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Abstract—We propose a new dataset for the evaluation of
food recognition algorithms designed for dietary monitoring.
Each image depicts a real canteen tray with dishes and foods
arranged in different ways. Each tray contains multiple instances
of food classes. We collected a set of 1,027 canteen trays for
a total of 3,616 food instances belonging to 73 food classes.
The food on the tray images have been manually segmented
using carefully drawn polygonal boundaries. We benchmark the
dataset designing an automatic tray analysis pipeline that takes
a tray image as input, finds the regions of interest, and predicts
for each region the corresponding food class. We experimented
three different classification strategies using also several visual
descriptors. In the experiments, we have achieved about 79% of
food and tray recognition accuracy using Convolutional-Neural-
Networks-based features. The dataset, as well as the benchmark
framework, are made available to the research community.

Index Terms—Food dataset, Food recognition, Algorithm
benchmarking, Convolutional Neural Networks (CNN), Dietary
monitoring.

I. INTRODUCTION

HEALTH care on food and good practices in dietary
behavior are drawing people’s attention recently. Nowa-

days technology can support the users in keep tracks of their
food consumption, and to increase the awareness in their
daily diet by monitoring their food habits. In the recent years
many research works have demonstrated that machine learning
and computer vision techniques can help to build systems
to automatically recognize diverse foods and to estimate the
food quantity [1], [2], [3], [4], [5]. To be useful for dietary
monitoring, food recognition systems should also be able to
operate on “wild” environments such as restaurants, canteens,
and such. Obviously, the fair benchmarking of these systems,
requires the availability of suitable datasets that actually pose
the challenges of the food recognition task in unconstrained
environments.

A. Food recognition systems

Researches in the literature have often focused on different
aspects of the food recognition problem. Many works address
the challenges in the recognition of food by developing
recognition strategies that differ in terms of features and
classification methodologies. With respect to the features, the
work of He et al. [6] describes the food image by combining
both global and local features, while the work of Farinella
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et al [7] uses a vocabulary built on textons. SIFT and local
binary patterns are used in [8], while in [9], the context
of where the pictures were taken is also exploited along
with the visual features. With respect to the classification
strategies, the most widely used are k-NN classifiers [6],
[10], and Support Vector Machines [7], [8]. An evaluation
of different classification methodologies is reported in [5]
where SVM, Artificial Neural Networks and Random Forest
classification methods are analyzed. Recently, Convolutional
Neural Network (CNN) are also being used in the context of
food recognition [11], [12], [13].

Other works in the literature focus on the design of a
complete system for diet monitoring in real contexts. Often
these systems exploit mobile application for food recognition,
assessment, and logging. Examples of such systems are Food-
Log [14], DietCam [15], Menu-Match [16], FoodCam [17],
and those described in [18], [19], and [10].

Food quantity estimation is very important in the context
of a dietary monitoring since on it depends the assessment
of the food intakes. Works that tackle this problem are for
example [20], [21], [22], [23], [24], [25], [26], [27]. All these
works require a reference information to be able to estimate
the quantity of food on the plate. This information may came
from markers or token for camera calibration, the size of a
reference objects (e.g. thumb, or eating tools), or from the
specific location where the food is consumed (e.g. canteen).
Other works, instead of estimating the amount of food from
2D images, use 3D techniques coupled with template matching
or shape reconstruction algorithms [28], [29], [20].

Very few works specifically consider the problem of leftover
estimation. Often the problem is theoretically treated as a
special case of the problem of food recognition and quantity
estimation [23], [18]. Only one work to date explicitly tackles
the problem with assessment experiments on a dedicated
dataset [10].

B. Food Datasets

Regardless of the objective, a dataset of food images is
required to evaluate the performance of the different feature
extraction and classification algorithms proposed. To this end,
the above research works either used existing datasets or
introduce new ones.

One of the first food dataset was introduced in [30]. It
contains 50 food categories (mostly Japanese food) and the
images, gathered from the Web, depict a close-up of a sin-
gle food. Using MKL-based feature fusion, they obtained a
recognition accuracy of 61.34%. This dataset was enlarged to
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TABLE I
LIST OF FOOD DATASETS USED IN THE LITERATURE.

Name Year #Images #Classes Type Acquisition Task Annotation Availability Reference

Food50 2009 5,000 50 Single Wild Food Recognition Label Proprietary [30]
PFID 2009 1,098a 61a Single Wild and Lab Food Recognition Label Public [31]
TADA 2009 50/256 - Single and Multi Lab Food Recognition - Proprietary [22]
Food85b 2010 8,500 85 Single Wild Food Recognition Label Proprietary [32]
Chen 2012 5,000 50 Single Wild Food Recognition Label Public [33]
UEC FOOD-100 2012 9,060 100 Single and Multi Wild Food Recognition BBox Public [34], [35]
Food-101 2014 101,000 101 Single Wild Food Recognition Label Public [36]
UEC FOOD-256c 2014 31,397 256 Single and Multi Wild Food Recognition BBox Public [37], [38]
UNICT-FD889 2014 3,583 889 Single Wild Near Duplicate Food Re-

trieval
Label Public [39]

