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Abstract. Enhancing night photography images is a challenging task
that requires advanced processing techniques. While CNN-based meth-
ods have shown promising results, their high computational requirements
and limited interpretability can pose challenges. To address these lim-
itations, we propose a camera pipeline for rendering visually pleasing
photographs in low-light conditions. Our approach is characterized by a
shallow structure, explainable steps, and a low parameter count, result-
ing in computationally efficient processing. We compared the proposed
pipeline with recent CNN-based state-of-the-art approaches for low-light
image enhancement, showing that our approach produces more aesthet-
ically pleasing results. The psycho-visual comparisons conducted in this
work show how our proposed solution is preferred with respect to the
other methods (in about 44% of the cases our solution has been chosen,
compared to only about 15% of the cases for the state-of-the-art best
method).

Keywords: Night photography enhancement · Low-light image
enhancement · Psycho-visual image quality assessment

1 Introduction

A digital camera processing pipeline is a series of steps that a digital camera per-
forms to process the raw data captured by its image sensor into a final image.
The pipeline is responsible for applying various adjustments to the image, such as
corrections for lens distortion, white balancing, noise reduction, sharpening, and
color enhancement. Although camera manufacturers may use varying processing
algorithms and stages in their pipelines, these basic steps are commonly involved
in most digital camera processing pipelines [9]. The parameters of the single pro-
cessing modules are usually optimized by manufacturer for daylight or flashlight
illuminated scenes. The problem addressed in this paper is the enhancement of
night scenes when the rendering intent is not only the visibility of spatial details,
but also to keep the naturalness of the scene depicted and possibly to improve
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the aesthetic of the photos. From a technical point of view, when processing
nighttime images multiple challenges occur in comparison to the processing of
daytime scenes. Nighttime scenes are typically much darker: this can result in
images with a low signal-to-noise ratio, making it difficult to extract useful infor-
mation from the image. Color casts are generally present, due to the sometimes
different artificial lighting sources in the scenes. Also, due to the extended expo-
sure time necessary for shooting in dark scenarios, motion blur and sensor noise
are likely to occur in the final results. To address these problems, recent meth-
ods that leverage deep neural networks to enhance low-light images have been
proposed, achieving remarkable results [7,8,11,19,22]. Zhang et al. [22] designed
a Convolutional Neural Network (CNN) that decomposes images into two com-
ponents responsible for light adjustment and degradation removal, respectively,
and is trained with paired images shot under different exposure conditions. Jiang
et al. [8] proposed to enhance low-light images using Generative Adversarial Net-
works (GANs), exploiting unpaired data for the training of the model. Yang et
al. [19] proposed a semi-supervised model that integrates CNNs and GANs to
enhance low-light images in two stages: the first one learns a coarse-to-fine band
representation and infers different band signals jointly, while the second one
recomposes the band representation using adversarial learning. Recently, Guo
et al. [7] proposed zero-shot learning methods to eliminate the requirement of
paired and unpaired data, which was later improved by Li et al. [11]. However,
these approaches suffer from several problems, such as over-enhancement, color
distortion, and loss of details. Moreover, their heavy computational complex-
ity, memory consumption, and energy requirements may not always meet the
constraints for onboard deployment in digital cameras.

In this paper, we introduce a camera pipeline for the rendering of visually
pleasing photographs in low-light conditions, containing several algorithms that
address the challenges presented by low-light images and characterized by a
shallow structure and by a low parameter count. At a time when the resolution
of most imaging problems is delegated to the direct or indirect use of neural
networks, we propose a “traditional” processing pipeline, whose main modules
are designed on the basis of our knowledge of the mechanisms of human vision,
and on the basis of our knowledge of the main limitations of traditional imaging
devices. The few parameters of the different modules are heuristically set by
the authors according to their personal preferences [3], without any reference to
existing datasets of low-light images corrected by human experts or automatic
approaches. This low parametric dependency means that our solution is flexible,
as it can be potentially tuned to match individual users’ preferences and to
different sensors.

To prove the effectiveness of our method we adopted the dataset used in the
NTIRE2022 Night Photography Rendering challenge [6]. Psycho-visual experi-
mental results involving real user evaluations show that our solution produces
more pleasing results with respect to several CNN-based state-of-the-art meth-
ods for low-light image enhancement.
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2 Proposed Method
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Fig. 1. Overview of the complete proposed pipeline. The entire pipeline can be divided
in two parts: preliminary data preparation steps and low-light processing steps. Meta-
data extra information is exploited in the steps marked with the orange dot. (Color
figure online)

The scheme of the proposed solution is depicted in Fig. 1. Our pipeline can be
divided into two parts: the preliminary steps, which are the basic stages of a typi-
cal camera processing pipeline, and the low-light specific part, which instead con-
tains steps to specifically handle night images. We refer multiple times within our
pipeline to image metadata, which are indicated in the following using italic text.

