fact that the
YOLOv7 model has approximately 36.9 million parameters,
while YOLOv7-tiny has 6.2 million parameters.

OCR results are reported in Table II, reporting an average
edit distance of 2.16. In table are also reported general
statistics on the set of annotations and outputs.

The results for arrow categorization are reported in Table III
in terms of absolute matches, along with the number of
the respective instances for each direction, showing excellent
performance. Despite the direction-detailed analysis, our pro-
posed algorithm is invariant by design, and as such direction-
specific biases are to be mostly attributed to the underlying
features of the tested images.

A key part of the quantitative analysis is the profiling of
execution times. These were computed both for the whole
system and for the individual steps of the pipeline, by feeding
all 1,253 images of the MTSD test set. A preliminary warmup
execution was launched so as to guarantee a consistent profil-
ing of the execution times, avoiding the “cold start” problem.
Three independent executions were performed and the average
among them was reported. The recorded results are reported
in Table IV both for YOLOv7 and YOLOv7-tiny, where the
part referring to YOLOv7-tiny also includes the optimization
of the arrow categorization procedure. All time values refer
to computation on Intel Core i5-8300H 2.30GHz CPU and
GeForce GTX 1050 Ti 4G GPU.

Qualitative results are provided in Figure 4, illustrating the
system behavior in different setups.



Total / Per image YOLOv7 YOLOv7-tiny
Time for the whole pipeline

Total 857.761s 325.923s
Per image 0.684s ≈ 1.5 FPS 0.260s ≈ 4 FPS

Time for road signs detection
Total 81.201s 23.282s

Per image 0.064s 0.019s
Time for arrows detection

Total 370.787s 75.159s
Per image 0.296s 0.060s

Time for arrows direction classification
Total 5.921s 4.054s

Per arrow 0.005s 0.004s
Time for the OCR procedure

Total 140.503s 87.117s
Per image 0.112s 0.070s

TABLE IV: Execution time for the proposed pipeline.

IV. CONCLUSIONS

We have addressed the problem of detecting road direction
signs and analyzing their content, associating textual infor-
mation to directional information. The proposed pipeline is
a hybrid solution that combines deep learning techniques for
object detection and text recognition, with traditional image
processing techniques for the identification of the directions
indicated by the arrows. Extensive experiments have been
conducted to evaluate all aspects of our solution: including
detection accuracy, text recognition accuracy, and arrow ori-
entation accuracy, displaying excellent results. Furthermore,
we considered two solutions, defined as a function of the
available hardware resources, and we evaluated their effec-
tiveness as well as their efficiency. The eventual integration
of the presented solutions into the software of a self-driving
vehicle is promising, however depending on rigorous quality
management testing, as well as on a significant reduction
of the computational cost tailored to System-on-Chip-specific
hardware optimization. As future developments, we consider
integrating higher level logic for the association of textual
elements to arrows, taking into account Gestalt laws for
the interpretation of road signs that are ultimately designed
towards fruition by human beings.
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