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Abstract—Food recognition is a major challenge in the field of
computer vision, requiring models that can effectively handle
the wide variability and complexity of food images. In this
paper, we explore the use of vision transformers, a category
of models based on self-attention mechanisms, to address the
task of food recognition. We focus on training and fine-tuning
different vision transformer architectures on Food2K, a large-
scale dataset of food images with 2,000 categories. We compare
the performance of vision transformers with convolutional neural
networks (CNNs) on Food2K and Food101. In addition, we
use state-of-the-art explainability techniques to highlight the
regions of interest that vision transformers take into account
when performing a prediction. Our results show that vision
transformers can achieve competitive results on food recognition
tasks, with the added benefit that pre-training on Food2K
improve their generalization capabilities and interpretability.
This study highlights the potential of vision transformers in food
computing, paving the way for future research in this field.

Index Terms—food recognition, vision transformers, ViT,
CNNs

I. INTRODUCTION

Food recognition is an essential task of computer vision that
involves identifying and categorizing several types of foods
using visual data, such as images or videos [1], [2].

Food recognition can have a major impact on our day-to-day
life and improve or automate processes like nutrition tracking
[3], food authentication [4] and food waste management [5].
The field of food recognition research encompasses a wide
range of methods and approaches, making it a diverse and
complex area of study. The used classifiers range from ma-
chine learning algorithms based on handcrafted features, to
deep neural networks. An ideal classifier should be robust,
meaning it can handle situations where the food dish deviates
from its typical presentation. Food items within the same
category can exhibit significant intra-class variation, caused
by differences in cooking styles, plating and portion sizes [6].

In such a complex context, simple classification methods
are generally not effective. At the time of writing, deep
neural networks are the only valid options when choosing an
algorithm to handle and classify food images. In particular,
deep CNNs have demonstrated to be extremely powerful
and to achieve competitive performance in most computer
vision task. However, in the last years, transformer models,
initially proposed to solve NLP tasks, have been adapted and
used also in computer vision. Their demonstrated robustness
to perturbations [7] and their ability to capture long-range
dependencies can be particularly helpful in extracting robust

representations of food images. On the other hand, vision
transformers require a large amount of training data to work
properly [8]. The field of food recognition is rich of datasets,
however their dimensionality is not comparable to the datasets
used to train transformers (e.g., ImageNet-21K [9]).

Nevertheless, a new large dataset on food images, called
Food2K [10], was recently released, and large convolutional
models trained on the proposed dataset have shown competi-
tive results. This opened up the possibility of training vision
transformers for the first time on large datasets containing only
food images. Therefore, this study was conducted to answer
the following research questions:

• Are vision transformers better than CNNs for Food2K
recognition?

• Are predictors trained on Food2K better then ImageNet-
21K weights on food-related tasks?

• Can explainability techniques be applied to vision trans-
formers to identify the key regions of a dish without
explicitly training for segmentation?

II. RELATED WORKS

With the continuous progress of computer vision, convolu-
tional neural networks (CNNs) have emerged as the dominant
model for food recognition. Recent popular models like Effi-
cientNet [11] score a Top-1 Accuracy of 92.98% on Food101
with pre-training on ImageNet and 96.18% pre-training on
JFT-300M. In order to further improve the results achieved
on food datasets, PAR-Net [12], a convolutional network
architecture using adversarial erasing and class activation
maps, was introduced to integrate local and global features
and to highlight discriminative regions in food images. In
the last years, researchers began to explore the application
of transformers in computer vision, i.e., vision transformers.
In several computer-vision tasks, vision transformers have
outperformed CNNs. In the context of food recognition, they
have shown promising results.

The first transformer specifically designed for computer
vision tasks is called Vision Transformer (ViT) [8]. The ViT
architecture intentionally followed the original transformer
model as closely as possible. It demonstrated that the attention
mechanism, effective on the “tokens” that make up a docu-
ment, can be applied in the same way to the “patches” that
compose an image.