2.1 Preliminary Steps

The first part of our pipeline is made of four steps working in the RAW domain.
The first step is image normalization: the black_level as provided in the image
metadata is subtracted, and the image values are rescaled so that the white_level
is set to one. The demosaicing operation converts the single-channel RAW image
into the three-channel RGB image using the appropriate color filter array pat-
tern (cfa_array_pattern). Then, a preliminary automatic white balance step is
performed using the Gray World algorithm [4], in order to provide a first approx-
imate correction of the image cast. Finally, a color transformation step converts
the image from the camera-specific color space to XYZ (obtained as the inverse
of color_matrix_1 ) and finally to the sRGB color space.

2.2 Low-Light Specific Processing Operations

The second part of our pipeline has been specifically designed to handle images
taken by night in low-light conditions.

The first step of this second part is the use of the Local Contrast Correction
(LCC) algorithm by Moroney [15]. Here the local correction is performed on
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the Y channel of the YCbCr color space using a pixel-wise gamma correction,
whose values are determined using a mask M obtained by blurring the luminance
channel Y with a Gaussian filter in order to brighten dark areas and to not clip
pixels that are already bright. The corrected Ŷ channel image is obtained as

Ŷ = Y γ
0.5−(1−M)

0.5 , (1)

where M is computed as previously described, and γ is the value of the exponent
for gamma correction. According to Schettini et al. [18], we computed γ as:

γ =

{
ln(0.5)
ln(Ȳ )

if Ȳ ≥ 0.5
ln(Ȳ )
ln(0.5) otherwise

, (2)

where Ȳ is the average value of the Y channel. Since 1−M inverts the computed
mask, bright areas are darkened by a gamma value lower than 1, and dark areas
are brightened by a gamma value greater than 1.

The application of LCC tends to reduce the overall contrast and saturation,
as noted by Schettini et al. [18]. Therefore, as subsequent steps, we perform
contrast and saturation enhancement.

The contrast enhancement step adaptively stretches and clips the image his-
togram based on how the distribution of dark pixels changes before and after
the contrast correction of LCC. Every histogram computed has 256 bins. The
histogram range used for stretching and clipping is defined as follows: let any
given pixel be “dark” if, in the YCbCr color space, its Y value is lower than
0.14 and its chroma radius, as defined in [18], is lower than 0.07. The lower
range for histogram stretching is defined by the number of dark pixels after the
application of LCC. If there is at least one pixel, the lower range is given by
the difference of the bins corresponding to 30% of dark pixels in the cumulative
histogram of Ŷ and Y , which represent the output and input of LCC in Eq. 1.
If there are no dark pixels, the lower range corresponds to the 2nd percentile
value of the Ŷ histogram. Concerning the “bright” pixels, the upper range for
histogram stretching always corresponds to the 98th percentile value of the Ŷ
histogram. For both ranges, the maximum number of bins to clip is 50. Using
the determined range, the image histogram is stretched and the histogram bins
that fall outside are clipped.

For the saturation enhancement step, we correct each RGB channel as sug-
gested by Sakaue et al. [17]:

Ĉ = 0.5 × Ŷ

Y
× (C + Y ) + C − Y, (3)

where C stands for each RGB channel, Ĉ is the corresponding output channel,
Ŷ and Y are the output and input Y channels used in Eq. 1.

After contrast and saturation enhancement, a black point correction step is
performed in order to restore the natural aesthetics of night images, since LCC
adjusts local statistics but produces an overall washed-out result. This operation
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Low-light processing

Preliminary
steps

RAW sRGB Local light enhancement (LCC) Contrast + Saturation correction Black level adjustment

Gamma correction (γ =1/1.4)SharpeningDenoising + White balancingOutput image

Fig. 2. Step-by-step results of the proposed pipeline. Along with images, we also
reported histograms to show how the global pixel distribution changes.

is performed by clipping to zero all pixels below the 20th percentile value of the
value channel V in the HSV color space. After this operation, a global gamma
correction is performed with a gamma value set to 1

1.4 , followed by a sharpening
operation using unsharp masking.

