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Abstract. In this paper we adopt Genetic Programming (GP) to define a measure that can predict complexity
perception of texture images. We perform psycho-physical experiments on three different datasets to collect data on
the perceived complexity. The subjective data are used for training, validation, and test of the proposed measure.
These data are also used to evaluate several possible candidate measures of texture complexity related to both low
level and high level image features. We select four of them (namely roughness, number of regions, chroma variance,
and memorability) to be combined in a GP framework. This approach allows a non-linear combination of the measures
and could give hints on how the related image features interact in complexity perception. The proposed complexity
measureMGP exhibits Pearson Correlation Coefficients of 0.890 on the training set, 0.728 on the validation set, and
0.724 on the test set. MGP outperforms each of all the single measures considered. From the statistical analysis of
different GP candidate solutions, we found that the roughness measure evaluated on the gray level image is the most
dominant one, followed by the memorability, the number of regions, and finally the chroma variance.
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1 Introduction

Visual scenes are composed of numerous textures, objects, and colors. Texture helps us to un-

derstand the visual world. A strict definition of texture is difficult. It can be regarded as what

constitutes a macroscopic region, with repetitive patterns in which elements are arranged accord-

ing to a placement rule.1 Texture provides a cue to the shape and orientation of a surface, to

segmenting an image into meaningful regions, and to classifying those regions in terms of mate-

rial properties.2 Human texture processing has not yet been fully understood given its complexity

and the involvement of mechanisms at different levels. Researches have addressed the problem of

texture processing using both artificial and natural materials, mainly in the field of texture classi-

fication.3 In this work we address the analysis of texture images from a different point of view,

focusing on human perception. In particular we investigate the perceived complexity of natural
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texture images. Also Tamura et al.4 have approached texture perception, not with respect to com-

plexity, but with the different goal of defining computational measures to describe texture. They set

up an experiment where subjects evaluated texture images in a pair-wise comparison, with respect

to six textural features: coarseness, contrast, directionality, line-likeness, regularity and roughness.

They thus defined computational measures of these features that correlate with the experimental

results. How humans perceive texture can provide new insights in understanding the process of

material recognition. In particular, the study of image complexity perception can be useful in

many different domains. For example to provide an a priori estimate of the difficulty of locating

a target in an image.5 It can also be embedded in the similarity measure for content-based image

retrieval.6 In the context of human-computer interaction, complexity can be used to estimate the

level of usability of icons7 or websites.8 It can also be exploited in watermarking algorithms to

estimate the amount of information that can be hidden in images,9 or used in image compression

algorithms10 to estimate the bandwidth allocation required. Prediction of saliency within images

can take advantage of the definition of complexity measures.11, 12 Finally, the image complexity

concept is also used by neuroscientists interested in the mechanisms of recognition, learning and

memory.13

In previous works, image complexity is either evaluated using a single image feature or by an

empirical selection and combination of different image features. But all the works agree in that

different perceived aspect of an image intervene in the assessment of image complexity. However

how to integrate them within a model that also take into account top-down mechanisms is still

an open issue. In this work we try to derive a complexity measure by automatically combining

different image feature measures within an optimization framework. We are interested in the com-

putational model of the overall complexity measure, and in the insights that its formulation can
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give us for the understanding of texture image complexity. Here we address these issues using a

Genetic Programming (GP) framework to design a measure to predict texture image complexity.

GP permits to combine different measures of image features in a nonlinear way that can be more

suitable to match subjective perception. We have adopted GP because it does not require an a-priori

definition of the form of the solution, that can be linear as well as non-linear. Moreover it does not

require to specify the size, and the shape, of the solution in advance.14, 15 As a further advantage,

GP provides intelligible and easily interpretable solutions.

Therefore, in this work we have:

• Performed three psycho-physical experiments to assess complexity perception of texture

images. These experiments differ in the dataset of stimuli used: RawFooT,16 VisTex,17 and

a grayscale version of VisTex and are described in Section 3.1. All the experimental data

collected are available at our website.

• Analyzed eleven measures of different image features as possible candidates to be adopted

in the GP approach. Five of them were specifically designed to evaluate texture properties

by Tamura et al.,4 Section 3.2.

• Designed a GP framework to combine in a nonlinear way selected measures of image fea-

tures, to obtain a measure of image complexity (Section 4).

• Trained the GP framework on RawFooT dataset, validated it on VistTex, and finally tested it

on the grayscale VisTex. The results are reported and discussed in Section 5.