Recently, research on vision transformers has increased
exponentially to exploit the strengths of ViT and to address its



limitation. The core component of transformers, the attention
mechanism, has a quadratic computational complexity with
respect to the dimensionality of the image, and vision trans-
former are “data-hungry” [8], i.e. they need a large amount
of data to correctly generalize. One of the most popular and
successful alternatives to the classical vision transformer pro-
posed to solve its weaknesses is the Shifted-Window (SWIN)
Transformer [13].

Swin transformers, using the shifted window attention ap-
proach, solve the computational complexity and fine-grained
processing problems. Unfortunately, these types of model
share the identical drawback of ViT, needing huge amount
of data to function properly. Another very popular variant
of vision transformers are Data-efficient vision transformers
(DeiT) [14]. DeiT extend the original ViT architecture by
incorporating a distillation token that interacts with class and
patch tokens through self-attention layers. The objective of
the distillation token is to reproduce the label predicted by
a chosen teacher network, enabling DeiT models to achieve
competitive accuracy even with small-sized datasets.

As with CNNs, researchers used the unique characteristics
of food images to improve the performance of transform-
ers. An example is the Semantic Center Guided Windows
Attention Fusion Framework (SCG-WAFM) for food recog-
nition [15]. In this case, the images are fed into a pre-
trained Swin transformer, which assigns a label to the image.
Then, using the self-attention mechanism, the discriminative
region that should contain the dish is extracted and fed into
the same Swin Transformer. The two predictions are then
combined by a linear layer that produces the final prediction.
The trained models achieved an accuracy of 93.48% on Food-
101, surpassing the traditional Swin transformer architecture.

III. DATASETS

One of the most comprehensive and challenging datasets
recently presented is the Food2K [10], which contains
1, 036, 564 color images of food divided in 2, 000 categories.
For convenience, these categories are also grouped in super-
classes such as vegetables, meat, barbecue and fried food.
Some example categories from Food2k are shown in Figure 1.
The number of images per category is in the range [153, 1999],
showing quite a larger class imbalance compared with existing
food datasets, and image size varies from 220 pixels to 597
for both dimensions. A subsample of Food2K, Food1K, has
been used for fine-tuning purposes on CNNs and continual
learning. To our knowledge, this paper is the first to study the
use of vision transformers on the whole Food2K dataset.

The Food-101 dataset [16] consists of a collection of food
images belonging to 101 different food categories covering a
wide range of dishes from various cuisines, including popular
dishes like pizza, sushi, burgers, and salads, among others.
Each food category contains ≈1,000 images, resulting in a
total of ≈101,000 images.The images were collected from a
wide range of sources, including popular cooking websites and
photo-sharing platforms. One key aspect that distinguishes the

Margherita Pizza Black pepper steak Crab seed sushi

Fig. 1. Example of images contained in Food2K from three different classes

Food-101 dataset is that it focuses on images containing a sin-
gle dish, ensuring that each image primarily displays a specific
food item without any significant clutter or interference from
other elements.

IV. PROPOSED APPROACH

We propose a number of transformer models to be trained
on Food2K, basing our experiments on the current studies on
vision transformers models, and how to correctly fine-tune
them. The following tasks are performed:

1) Classification on Food2k dataset: Starting from
ImageNet-21k pre-trained weights, the vision
transformers architectures ViT, Swin and DeiT are
fine-tuned for a pre-determined number of epochs on
Food2K in order to obtain the best possible accuracy
on the 2, 000 available classes.

2) Assessing the value of Food2K weights: ImageNet-
21k weights are publicly available for all the popular
convolutional and transformer models and represent a
good starting point for most computer vision tasks. One
aim of this study is to verify if weights estimated by
training on Food2K are a better starting point for food-
related tasks then the commonly used ImageNet weights.
To assess the viability of these weights, the previously
cited transformer models are fine-tuned on the popular
Food101 dataset [16], starting from ImageNet-21K and
Food2K weights.