Diabetes 2014 4,868 11 Single Wild Food Recognition Label Public [5]
UNIMIB2015 2015 1,000× 2 15 Multi Wild/Canteen Food Recognition and

Leftover Estimation
Poly Publicd [10]

UNIMIB2016 2016d 1,027 73 Multi Wild/Canteen Food Recognition Poly Publicd -
a Numbers refer to the baseline dataset.
b Includes Food50.
c Includes UECFOOD-100.
d http://www.ivl.disco.unimib.it/activities/food-recognition/

Food 50 TADA PFID Food 85 Chen UECFOOD-100

Food-101 UECFOOD-256 UNICT-FD889 Diabetes UNIMIB2015 UNIMIB2016

Fig. 1. Food dataset examples.

85 food categories in a subsequent work [32]. Using a similar
approach to the previous work, the authors achieved a classifi-
cation accuracy of 62.85%. These two datasets are proprietary.
Other proprietary datasets are the ones introduced in [22]
and [4]. These datasets have been acquired in a lab settings
and use markers to help the recognition phase. Differently
from the previous datasets the TADA dataset [22], contains
images of real foods (256 images) as well as food replica (50
images). Also, the images can have multiple food depicted.
This makes the dataset more challenging since it requires
the segmentation of each food in the image. Another dataset
that contains images with multiple foods is the UECFOOD-
100 dataset [35]. It is public and contains more than 9,000
images of 100 food categories. For the recognition, SVM
classifiers with color histogram and SURF features are used,
achieving a classification rate of 81.55% for the top 5 category
candidates when the ground-truth bounding boxes are given.
The dataset was extended to 256 food categories in [38] and
the classification rate in this case was 74.4% for the top 5
categories. Chen et al. [33] published a dataset of 5,000 images
of 50 foods. Using multi-label SVMs trained on SIFT, LBP,
color and and Gabor features, they achieved a food recognition
overall accuracy of 68.3%.

Currently, the largest dataset available is Food-101 [36]. It
contains 101,000 images divided into 101 food categories.
Random forest are used to mine discriminant parts in the
food images extracted from superpixels. These parts are then

classified with SVM achieving an average accuracy of 50.76%
on the 101 classes. If the Food-101 is the largest dataset
available, the UNICT889 [7] is the dataset with most food
categories. It contains 889 classes on a total of 3,583 images.
Given these numbers, each class contains few instances of
a given food. However, the goal of the authors is the near
duplicate food retrieval, and not food recognition. Different
features are tested and the best results for near duplicate
retrieval was achieved by color Bag-of-Textons with a mean
average precision of 67.5%.

Anthimopoulos et al. [5] uses a dataset of 4,868 food images
organized into 11 classes to evaluate a food recognition system
based on the Bag-of-Features model. The system is designed
to help diabetic patients in controlling their carbohydrates
daily consumption. Different visual features and classification
strategies are tested and the best combination shows a clas-
sification accuracy of slightly less that 78% using a 10,000
words dictionary.

In [10] we presented a dataset used for testing a system
that recognizes foods and estimates food leftovers. The dataset
contains 2,000 images of 15 classes of foods placed on trays.
The images were acquired in a real canteen location, and
are paired with the corresponding leftover images acquired
after the meals. The images are associated to a given canteen
customer by using a QR code automatically generated by the
dietary monitoring system on the customer’s mobile. [10] is
the first dataset explicitly designed for both food recognition
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and leftover estimation.
Table I, summarizes the characteristics of the different

datasets of food images available in the literature. For each
dataset we report its size and the number of food categories it
contains. The datasets have been categorized according to the
type of images considered (i.e. images containing a single food
or a set of foods), the acquisition procedure (e.g. in-the-wild
for unconstrained acquisitions, or in-the lab for constrained
acquisitions), the task for which it is used or created, the
annotation type (label only, bounding boxes, or polygonal
areas), and the availability (i.e. either public, or proprietary).
Figure 1 shows some examples of the images contained in
each dataset.

As it can be seen from Table I, and Figure 1, most of the
existing datasets depict single instance foods with only three
dataset having multiple instance foods in the images. Not all
the environments (and cultures) are characterized by a single
food plate. For example, Asian food usually are placed in
different small plates and are usually brought on the table
at the same time (UECFOOD-100 is an example). Moreover
in all the canteen environments different plates, for the first
course, main course, side dishes and desserts, are placed on the
same tray. In these cases, it is more convenient to take a single
picture of the whole meal than separate pictures for each food.
To date, only the UNIMIB2015 dataset is specifically designed
for the canteen environments.

Canteens and cafeterias are very important in everyday
life because they are often the preferred (or only) choice
for workers, employees, or students. Cafeterias and canteens
are receiving more and more attention with respect to health
issues and wellness for the customers. The problem of healthy
and balanced meal in schools is seriously tackled by the
different health agencies with the aim at reducing obesity and
unbalanced nutrition. For example, the Department of Health
of the Italian Government promoted an extensive campaign
for food and nutrition education1. The Department of Health
of the Australian Government, compiled a very detailed report
with guidelines for healthy foods in school canteens2. Similar
actions can be found across many other countries (e.g. UK3,
USA4, etc. . . ).