The image is then converted to 8-bit encoding, resized to match the prede-
fined output size (imposed by the challenge to be 1300×866 for landscape orien-
tation and 866× 1300 for portrait one), and processed with the Block-Matching
and 3-D Filtering (BM3D) denoising algorithm [5] to remove noise introduced
by the poor light conditions typical of night scenes. Here the noise_profile value
from the image metadata is used to determine the strength of the denoising
operation, which is controlled by BM3D through a parameter σ that encodes an
estimate of the noise standard deviation, used internally to control the parame-
ters of the method. According to the distribution of the noise_profile values in
the training data, we defined three classes representing different noise intensities,
and we empirically assigned a σ value (0.2, 0.6 and 0.8) to each class. Since noise
is more visible in dark regions rather than in bright regions and BM3D removes
part of the high-frequency information, we performed a blending operation in
RGB using a mask generated by blurring the luminance channel Y of the original
noisy image in the YCbCr color space with a Gaussian filter. The final denoised
image D̂ is computed as

D̂ = IBM3D × (1 − mask × u) + I × (mask × u), (4)

where IBM3D is the image denoised with BM3D, I is the original noisy image
and the u parameter, empirically set to 0.6, controls the denoising effect in bright
areas.

A second automatic white balance step is performed, this time on non-linear
processed RGB data, in order to reduce color casts in those scenarios where
the initial Gray World approach may have failed. Here the Grayness Index (GI)
algorithm [16] is used. GI is very sensitive to noise, hence we estimated the image
illuminant on the image IBM3D, then we normalized it by its maximum value
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and applied it to the image D̂ obtained after the blending operation in Eq. 4.
The image is then rotated in relation to the orientation information stored in
the metadata and finally saved as JPEG image at quality 100.

As illustrative example, Fig. 2 shows intermediate images and histograms of
the proposed pipeline after each step. The application of LCC [15] improves the
local contrast but centers the image histogram and reduces the overall satura-
tion, hence the contrast and saturation enhancement step is necessary to correct
this behavior. Yet, the obtained histogram is still biased towards the center of
the dynamic range, and a black level adjustment is fundamental to restore the
natural anesthetic of the image. Here a gamma correction can increase the over-
all brightness. Since BM3D [5] effectively removes noise but also part of the
details, a preliminary sharpening operation that strengthens high frequencies
helps preventing this problem.

3 Experiments

3.1 Dataset

We adopted the dataset used in the NTIRE2022 Night Photography Rendering
challenge [6], which provides 250 RAW-RGB images of night scenes captured
using a Canon EOS 600D device and encoded in 16-bit PNG files. Each RAW
image has a resolution of 3646 × 5202 pixels. Image metadata are also available
in JSON format. Due to the nature of the challenge, ground truth images are
not available. According to the challenge organization, 50 images are provided
as train set, 50 as the first validation set, 50 as the second validation set, and the
remaining 100 as the final validation set (among these 100, only 50 were selected
for the final evaluation). Since our solution does not need a training procedure,
we used the train set to empirically select the few parameters required by our
pipeline and used all validation sets to validate the results.

3.2 Results and Discussion

We evaluated our pipeline by comparing it with a subset of state-of-the-art
approaches for low-light image enhancement and with other solutions that par-
ticipated in the NTIRE2022 Night Photography Rendering challenge [6] using
psycho-visual comparisons and Mean Opinion Score (MOS).

We selected eight recent state-of-the-art approaches for low-light image
enhancement and performed a psycho-visual evaluation test using the same
50 images from the validation set, processed by the selected methods. More
precisely, we selected DRBN [19], Kind [22] and Kind++ [21], TBEFN [14],
EnlightenGAN [8], ExCNet [20], Zero-DCE [7] and Zero-DCE++ [11]. Since
these methods expect images to be in sRGB color space, we used the prelimi-
nary steps described in Sect. 2 to convert the RAW images into sRGB images and
applied these enhancement methods to them. The resulting images have been
obtained using the LLIE platform [10]. The comparison has been performed by
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Fig. 3. Pie chart reporting the distribution of the results of the psycho-visual test, in
terms of number of preferences, obtained comparing our proposed method with other
state-of-the-art low-light image enhancement approaches.

a total of 31 users. Each user involved in the evaluation was shown a 3 × 3 grid
containing the same image enhanced by the nine methods and was asked to click
on the preferred one. This process was repeated for each of the 50 images. Grid
composition and image order were randomly generated. The evaluation was done
on monitors between 24 and 27 in. under controlled lighting conditions, and the
images were shown on black background.