3) Explainability for vision transformers: Other than evalu-
ating the models in terms of Top-1 and Top-5 accuracy,
this study explores how vision transformer “see” and
to which region of the dish they assign the highest im-
portance. A Layer-wise Relevance Propagation (LRP)-
based explainability method for transformers [17] is
used to produce a relevancy map, that highlights the
pixels of the image that contributed most to make the
prediction. The aim is to verify if the relevancy maps
obtained using vision transformers that were trained
on a food-centric dataset, are preferable to the ones
produced from a model trained on a generic dataset.
Additionally, the relevancy maps are evaluated to verify
if the trained Vision Transformer can also be used for
food segmentation, other that only recognition.

The results obtained with the described experiments are
compared with the benchmarks available on convolutional
neural networks.



A. Data preprocessing and augmentation

Of the 1, 036, 564 images in Food2K, 620, 124 are used
for training and the rest for testing purposes. Each image
is first resized to 224 × 224 pixels, and then normalized,
subtracting each channel for the mean value and dividing it for
the standard deviation. The performance of vision transformers
is strongly influenced by augmentation and regularization [18].
To obtain the best possible performance in a pre-determined
span of epochs whilst avoiding overfitting, data augmentation
techniques were used. Random horizontal flip and color jitter
are the most commonly used techniques when training vision
transformers, while other more complex augmentation tech-
niques are used in the following experiments, including:

• MixUp [19]: it blends pairs of input images and their
labels using weighted averages. This encourages the
model to learn smooth decision boundaries, improving
generalization and robustness.

• CutMix [20]: it randomly crops patches from two images
and pastes them together, blending the labels proportion-
ally to the area of the patches. This reduces over-fitting
and enhances model performance with limited data.

• 3-Augment [21]: one augmentation between grayscale,
solarization and gaussian blur is randomly applied to
every image during training. The use of this augmentation
has proven to be helpful when training ViT.

The preprocessing and augmentation transformations are
applied in the same way on both Food2k and Food101,
only changing the mean and standard deviation values in the
normalization step.

B. Models and training scheme

The vision transformers that are here fine-tuned for food
recognition are: Vision Transformer, Swin Transformer and
Data-efficient image Transformer. Each of these models is used
in the following experiments in their “base” form. The details
of each model configuration are provided in Table I. The DeiT
model is trained using ResNet152 as “teacher” model.

The Swin Transformer and Vision Transformer model are
trained using two different configurations:

• Base training: the models are trained using a cross-
entropy loss that compares ground truth label y with the
corresponding predicted probability p:

LCE = −
M∑
c=1

yc log(pc). (1)

• BERT-assisted training: the models are trained using
both the information coming from the image represen-
tation, and the label associated to the image. Given an
image Xk and its label Yk which represents the name
of the dish, the embedding model BERT [22] e(·) is
used to produce a semantic embedding tk ∈ Rd using
the following formula:

tk =
1

n

n∑
i

e(yki), (2)

Model Emb. size Patch Size Layers Params IN Top-1 Acc.

ViT-B 768 16x16 12 86M 85.7%
DeiT-B 768 16x16 12 86M 84.2%
Swin-B 128 4x4 24 88M 86.4%

TABLE I
SPECIFICS OF THE TRAINED MODELS

where yk1, yk2, . . . , ykn is a sequence of n tokens that
composes the label Yk. The Multi-Layer Perceptron layer
j of the vision transformers produces an image feature
xjk, of the input image Xk. This hidden feature is a
vectorial representation in Rd, just like the representa-
tion tk given to the label. The distance between these
two representations can be used to learn key semantic
information contained in the food label that may guide
the image classification. The distance is calculated as:

Lemb = ||xjk − tk||2, (3)

and can be added to the cross-entropy loss to influence the
training process during the backpropagation, obtaining
the following total loss:

Ltotal = αLCE + βLemb, (4)

where LCE is the cross-entropy loss and α and β are
the hyper-parameters that balance the influence of the
two components. The aim is to obtain a similar latent
representation for different images that share a similar
name. In the following experiments α and β are set to
0.6 and 0.4 respectively. For ViT, BERT-base is used
to produce embeddings of size 768, while for Swin
Transformer BERT-large is used to obtain embeddings
of size 1024.