Also corporations are addressing the dietary wellness of
their employees. For example Google re-engineered its cafete-
rias to drive people towards healthier food choices by changing
food disposition and using color coding to highlight food
calories 5. Other corporate dining services are following a
similar approach to provide healthier food and to educate their
employees to a correct diet6.

For these reasons, we believe that datasets of food im-
ages acquired in canteen or cafeteria environments are very
important for the problem of food recognition and dietary

1http://www.salute.gov.it/imgs/c 17 pubblicazioni 1248 allegato.pdf
2https://education.nt.gov.au/policies/canteen-nutrition-and-healthy-eating
3http://www.schoolfoodplan.com/actions/school-food-standards/
4http://www.fns.usda.gov/school-meals/child-nutrition-programs
5http://www.fastcodesign.com/1669355/6-ways-google-hacks-its-

cafeterias-so-googlers-eat-healthier
6http://www.timesfreepress.com/news/business/aroundregion/story/2015/

jan/20/todays-company-cafeterias-offer-healthier-brighter-fare/283592/

Fig. 2. The canteen situated within the University of Milano-Bicocca campus
where we have acquired the images in the UNIMIB2016 dataset.

monitoring, and large and representative datasets are thus
required.

In this paper we introduce a new food dataset named
UNIMIB2016. This dataset is similar to our previous dataset
UNIMIB2015. Both contains images taken in a canteen en-
vironment where different foods are placed on a tray to be
taken on the dining table. Differently from the UNIMIB2015
dataset, here we have much more classes and the dishes are
more difficult to locate due to the similar color of plates, tray
and placemats.

In fact, in UNIMIB2015, the placemat being dark blue is
clearly distinguishable from the other items. In UNIMIB2016,
the placemat is white as the plates. This could make it
more difficult the location and segmentation of the plates.
Moreover, the higher number of food classes with respect
to UNIMIB2015 makes this dataset more representative of
the typical foods found in canteens. As it can be seen form
Figure 3, many food classes have a very similar appearance.
For example, we have four different “Pasta al sugo”, but with
other main ingredients (e.g. fish, vegetables, or meat) added.
Finally, on the tray there can be other “noisy” objects that must
be ignored during the recognition. For example, we may find
cell phones, wallets, id cards, and other personal items. For
these reasons we need to design of a very accurate recognition
algorithm.

These differences make this dataset more challenging than
the previous one for the task of food recognition. Finally,
as in the UNIMIB2015 dataset, here we have conducted a
careful annotation of the food regions using polygonal shapes.
This will allow design of food quantity estimation algorithms
using a very precise ground truth. However the UNIMIB2015
dataset is the only dataset available that contains images
and annotations of canteen trays taken before and after the
meal (see Figure 1) and therefore can be used for leftover
estimation. Also the two dataset are both publicly available
for research purposes.

II. THE UNIMIB2016 FOOD DATASET

The dataset has been collected in a real canteen environ-
ment. The particularities of this setting are that each image
depicts different foods on a tray, and some foods (e.g. fruit,
bread and dessert) are placed on the placemats rather than on
plates. Sides are often served in the same plate as the main dish
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01. Arancia
02. Arrosto
03. Arrosto di vitello
04. Banane
05. Bruscitti
06. Budino
07. Carote
08. Cavolfiore
09. Cavolfiore gratinato
10. Cotoletta
11. Crema zucca e fagioli
12. Fagiolini
13. Finocchi gratinati
14. Finocchi in umido
15. Focaccia bianca
16. Guazzetto di calamari
17. Insalata mista 2
18. Insalata mista 1
19. Lasagna alla bolognese
20. Mandarino
21. Medaglioni di carne
22. Mela
23. Merluzzo alle olive
24. Minestra
25. Minestra lombarda
26. Orecchiette al ragú
27. Pane
28. Passato alla piemontese
29. Pasta in bianco
30. Pasta cozze e vongole
31. Pasta e ceci
32. Pasta e fagioli
33. Pasta mare e monti
34. Pasta pancetta e zucchine
35. Pasta pesto besciamella e cornetti
36. Pasta ricotta e salsiccia
37. Pasta al sugo
38. Pasta al sugo pesce
39. Pasta al sugo vegetariano
40. Pasta tonno
41. Pasta tonno e piselli
42. Pasta zafferano e piselli
43. Patate/puré
44. Patate/puré prosciutto
45. Patatine fritte
46. Pera
47. Pesce 1
48. Pesce 2
49. Piselli
50. Pizza
51. Pizzoccheri
52. Polpette di carne
53. Riso in bianco
54. Riso sugo
55. Roast-beef 1
56. Roast-beef 2
57. Rucola
58. Trancio di merluzzo
59. Scaloppine
60. Spinaci
61. Stinco di maiale
62. Strudel
63. Torta ananas
64. Torta cioccolato e pera
65. Torta crema 1
66. Torta crema 2
67. Torta salata alla valdostana
68. Torta salata
69. Torta salata rustica
70. Torta salata spinaci e ricotta
71. Yogurt
72. Zucchine impanate
73. Zucchine in umido

Fig. 3. Segmented images of the 73 food categories in the proposed UNIMIB2016 dataset. On the right, the Italian names of the classes. Note that in some
cases foods slightly differ in the ingredients, and thus are named as “FoodName 1”, “FoodName 2”, etc.