In the next section we provide a literature survey on image complexity and we summarize the

GP optimization framework as well.
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2 Literature Survey

2.1 Related work

Depending on the specific task and the application domain, different definitions of image complex-

ity are possible. From a purely mathematical point of view, Kolmogorov18 defines the complexity

of an object as the length of the shortest program that can construct the object from basic ele-

ments, or description language. Some studies of visual complexity perception deal with real world

images. Oliva et al.19 represented visual complexity by a multi-dimensional space, that includes

quantity of objects, clutter, openness, symmetry, organization and variety of colors. Snodgrass et

al.20 refer to the visual complexity as the amount of detail or intricacy in an image. Birkhoff21

relates the image complexity to visual aesthetics. However, little research has been carried out

into the visual complexity of texture images. Rao and Lohse22 showed that the three attributes:

repetitiveness, orientation and complexity can be helpful in order to identify and classify natural

textures. Within their work they defined complexity as the degree of difficulty in providing a ver-

bal description of the texture. Later, studying similarity and features of natural textures, Heaps

and Hande,23 found that the complexity of a texture can be estimated along a one dimensional

axis representing the degree of perceivable structure. Recently, Guo et al.24, 25 have also consid-

ered the perception of texture complexity. They identified low-level characteristics that influence

texture complexity perception: regularity, roughness, directionality, and density. Moreover they

found that subject perception is not only related to concepts that can be described with objective

measures, but also this perception can be influenced by top-down mechanisms. In particular from

the verbal description collected during their experiments, understandability turns out to be one of

the most frequent criteria used.
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The problem of complexity perception of real world texture images has been previously in-

vestigated by Ciocca et al.26 Specifically, experiments were performed to evaluate how different

image features, such as color, edge, regions, and composition, correlate with the subjective data

collected in proper psycho-physical experiments. The results of these experiments evidenced that

different aspects should be considered when formulating a model to predict texture complexity,

and that complexity perception depends on several image features that interact. The most frequent

criteria adopted by the observers (17 subjects from University of Milano Bicocca) were regular-

ity, understandability, familiarity and edge density, in accordance with those obtained by Guo et

al.,24, 25 in an experiment where 30 observers from the Hiroshima University were involved. These

results suggested that there is probably a general consensus and not an evident cultural or linguis-

tic bias while evaluating texture complexity. However this aspect is still an open issue, especially

when visual complexity of images with different semantic contents is considered.

2.2 GP background

GP is widely and successfully used in the field of pattern recognition27, 28 and information and

image retrieval.29, 30 Recently, several authors adopted genetic programming to solve problems of

texture classification and segmentation.31–33 In GP the computer programs, i.e. the individuals of a

population, are represented by trees, where the leaves, also called terminals, represent the constants

and the independent variables of the problem. The arithmetic functions that combine the terminals

correspond to the nodes of the tree. An example of an individual represented as a tree is shown in

Fig. 1. In this example the tree corresponds to the expression 5×X1 + sin(X2) + X3, where the

terminals are the three variables X1, X2, and X3 and the constant 5, while the used functions are:

plus (+), times (×), and sin.
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Fig 1 GP tree representing the program: 5×X1 + sin(X2) +X3

Initially a population of computer programs (individuals) are created randomly. A fitness func-

tion is designed with respect to the problem to be solved, and evaluated for each individual. The

fitness function numerically quantifies the goodness of an individual computer program in solv-

ing that problem. The initial population, as in most evolutionary algorithms, evolves generation

by generation. Individuals of a population are modified by applying genetic operators (such as

reproduction, mutation, and crossover) to individuals selected with respect to their fitness. The

reproduction operator selects the best individuals and copies them to the next generation. Mutation

creates one new individual for the next population by randomly mutating a randomly chosen part

of one selected individual. Crossover, instead, creates new individuals by recombining randomly

chosen parts from two selected ones. These genetic operators are applied to obtain a new popula-

tion, till an acceptable solution in terms of fitness is obtained or a stopping criteria is reached. The

basic steps of Genetic Programming are summarized in Algorithm 1. For a deeper understanding

of GP refer to consolidated works in the literature.14, 15
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Algorithm 1: Genetic Programming

begin
Randomly create an initial Population P of individual computer programs;
repeat

Execute each program of the current Population P to evaluate its fitness;
best-so-far individual← the best program in the population;
Create a new empty population P’;
repeat

Select one or two individual program(s) from Population P with respect to their fitness;
Create new individuals for the Population P’ by applying the genetic operators with

specified probabilities on the selected individuals;
until P’ is fully populated of individuals;
P← P’;

until an acceptable solution in terms of fitness or a stopping criteria is found;
return the best-so-far individual

end

3 Complexity of texture images

3.1 Subjective data

To investigate the complexity perception of texture images we have setup a psycho-physical exper-

iment, where texture images are individually shown on a web-interface. The images are shown in

a random order, different for each subject. The subjects report their complexity judgments (scores)

by dragging a slider onto a continuous scale in the range [0-100]. They can look at the stimuli for an

unlimited time. The position of the slider is automatically reset after each evaluation. A grayscale

chart is shown to calibrate the brightness and the contrast of the monitor. Ishihara color test have

been preliminarily presented to the observers for estimating color vision deficiency. Subjects that

did not pass this test were not further considered. A limited subset of images have been used to

make the subjects confident about the experimental procedure. The corresponding data collected

have been discarded. All the participants who took part in the experiments were recruited in the