Essentially, the trained models are the following:
• ViT-Base using cross-entropy loss (86 million parameters,

5 hours and 50 minutes per epoch)
• ViT-Base using cross-entropy + BERT loss (86 million

parameters, 5 hours and 55 minutes per epoch)
• Swin Transformer using cross-entropy loss (88 million

parameters, 6 hours per epoch)
• Swin Transformer using cross-entropy + BERT loss (88

million parameters, 6 hours and 5 minutes per epoch)
• DeiT using distillation loss and ResNet50 as “teacher”

network (86 million parameters, 5 hours and 50 minutes
per epoch)

Each of the previous models is trained using the same
hyperparameters. The optimizer used is AdamW [23], using
β1 = 0.9 and β2 = 0.999 with a batch size of 16. Since
ImageNet-21K weights are already a good starting point,
the initial learning rate is set to the relatively low value of
2 × 10−4, and divided by half every 7 epochs. All models
were trained for 30 epochs, for a total of 1, 162, 860 steps. To
prevent over-fitting, label smoothing regularization is used and
set to 0.1. Training and testing are performed with images of
size 224× 224 pixels.

The trained vision transformers models are compared with
the only other available benchmarks provided by the creators



of Food2K. The available CNN benchmarks are trained for
200 epochs, using stochastic gradient descent as optimizer
and a batch size of 2. The starting learning rate of their
experiments is set to 1 × 10−2, and divided by 10 after 30
epochs. Random horizontal flip and color jittering are used
for data augmentation. The training and testing resolution is
set to 224×224 pixels. To provide a meeting point between the
different approaches, a ResNet50 model is trained using our
configuration, and the configuration proposed in the Food2K
paper [10] for 30 epochs.

V. RESULTS

A. Performance on Food2K

Table II shows the performance obtained with the previously
described vision transformers using our configuration. We can
see that the recognition performance is slightly superior in
terms of Top-1 and Top-5 accuracy using ViT-B compared to
the other tested models. DeiT obtained an accuracy notably
lower than the other two vision transformers. This is mainly
caused by the lack of an available “good teacher” to guide
the estimation of the model parameters. The ResNet152 model
with pre-trained weights of Food2K only achieves an accuracy
of 62.58% on Food2K test data, which makes this model not
good enough to correctly guide DeiT model’s training. The
use of BERT-training did not have a positive effect on the
performance of performance ViT, while it slightly increased
Top-1 accuracy for Swin-B. Table III shows the performance
of popular convolutional models on Food2K. All the listed
baselines are superior in terms of Top-1 accuracy and achieve
a similar Top-5 accuracy. To provide a way for comparing the
results, Table IV shows a comparison of the performance of
ResNet50 trained using the same configuration of the models
from Table II and the configuration of the models from Table
III for 30 and 200 epochs. The results clearly show that
increasing the number of epochs can substantially improve the
obtained performance. Despite vision transformers showing
slightly lower accuracy, an adjustment in the architecture,
training time and configuration can possibly bring the accuracy
of these models on par with or beyond convolutional models.

Table V illustrates the food categories on which the ViT-B
model performed worst. The top nineteen classes for lowest
accuracy all have fewer than 500 images, which is lower
than the average value of images per Food2K class. Food2K
is a long-tailed dataset and this affects accuracy per class,
with higher accuracy performance for categories that are
represented by many images, and lower accuracy performance
for less “populated” classes.