Fig. 4. Examples of acquired trays. The black polygon around the food represents the manual annotations.
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making it difficulty to separate the two. Moreover, the acqui-
sition of the images has been performed in a semi-controlled
settings so the images present visual distortions as well as
illumination changes due to shadows. These characteristics
make this dataset challenging requiring both the segmentation
of the trays for food localization, and a robust way to deal
with multiple foods.

Figure 2 shows the location where the images have been ac-
quired. It is a canteen situated within the University of Milano-
Bicocca Campus that serves students and faculty members.
Images have been acquired using a hand-held Samsung Galaxy
S3 (GT-i9300) smart phone. The acquisition station is located
at the end of the tray line after the cashier. Customers place
the tray on the acquisition station and the images are taken
by an operator. Unfortunately, due to privacy issues and the
intense affluence of customers, we have been unable to take
pictures of the trays after the meal. This has prevented us to
include leftover information in this dataset as we have done
in the UNIMIB2015 dataset.

We have collected a total of 1,442 images that went through
a quality check phase were we removed excessively blurred
images, and duplicated photos. After this phase we obtained
a final dataset of 1,027 tray images, 73 food categories, and
a total of 3,616 food instances. Figure 3 shows a sample of
each food category of the UNIMIB2016 dataset, while Figure
4 shows some examples of the acquired images.

To create the ground truth, we have annotated the dataset
using an improved version of our Image Annotation Tool
(IAT) [40], [41]. The modifications include the support of
touchscreens, the drawing of freehand shapes, and the auto-
matic approximation these shapes to polygon using the Ramer-
Douglas-Peucker algorithm [42], [43]. These modification al-
lowed us a significant speed up in the annotation process with
respect to the standard point and click mouse. Figure 4 shows
some examples of annotations superimposed to the acquired
images. Using our tool, to each image we have associated an
annotation file containing the list of food identities, and the
segmentation region of each food in terms of points of the
polygon surrounding it.

Most of the existing food databases are characterized by
images that contain a single food (often in a close-up setting),
and in most of the cases the food annotations are provided
in terms of bounding boxes around the food, see Table I.
The UNIMIB2016 dataset is characterized by images that
contain multiple foods and moreover the dataset includes
accurate segmentation of foods (see Figure 4). These type of
annotations allow researchers to work on methods for food
segmentation, as well as food quantity estimation.

III. TRAY ANALYSIS

In Figure 5 we show the schema of our tray analysis
method. The segmentator module takes the tray image as input.
The output of this module is a list of regions of interest.
As benchmarking, we also consider the regions of interest
obtained from the ground-truth annotations. The regions of
interest are then processed by the food class predictor. The
output of the predictor is a list of recognized foods. Given

Fig. 7. Examples of segmentation results.

a region of interest we investigate the use of three different
approaches for predicting the food class. The first approach
is a global one that extracts the visual features from the
whole region of interest. The second approach is a local one
that extracts the visual features from local patches of the
region of interest. The third approach combines the posterior
probabilities computed by the global and local classifiers with
the sum and product operators [44]. Given a region of interest
ri, the probability that a region is of class m is calculated in
two ways:

1) sum rule:P (m|ri) = PG(m|ri) + PL(m|ri);
2) product rule: P (m|ri) = PG(m|ri) · PL(m|ri).

where PG(m|ri) and PL((m|ri) are the probability that a
region of interest ri is of class m with respect to the global
and local approach respectively. The sum rule is expected to
produce reliable results when the approaches catch information
that is highly correlated, while the product rule is expected
to be effective when the two approaches catch independent
information.

A. Tray segmentation

Figure 6 shows the segmentation pipeline of the segmentator
module used to detect the regions of interest on the tray that
presumably will contain food samples. It is composed of four
main steps. First, in order to speed up the computation without
losing relevant information, the input RGB image is resized
to an height of 320 pixels. The resized image undergoes
two separate processing pipeline: a saturation-based one, and
a color texture one. In the first one, the image is firstly
gamma corrected and then the RGB values are converted to
HSV to extract the saturation channel (step 1a of Figure 6).
These values are automatically thresholded and morphological
operations are applied to clean up the obtained binary image
(step 1b). We have noticed that the saturation channel contain
good cues for the localization of food regions since they have
saturation values higher than the plate regions, the tray and the
cutlery. Of course, other regions may have saturation values
comparable to those of the food and thus we have introduced a
second processing based on the segmentation algorithm JSEG
[45] that works on both color and texture features (step 2a of
Figure 6). We use the standard implementation of the authors
with the default parameters (i.e. automatic segmentation) and
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Fig. 5. Tray analysis pipeline.

Fig. 6. Processing pipeline for the food segmentation.