Department of Informatics System and Communication of the University of Milano Bicocca. Even
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if some of them work in the field of image processing, no one is familiar with the research topic

of image complexity. Each observer was taught about the experiment through the web-interface,

where he/she also gave his/her informed consent.

With the described experimental setup, we have performed the following three experiments

which differ for the dataset of texture images used as stimuli.

• FOOD experiment. In this experiment we have used texture images belonging to the Raw

Food Texture dataset (RawFooT).16 This dataset includes images of 68 samples of food tex-

tures, acquired under 46 lighting conditions, varying in light direction and intensity, illumi-

nant color, or in a combination of these factors. The 68 classes of food depict various kind

of meat, fish, cereals, fruit etc. The whole dataset includes 68 (classes) x 46 (lighting con-

ditions) = 3128 images. In our work we have used as stimuli the subset of 68 food images

taken under the D65 illuminant (i.e. daylight) and frontal light direction. Ten images were

used in the preliminary phase of subject training, while the remaining 58 images were used

in the actual experiment. A group of 25 observers took part of this experiment, among them

3 were discarded because they did not pass the Ishihara test. Of the 23 remained after the

control test, 10 were women, mean age 28, range 19-68.

• VisCol experiment. In this experiment we have used texture images belonging to the VisTex

dataset.17 This dataset consists of 864 images representing 54 classes of natural objects or

scenes captured under non-controlled conditions with a variety of devices. In our experiment

we have used as stimuli 54 images, each one representative of the corresponding 54 classes,

9 further images were chosen for the training phase among the remaining ones. A group of

24 observers took part of this experiment, and only one of them was removed. Of the 23
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remained after the control test, 7 were women, mean age 35, range 20-68.

• VisGray experiment. In this experiment we have used as stimuli the grayscale versions of

the same texture images adopted in the VisCol experiment. All the 23 observers involved in

this experiment passed the Ishihara test and thus they were all considered as valid subjects,

5 were women, mean age 30, range 18-65.

For each experiment, before averaging raw data across subjects we have processed them ap-

plying Z-score normalization34 and outlier removal. This normalization permits to minimize the

variation between the individual scores. This variation is mainly due to the fact that not all subjects

use the full range of the numerical scale in evaluating images. The raw complexity score rij for

the i-th subject and j-th image was first converted into Z-score zij:

zij =
rij − r̄i
σi

(1)

where r̄i is the average of the complexity scores over all images evaluated by the subject, and σi

is the standard deviation. The Z-scores are then re-scaled in the range [0,100] and averaged across

subjects i = 1, ...S to obtain the average score yj:35

yj =
1

S

S∑
i=1

zij (2)

The images of the three datasets used as stimuli are shown in Figs. 2-4 respectively. The

images are reported in increasing order of complexity with respect to the average score. Images

evaluated as the less complex are reported in the top left, while images with the highest complexity

are reported in the bottom right.
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Fig 2 Thumbnails of the texture images chosen to sample 58 classes of the RawFooT dataset, row-wise ordered from
the less complex to the most complex, according to the Average Score.

3.2 Candidate complexity measures for texture images

We here considered several image features summarized in Table 1. Features from M1 to M5

were chosen among those frequently used in the literature to describe texture patterns.4 M6,M7,

and M8, also available in the literature, are related with image complexity perception as it was

demonstrated by several works.36–39 Since we are considering image complexity of both color and

grayscale images, we have also introducedM9 andM10, that are image features mainly devoted

to evaluate color image properties. All these candidate measures describe low level image features.

We also aim to take into account high level concepts like understandability or familiarity. These

two criteria were hinted from the analysis of the verbal descriptions adopted by the observers while

evaluating texture complexity in a previous work.26 This is in accordance with the experimental
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Fig 3 Thumbnails of the texture images chosen to sample each of the 54 classes in the VisTex dataset, row-wise
ordered from the less complex to the most complex), according to the Average Score.

results by Guo et al.25 and Heaps and Handel40 who considered complexity as the degree of

difficulty in providing a verbal description of an image. We include the memorability indexM11

proposed by Isola et al.41 as a possible image feature of these two high level criteria.