B. Generalization on Food101

The Food101 dataset is used to assess the generalization
capabilities of vision transformers models, and to measure if
fine-tuning on Food2K improves the classification ability of
the models on Food101. ViT-B and Swin-B are fine-tuned on
Food101, starting from ImageNet-21K weights and Food2k
weights. The training configuration is similar to the one used
in the previous section to fine-tune on Food2K. The vision

Models Params Top-1 Acc. Top-5 acc.

ViT-B 86M 78.41% 96.33%
ViT-B + BERT 86M 74.82% 95.12%
Swin-B 88M 77.58% 96.17%
Swin-B + BERT 88M 78.52% 96.09%
DeiT-B 86M 73.45% 94.42%

TABLE II
PERFORMANCE ON FOOD2K OF VT TRAINED FOR 30 EPOCHS

Models Params Top-1 Acc. Top-5 Acc.

VGG16 136M 78.96% 95.26%
Inception v4 43M 82.02% 96.45%
ResNet50 26M 80.79% 95.74%
ResNet101 45M 81.28% 95.99%
ResNet152 60M 81.95% 96.57%
DenseNet161 29M 81.87% 96.53%
SENet154 256M 83.62% 97.22%

TABLE III
PERFORMANCE ON FOOD2K OF CNNS TRAINED FOR 200 EPOCHS

transformers are fine-tuned for 10 epochs, using AdamW as
optimizer and a batch size of 16. The starting learning rate
is fixed, and set to 2 × 10−4. Training resolution is set to
224× 224 pixels, and the augmentation techniques randomly
applied are 3-Augment, color jitter and random horizontal flip.

Table VI shows the performance obtained by fine-tuning
vision transformers on Food101, while Table VII shows the
generalization capabilities of popular convolutional baselines.

Two key conclusions can be drawn from the results:

• Fine-tuning on Food2k does lead to a significant in-
crease in accuracy on Food101 for ViT-B model, while
ImageNet-21K weights are a sufficiently good starting
point for food recognition tasks when using Swin Trans-
former.

• Although CNNs had performed better on Food2K, when
fine-tuned on Food101 they tend to perform markedly
worse than Vision transformers. As reported in other
fields, the generalization capabilities of vision transform-
ers may prove to be superior to CNNs [24].

Models Epochs Top-1 acc. Top-5 acc.

ResNet50 (our config) 30 62.22% 87.81%

ResNet50 (Food2K config) 30 52.72% 81.24%
200 80.79% 95.74%

TABLE IV
COMPARISON OF RESNET50 PERFORMANCE ON FOOD2K

Label Errors Accuracy # of Images

Chocolate sundae 225 0.49 274
Stir-Fired pork 202 0.49 340
Artic bay sashimi 179 0.48 474
Fried rice 163 0.48 291
Chocolate cake 152 0.47 324

TABLE V
WORST CLASSIFIED CATEGORIES OF FOOD.



Models Top-1 Acc. Top-5 Acc.

ViT-B (IN-21k) 88.46% 98.05%
+ FT on Food2k 90.38% 98.51%
+ FT on Food2k + BERT 90.63% 98.41%

Swin-B (IN-21k) 92.67% 98.95%
+ FT on Food2k 92.62% 98.96%
+ FT on Food2k + BERT 92.59% 98.98%

TABLE VI
PERFORMANCE ON FOOD101 USING PRE-TRAINED VIT

Models Top-1 Acc. Top-5 Acc.