TABLE II
REGION-BASED AND BOUNDARY-BASED SEGMENTATION PERFORMANCE

RESULTS.

Region-based Boundary-based

Covering PRI VI Recall Precision F-Measure

JSEG 0.385 0.389 3.106 0.870 0.198 0.323
Proposed 0.916 0.931 0.429 0.714 0.734 0.724

we found that if works well in most cases. The segmentation is
able to detect the regions having similar visual characteristics.

The segmented image is then processed in order to remove
non relevant regions (step 2b). For instance, the regions that
touch the border of the image do not belong to the food
regions and thus can be eliminated. Also, regions larger or
smaller than predefined thresholds can be discarded as well
(e.g. the placemat, the tray, highlights). The final segmented
image contains with high probability the food regions and few
non relevant ones. In order to retain only the food regions, the
outputs of the saturation-based processing and the output of
the color and texture processing are combined together (step
3). The combination performs a cross analysis between the two
outputs with the aim to retain only the segmented regions that
have a large percentage of saturated pixels. With this analysis
we are able to remove most of the regions of the cutlery and
the spurious ones while retaining the food regions. To further
ensure that only few, relevant, regions are retained for the
classification phase, geometric constraints are used to clean-
up the output of the combining step (step 4). The bounding
boxes of all the regions of interest are passed to the prediction
phase.

In order to assess the proposed segmentation pipeline we
applied the evaluation benchmarks suggested in [46]. Specif-

ically we computed the following region-based measures:
covering of ground-truth (Covering), the Probabilistic Rand
Index (PRI), and the Variation of Information (VI). Moreover,
following the same work, we also computed the boundary-
based precision-recall measures. We compare the final results
obtained by the proposed segmentation pipeline against the
segmentation initially obtained by the JSEG algorithm. Results
are reported in Table II. As it can be seen the proposed strategy
obtains the best segmentation results by all the measures
considered. The region-based measures shows the highest
improvements: 0.916 against 0.385, and 0.931 against 0.389
for Covering and PRI respectively, while the obtained VI is
0.429 against the initial 3.106 (in this case the lower the
better). With respect to the boundary-based measures, we see
that the initial segmentations have a high recall but with
a very low precision, while the proposed one has a more
balanced precision-recall values. On the overall, the proposed
segmentation pipeline outperforms the JSEG one with an F-
Measure of 0.724 against 0.323. The results shows that the
proposed segmentation strategy is able to effectively locate
the food regions.

Figure 7 shows some results of out segmentation pipeline.
As it can be seen, we are able to separate different food on the
same plate. We still have some spurious regions that we hope
to classify as non-food regions in the next phase. Moreover,
the JSEG algorithm often over-segments foods that shows
heterogeneous regions such as the pizza slice or very textured
foods such as the salads and vegetables. Each one of these
regions will be independently classified. Before being passed
to the classification phase, the coordinates of the bounding
boxes of the food regions are transformed back to match the
image’s original size.
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Fig. 8. Processing pipeline for the food classification.

B. Classification of regions of interest

Figure 8 shows the processing pipeline for the food classi-
fication used in the predictor module. As we discussed before,
we compare three different classification strategies: a global
strategy (top path in Figure 8), a local one (bottom path), and
a combination of them. The classification module works as
follows. Depending on the classification strategy, from each
region of interest one sub-image (global strategy) or several,
non-overlapping, image patches (local strategy) are extracted.
These images are then fed to a feature extractor where
several visual descriptors are computed. Specifically, we have
evaluated the foollowing visual descriptors: color histogram
(HIST) [47], Gabor features (Gabor) [48], Opponent Gabor
features (OG) [49], Local Color Contrast (LCC) [50], [51],
Chromaticity Moments (CM) [49], Complex Wavelet features
(CWT) [49], [52], Color and Edge Directivity Descriptor
(CEDD) [53], non-uniform invariant Local Binary Pattern on
the RGB channels (LBP) [54] , Convolutional Neural Network
(CNN) [55], [56], and Bag of Convolutional Filter Responses
(BOCFR) [57], [58], [59].

The visual descriptors are independently evaluated by pre-
trained classifiers for predicting the corresponding food label.
We experimented the use of two classifiers as predictor: the
k-Nearest Neighbour (k-NN) and Support Vector Machines
(SVM). The training of the classifiers is done by considering
a suitable split of the UNIMIB2016 that will be described in
Sec. IV. In the case of the local classification strategy, for each
region of interest, we have several food labels, one for each
image patch. Thus it is necessary a post-processing phase to
merge all these labels into a final classification decision. The
local strategy is similar to the one presented in our previous
work [10], and it should be useful when the food region
contains part of different foods as often happens in the case
of the side dishes.

IV. EXPERIMENTAL SETUP

For comparison, we evaluate the different visual features
and classification strategies. In order to evaluate how much
the segmentation process influences the classification process,
we also present experiments considering the ideal food seg-
mentation provided by the the ground-truth.