Figure 3 shows the pie chart with the results. As can be seen, in almost
45% of the cases the proposed approach is preferred with respect to the other
ones. Zero-DCE [7] and Zero-DCE++ [11] obtained almost the same number
of votes, followed by ExCNet [20]. From this first analysis, it is easy to notice
how the proposed approach leads to more appreciated images with respect to
the other methods. In order to provide a visual comparison for the readers,
some results of the proposed pipeline are shown in Fig. 4. We also reported the
same images corrected using different state-of-the-art deep learning-based low-
light image enhancement approaches. In this figure are reported four different
cases: the first two are cases in which our approach received the highest con-
sensus in terms of user votes, while the last two are a mid-case scenario and
a worst-case scenario, respectively. We can observe how our solution is better
at removing noise, increasing sharpness, reducing color cast and preserving the
mood that is typical of night scenes. This produces more pleasing results, as also
confirmed by the vote distribution in Fig. 3. It is worth noting that the number
of votes received by our solution is considerably higher than the votes received by
other methods when it obtained the highest score. Instead, when other methods
were preferred to ours, their vote counts are comparable to the number of votes
received by our solution.
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Fig. 4. Visual comparison between the proposed method and three highest score state-
of-the-art approaches. Our solution produces sharper results, better reduces noise and
color cast, and better maintains the mood of night photographs while the others tend
to over-saturate colors and light casts. For each row, images framed in green are the
ones with the highest score while the ones framed in red are the ones with the worst
score. (Color figure online)

For what concerns the NTIRE2022 challenge, MOS results are obtained
through visual comparison on the Yandex Toloka platform. Here every submis-
sion, consisting of 50 images of the final validation set, was included in 3250
comparisons. The results of the final leaderboard are reported in Table 1. As
shown, our pipeline won the fifth place in the challenge obtaining 1935 votes.
Note that our solution received only 112 fewer votes than the second winning
solution (i.e. about 5% fewer votes) that uses different neural models for most
of the operations in its pipeline [12].

In Table 1 we also add a further column, named significance score. First of all,
for each method we compute the 95% confidence interval of the Score using the
Binomial test. The significance score for each solution corresponds to the number
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Table 1. Final leaderboard of the NTIRE2022 Night Photography Rendering challenge
[6]. Every submission (50 images) was included in 3250 comparisons using the Yandex
Toloka platform. Our team is highlighted in bold.

Rank Team Score Votes Sign. Score

1 MIALGO 0.8009 2603 12

2 Sorashiro 0.6298 2047 11

3 Feedback 0.6089 1979 11

4 OzU-VVGL 0.6045 1964 11

5 IVLTeam 0.5955 1935 10
6 NoahTCV 0.5742 1866 9

7 NTU607QCO 0.4798 1559 6

8 Winter 0.4631 1505 6

9 Sigma_WHU 0.4411 1433 5

10 Namecantbenull 0.3965 1288 3

11 BISPL 0.3683 1197 3

12 Baseline 0.2734 888 1

13 Low Light Hypnotize 0.0182 59 0

of solutions with respect to which it is statistically better or equivalent, i.e. the
number of confidence intervals that are lower or overlap with the current one. The
significance score highlights how the result achieved by the first solution [13] is
statistically better than all the others, while the solutions ranked from the second
position to the fourth one are actually statistically equivalent and therefore rank
in the second place. They are followed by our solution, which ranks in the third
place and is statistically better than all the remaining solutions. The results have
been additionally evaluated by a professional photographer, who awarded our
solution with the sixth place in the final leaderboard [6].

4 Conclusions

We have proposed a low-complexity handcrafted camera pipeline for the render-
ing of visually pleasing night photographs. Our solution includes several process-
ing steps that address the challenges presented by low-light images and depends
on a small number of free parameters, which we empirically set according to our
personal preferences. However, the optimal parameters could be easily found
with optimization methods if one had a suitable training set (whose cardinality
however should not be so high as in the case of neural networks).

The effectiveness of our pipeline was validated through experiments involving
real users, which demonstrated that our method produces more visually appeal-
ing results than other state-of-the-art methods for low-light image enhancement.
These results have been further evaluated in the context of the NTIRE2022
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Night Image Rendering challenge [6], also demonstrating that traditional imag-
ing pipelines can compete with modern deep learning-based methods.

An interesting next step could be the parametrization and optimization of the
proposed pipeline, adopting unsupervised training solutions to model user pref-
erences [23]. Another promising research direction is that of exploiting saliency
[1] to perform spatially varying enhancement or to exploit no reference image
aesthetic metrics [2] to drive model parameters selection.
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