VGG16 (IN-21k) 79.02% 93.78%
+ FT on Food2k 80.68% 94.45%

ResNet50 (IN-21k) 84.50% 96.18%
+ FT on Food2k 85.89% 96.66%

ResNet152 (IN-21k) 86.61% 96.95%
+ FT on Food2k 87.58% 97.28%

Inception V3 (IN-21k) 84.15% 96.11%
+ FT on Food2k 87.61% 97.25%

SENet154 (IN-21k) 88.62% 97.57%
+ FT on Food2k 89.68% 98.08%

TABLE VII
PERFORMANCE ON FOOD101 USING PRE-TRAINED CNNS

C. Explainability for vision transformers

Explainability tools can be used to produce relevancy maps
that highlight pixels that most influenced the prediction of the
model. The relevancy maps are produced adapting an LRP-
based method for ViT [17] and applying it on the trained
ViT-B variants. An ideal model should make a correct clas-
sification and produce a relevancy map that attributes a high
importance to the main ingredients shown in the image. To
assess relevancy maps produced by the explainability methods,
we used the UECFoodPix dataset [25] that is composed of
10, 000 images. Mean Intersection over Union (mIoU) and
Pixel Accuracy are estimated using the whole dataset.

Figure 2 shows two images from UECFoodPix, their ground
truth, the relevancy maps produced by the vision transformer
and the predicted masks using Otsu automatic thresholding
method [26]. Predicted masks and ground truth masks are used
to calculate IoU and Pixel Accuracy.

Figure 3 shows the results obtained by a ViT-B model
trained on Food2K and one trained on ImageNet-21K. In
complex images composed by multiple plates of food both
models struggle to produce a sufficiently good mask, while
in simpler images where there is only one dish the Food2K
weights allow us to produce an accurate region that highlights
the main dish.

Table VIII reports segmentation results of the ViT-B model
used with different sets of weights. Figure 4 shows how re-
spectively the mean IoU and Pixel Accuracy change choosing
different thresholds. The mIoU value underlines the gain in
performance obtained by fine-tuning on Food2K. We noticed
that pre-training on food-image datasets, and especially on

Input image Ground truth Relevancy map Segmentation

Fig. 2. Examples of input image, ground truth mask, relevancy map and
segmentation obtained with Otsu’s thresholding

Input image Ground truth Food2K map ImageNet map

IoU: 0.515 
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Fig. 3. Examples of input image, ground truth and predicted mask.
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Fig. 4. Change in Intersection over Union value (left) and Pixel accuracy
(right) when choosing a different threshold used to categorize a pixel as
relevant or not. An higher threshold means that it is harder to classify a
pixel as relevant.

Models Otsu Fixed at 0.1

mIoU mPA mIoU mPA

ViT ImageNet-21K 0.257 0.639 0.412 0.670
ViT Food2K 0.402 0.722 0.604 0.802
ViT Food2K + BERT 0.438 0.735 0.623 0.816
ViT Food101 0.32 0.683 0.508 0.765

TABLE VIII
SEGMENTATION METRICS.



Food2K, produces relevancy maps that are closed to the
ground truth masks. The mIoU increases by 156% and the
mPA by 112% when using Food2K weights. The use of BERT-
training had a positive effect on the produced relevancy maps,
improving both mIoU and mPA.

Even though the ViT models presented were trained for
classification purposes, the segmentation performance is close
to methods specifically thought to work for segmentation tasks.
We can conclude that these types of model can easily be
adapted for food segmentation, and that pre-training on a food-
image dataset, especially Food2K, is key to obtain even better
performance.

VI. CONCLUSIONS

In this paper we demonstrated the effectiveness of vision
transformers for food recognition tasks. We found that ViT-
B outperforms other models on the Food2K dataset, partic-
ularly when fine-tuned on the same dataset. Additionally, vi-
sion transformers showcase superior generalization capabilities
on the Food101 dataset compared to popular convolutional
models. Furthermore, our study highlights the potential of
vision transformers for food segmentation tasks through food
recognition (i.e. without training for semantic segmentation).
The explainability tools used to produce relevancy maps
indicate their ability to identify regions of interest accurately,
making them promising for segmentation purposes. Overall,
vision transformers show promise in food computing ap-
plications, providing competitive performance and improved
interpretability. This research paves the way for future investi-
gations in utilizing vision transformers for various food-related
tasks and advancing the field of computer vision in the context
of food analysis.
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