A. Visual descriptors

In this work we compare several visual descriptors. All
feature vectors are L2 normalized 7:

• 768-dimensional RGB [47];
• 32-dimensional Gabor features composed of mean and

standard deviation of six orientations extracted at four
frequencies for each color channel [49];

• 264-dimensional opponent Gabor feature vector extracted
as Gabor features from several inter/intra channel com-
binations: monochrome features extracted from each
channel separately and opponent features extracted from
couples of colors at different frequencies [49];

• 256-dimensional Local Color Contrast feature vector.
The LCC vector is obtained by comparing the color at
a given location with the average color in a surrounding
neighborhood. The is computed in terms of the angular
difference between the color vectors [50];

• 10-dimensional feature vector composed of normalized
chromaticity moments as defined in [49];

• 8-dimensional Dual Tree Complex Wavelet Transform
(CWT) features obtained considering four scales, mean
and standard deviation, and three color channels [49],
[52];

• 144-dimensional Color and Edge Directivity Descriptor
(CEDD) features. This descriptor uses a fuzzy version
of the five digital filters proposed by the MPEG-7 Edge
Histogram Descriptor (EHD), forming 6 texture areas.
CEDD uses 2 fuzzy systems that map the colors of the
image in a 24-color custom palette [49], [52];

• 18-dimensional Local Binary Patterns (LBP) feature vec-
tor for each channel. We consider LBP applied to color
images represented in RGB [60]. We select the LBP with
a circular neighbourhood of radius 2 and 16 elements, and
18 uniform and rotation invariant patterns;

• 4096-dimensional Convolutional Neural Networks fea-
tures (CNN4096). The CNN-based features are obtained
as the intermediate representations of deep convolutional
neural networks originally trained for ILSVRC 2012 [61].
The networks are used to generate a visual descriptor by
removing the final softmax nonlinearity and the last fully-
connected layer. This network is the BVLC AlexNet [61];

7The feature vector are divided by its L2-norm.
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• 128-dimensional Convolutional Neural Networks features
(CNN128). Features are extracted in the same way as
in the case of CNN4096. Here the network is the Vgg
M [56] that is similar to the one presented in [62] with a
reduced number of filters in the convolutional layer four.
The last fully-connected layer is 128-dimensional. Even
this network is trained for ILSVRC 2012;

• 1024-dimensional BoCFR: we consider the Bag of Con-
volutional Filter Responses (BoCFR) of the first convo-
lutional layer of the BVLC AlexNet trained for ILSVRC
2012. We built a codebook of 1024 visual words by
exploiting images from external sources.

B. Training process

Since we collected our dataset in a real canteen scenario,
and with different daily menus, the number of occurrences
of each food is highly variable. This number ranges from a
maximum of 479 instances for the “Pane” class downto one
for some other classes (e.g. “Strudel” and “Rucola”). We have
removed from the dataset the images with foods having fewer
than four instances. The final dataset used in the experiments
thus contains 1,010 tray images, and 65 foods. We split the
1,010 tray images into a training set and a test set such that
the sets contain about 70% and 30% of each food instances
respectively. This resulted in a training set of 650 tray images,
and a test set of 360 images.

For training the global and local food classifiers, we ex-
tracted the visual descriptors from the regions of interest
provided by the ground-truth segmentation of the training
trays.

Regarding the k−NN classifier, we have evaluated different
values of k ranging from 1 to 11 and we have selected the
value that gave the best results across visual descriptors and
classification strategies, that is k = 3. For what concerns
the SVM classifier, we have adopted the radial basis function
kernel with width and regularization parameters found after a
cross validation procedure.

During the prediction process in the case of the local
classification approach, the region of interest is subdivided in
patches of size 140× 140. The resulting patches may contain
both food and no-food classes. This is quite clear looking at
the bottom part of the Figure 8. For both the global and local
classifiers, during the training process, we added the class no-
food to the classifier by choosing randomly samples from the
portion of the tray images that do not overlap with the regions
of interest. Once the prediction of each patch is obtained,
the class with the maximum number of patches predicted is
assigned to the region of interest.

C. Evaluation measures

To cope with the class imbalance problem of the test set
we jointly used two assessment metrics for food recognition:
the Standard Accuracy (SA) and the Macro Average Accuracy
(MAA) [63]. Denoting NPc the number of positives, i.e., the
number of times the class c occurs in the dataset; TPc the
number of true positives for class c, i.e., the number of times

that the system recognizes the dish c; C the number of classes,
for each class, the metrics can be defined as follows:

SA =

∑C
c=1 TPc∑C
c=1 NPc

; MAA =
1

C

C∑
c=1

Ac =
1

C

C∑
c=1

TPc

NPc
.

The metric for the evaluation of the error in the tray analysis
is the Tray accuracy. This is defined as the percentage of trays
correctly analyzed. A tray is correctly analyzed when all the
foods contained are correctly recognized.

V. RESULTS

Results are presented in Table III. Is quite clear that the
CNN-based visual descriptors achieve better results than others
in all the classification strategy. In particular, the CNN4096
features coupled with the combination of posterior probability
strategy obtains the best performance. It is quite interesting
to note that, apart some exceptions, the combination strategy,
with both k-NN and SVM classifiers, reduces the perfor-
mance with respect to the use of global and patch-based
approaches. It happens in all cases when global and patch-
based approaches are coupled with visual descriptors that are
not good performing. It also interesting to note that, the patch-
based approach outperforms the global approach only when it
is coupled with the SVM classifier. This is due to the fact
that the radial basis function used in the SVM classifier is
more suitable than the linear k-NN to separate the food classes
in the feature space when the number of samples increases.
Moreover, the patch-based strategy greatly outperforms the
global one when coupled with traditional visual descriptors (no
CNN-based). This suggest that the lower discriminant power
of the these features, compared to the CNN-based ones, is
somewhat compensated by the larger amount of information
obtained by aggregating the classification results from the local
patches. For example, among the non CNN visual descriptors,
the Hist RGB combined with the local classification approach
achieves a performance that is very close to some of the
CNN-based descriptors. This is due to the fact that the local
approach in some way takes into account the spatial variability
of the food. In fact, the local approach, when applied to the
UNIMIB2015 dataset, has demonstrated to be very useful for
food quantity estimation [10]: the number of patches labeled
as food X suggests the quantity of the food X itself.

Overall, the SVM classifier performs slightly better than k-
NN with a tray accuracy of 78.9% obtained using the sum of
posteriors combination strategy. The Table III contains also the
results achieved using the ideal ground-truth (GT) as a perfect
segmentation algorithm. The differences between the results
obtained using the proposed segmentation pipeline and GT,
permit to evaluate the influences of the automatic segmentation
on the classification performance of the entire pipeline. It is
quite clear that when the ideal segmentation is used we achieve
a gain of about 10% with a maximum of 86% accuracy for
the food recognition.

As it can be seen from the results, the UNIMIB2016 dataset
is indeed more challenging for the recognition task than the
UNIMIB2015 dataset.
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TABLE III
FOOD RECOGNITION RESULTS USING THE PROPOSED TRAY ANALYSIS PIPELINE AND k−NN OR SVM CLASSIFIER. PROPOSED: OUR AUTOMATIC

SEGMENTATION. GT: GROUND-TRUTH SEGMENTATION. G: GLOBAL APPROACH. P: LOCAL, PATCH-BASED APPROACH. G
⊕

P, COMBINATION

EXPLOITING THE SUM OF POSTERIORS. G
⊗

P, COMBINATION EXPLOITING THE PRODUCT OF POSTERIORS. FOR EACH ROW, THE BEST RESULT IS
REPORTED IN BOLD.

Classifier Segment. Approach Measure LBP CEDD Hist Gabor OG LCC CM CWT CNN128 CNN4096 BoCFR

k-NN

Proposed

G
Food SA 0.343 0.423 0.555 0.397 0.463 0.320 0.439 0.276 0.656 0.728 0.689
Food MAA 0.139 0.184 0.356 0.168 0.253 0.127 0.210 0.079 0.467 0.585 0.490
Tray Accuracy 0.353 0.383 0.561 0.367 0.446 0.306 0.409 0.231 0.676 0.732 0.689

P
Food SA 0.488 0.594 0.689 0.597 0.667 0.492 0.608 0.624 0.679 0.697 0.697
Food MAA 0.202 0.315 0.474 0.318 0.443 0.201 0.326 0.387 0.453 0.473 0.490
Tray Accuracy 0.438 0.560 0.685 0.563 0.673 0.433 0.573 0.621 0.674 0.692 0.694

G
⊕

P
Food SA 0.490 0.608 0.673 0.612 0.684 0.489 0.593 0.591 0.742 0.764 0.729
Food MAA 0.193 0.298 0.470 0.329 0.453 0.160 0.299 0.334 0.509 0.561 0.539
Tray Accuracy 0.399 0.515 0.636 0.540 0.655 0.367 0.509 0.536 0.715 0.738 0.711

G
⊗

P
Food SA 0.436 0.477 0.637 0.461 0.515 0.350 0.511 0.313 0.714 0.763 0.716
Food MAA 0.198 0.235 0.428 0.238 0.331 0.150 0.285 0.137 0.504 0.601 0.554
Tray Accuracy 0.360 0.402 0.592 0.398 0.497 0.301 0.454 0.274 0.696 0.747 0.709

GT

G
Food SA 0.394 0.446 0.628 0.427 0.536 0.358 0.518 0.289 0.748 0.820 0.761
Food MAA 0.171 0.219 0.380 0.192 0.299 0.151 0.255 0.085 0.555 0.652 0.559
Tray Accuracy 0.434 0.492 0.662 0.470 0.570 0.408 0.534 0.313 0.783 0.842 0.782

P
Food SA 0.543 0.656 0.719 0.682 0.719 0.557 0.651 0.723 0.745 0.774 0.734
Food MAA 0.221 0.312 0.505 0.367 0.458 0.201 0.346 0.420 0.464 0.500 0.510
Tray Accuracy 0.501 0.625 0.720 0.648 0.721 0.499 0.632 0.681 0.738 0.762 0.743

G
⊕

P
Food SA 0.504 0.629 0.732 0.641 0.752 0.518 0.631 0.623 0.814 0.855 0.811
Food MAA 0.210 0.313 0.493 0.377 0.492 0.176 0.332 0.360 0.586 0.631 0.577
Tray Accuracy 0.431 0.529 0.686 0.580 0.701 0.391 0.557 0.565 0.787 0.826 0.777

G
⊗

P
Food SA 0.437 0.536 0.705 0.518 0.619 0.412 0.586 0.330 0.805 0.858 0.791
Food MAA 0.222 0.273 0.457 0.291 0.380 0.183 0.327 0.143 0.611 0.685 0.614
Tray Accuracy 0.389 0.461 0.650 0.475 0.580 0.368 0.552 0.295 0.791 0.840 0.785

SVM

Proposed

G
Food Accuracy 0.398 0.465 0.610 0.396 0.434 0.320 0.432 0.297 0.694 0.715 0.666
Food MAA 0.185 0.215 0.346 0.203 0.234 0.098 0.211 0.093 0.479 0.546 0.449
Tray Accuracy 0.440 0.440 0.575 0.394 0.403 0.313 0.408 0.255 0.703 0.738 0.669

P
Food SA 0.607 0.645 0.721 0.627 0.732 0.515 0.606 0.650 0.742 0.783 0.708
Food MAA 0.332 0.356 0.483 0.377 0.498 0.168 0.330 0.428 0.496 0.560 0.479
Tray Accuracy 0.585 0.605 0.705 0.630 0.729 0.421 0.570 0.655 0.720 0.767 0.708

G
⊕

P
Food SA 0.640 0.628 0.703 0.670 0.713 0.382 0.612 0.646 0.777 0.798 0.702
Food MAA 0.387 0.399 0.452 0.446 0.518 0.100 0.261 0.453 0.616 0.632 0.465
Tray Accuracy 0.596 0.610 0.690 0.638 0.712 0.304 0.469 0.640 0.768 0.789 0.702

G
⊗

P
Food SA 0.489 0.555 0.612 0.529 0.640 0.414 0.498 0.504 0.746 0.789 0.698
Food MAA 0.281 0.354 0.367 0.322 0.443 0.114 0.277 0.228 0.626 0.636 0.442
Tray Accuracy 0.465 0.513 0.580 0.499 0.630 0.322 0.461 0.441 0.756 0.777 0.689

GT

G
Food SA 0.480 0.520 0.643 0.456 0.533 0.425 0.495 0.326 0.774 0.825 0.756
Food MAA 0.231 0.249 0.375 0.234 0.298 0.134 0.274 0.106 0.552 0.644 0.489
Tray Accuracy 0.525 0.562 0.667 0.502 0.560 0.416 0.538 0.347 0.798 0.842 0.753

P
Food SA 0.646 0.718 0.759 0.711 0.795 0.609 0.650 0.718 0.816 0.857 0.763
Food MAA 0.346 0.405 0.518 0.388 0.538 0.180 0.360 0.449 0.541 0.575 0.505
Tray Accuracy 0.659 0.694 0.762 0.694 0.788 0.489 0.646 0.726 0.804 0.838 0.763

G
⊕

P
Food SA 0.672 0.700 0.721 0.698 0.769 0.385 0.581 0.702 0.872 0.891 0.734
Food MAA 0.419 0.444 0.505 0.470 0.545 0.092 0.263 0.454 0.677 0.684 0.508
Tray Accuracy 0.641 0.658 0.723 0.665 0.745 0.279 0.459 0.670 0.845 0.871 0.702

G
⊗

P
Food SA 0.565 0.619 0.642 0.576 0.711 0.418 0.528 0.551 0.816 0.858 0.722
Food MAA 0.322 0.370 0.434 0.359 0.471 0.125 0.310 0.248 0.670 0.687 0.557
Tray Accuracy 0.530 0.567 0.634 0.546 0.669 0.324 0.498 0.464 0.814 0.843 0.691

VI. CONCLUSION

In the recent years, it has been demonstrated that visual
recognition and machine learning methods can be used to
develop systems that keep tracks of human food consumption.
The actual usefulness of these system heavily depends on the
capability of recognizing foods in unconstrained environments.
In this paper, we propose a new dataset for the evaluation of
food recognition algorithms designed for dietary monitoring.
The images have been acquired in a real canteen and depict
a real canteen tray with foods arranged in different ways.
Each tray contains multiple instances of food classes. We

collected a set of 1,027 canteen trays for a total of 3,616 food
instances belonging to 73 food classes. The tray images have
been manually segmented using carefully drawn polygonal
boundaries. We designed a suitable automatic tray analysis
pipeline that takes a tray image as input, finds the regions
of interest, and predicts for each region the corresponding
food class. We evaluated three different classification strategies
using several visual descriptors. The best performance has
been obtained by using Convolutional-Neural-Networks-based
features. The dataset, as well as the benchmark framework,
are made available to the research community. Thanks to
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the way it has been annotated, this database along with the
UNIMIB2015 can be used for food segmentation, recognition
and quantity estimation.
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