To find out how the objective measures described in Table 1 can predict subjective scores, we

have correlated each of them to the average score of the three experiments using a logistic re-

gression function. The correlation performance is expressed in terms of the Pearson Correlation

Coefficient (PCC) and reported in Table 2. For all the three datasets the best correlation perfor-

mance is obtained withM2 andM5, both evaluated on the grayscale image. A high performance

is also reached byM9 on the color datasets. With respect to all the remaining measures, onlyM8

shows correlation greater than 0.5 for all the three datasets considered.

11



Table 1 List of image features

Feature Brief description Reference
M1 Coarseness It relates to distances of notable spatial variations

of gray levels. Implementation by Bianconi et
al.42

Tamura et al.4

M2 Contrast Ratio of the standard deviation and the kurtosis
of the distribution of the gray levels. Implemen-
tation by Bianconi et al.42

Tamura et al.4

M3 Directionality Obtained from the gray levels histogram of local
edge probabilities against their directional angle.
Implementation by Bianconi et al.42

Tamura et al.4

M4 Linelikeness It is defined as an average coincidence of the
edge directions in the gray levels. Implementa-
tion by Bianconi et al.42

Tamura et al.4

M5 Roughness It is related to the standard deviation of the nor-
malized gray levels. Implementation by Bian-
coni et al.42

Tamura et al.4

M6 Edge density Calculated using the Canny edge detector ap-
plied to the grayscale image.

Mack et al.36

M7 Compression Ratio Ratio of the image JPEG compressed with Q fac-
tor = 100 and the full size uncompressed image.

Corchs et al.43

M8 Number of regions Calculated using the mean shift algorithm. It can
be applied either to color or gray scale images.

Comaniciu and Meer.44

M9 Chroma variance Harmonic mean of chroma values in the YCbCr
color space.

M10 Colorfullness Linear combination of the mean and standard de-
viation of the pixel cloud in the color plane.

Hasler and Susstrunk45

M11 Memorability Probability that a viewer will detect a repeat of
the image within a stream of pictures. It can be
applied either to color or gray scale images.

Isola et al.41

Table 2 PCC of the 11 objective measures of Table 1 for each of the three experiments.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

FOOD 0.410 0.854 0.415 0.427 0.862 0.187 0.596 0.617 0.828 0.047 0.426
VisCol 0.334 0.631 0.161 0.049 0.628 0.585 0.454 0.582 0.695 0.330 0.330

VisGray 0.185 0.655 0.190 0.127 0.646 0.391 0.525 0.587 0 0 0.322
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Fig 4 Thumbnails of the texture images chosen to sample each of the 54 classes in the VisTex dataset in their grayscale
version, row-wise ordered from the less complex to the most complex, according to the Average Score.

4 Genetic Programming-based measure for image complexity

In this paper we design a measure to predict complexity of texture images using a Genetic Pro-

gramming (GP) framework. GP is a domain-independent evolutionary method that genetically

breeds a population of programs to solve a problem without requiring the user to know or specify

the form or structure of the solution. In our context, GP permits to combine different measures in

a nonlinear way that can be more suitable to match subjective perception of image complexity.

4.1 GP framework

In our work we have used the GPLAB toolbox, developed by Silva and Almeida.46

We here selected M5, M8, M9, M11 among the 11 measures listed in Table 1 as variables

of the GP.M5 (Roughness),M8 (Number of regions), andM9 (Chroma variance) were chosen

as they are the measures with the highest performance across the three datasets. We observe that
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M2 (Contrast) is strictly correlated withM5 (see corresponding definitions in Table 1) and thus it

was not considered. Furthermore, we have also chosenM11 even if its correlation is not so high

to cope in some way with top-down effects that probably influence the complexity perception of

texture images. We have here chosen as combining functions five different arithmetic operators,

trying to describe the possible interactions of different visual properties: + and −, to express

the superposition principle, × and ÷ to describe mutual reinforcement or attenuation, and log to

describe eventual non linearity between objective evaluation and perception. Recalling that one of

the criteria widely used to evaluate the performance of a measure to fit subjective data is the linear

Pearson Correlation Coefficient (PCC), we have chosen it as part of the fitness function. Starting

with a set of training images j = 1, ..N , the candidate solution X={xj} is previously transformed

using a logistic function f ,47 to take into account the non linear mapping between objective and

subjective data. The PCC of the candidate solution X is thus evaluated as follows:

PCC(X) =

N∑
j=1

(
f(xj)− f(x)

)
(yj − ȳ)√

N∑
j=1

(
f(xj)− f(x)

)2√ N∑
j=1

(yj − ȳ)2
(3)

where f(xj) is the logistically transformed value of the candidate solution for the j-th image, yj

is the corresponding average score (see Eq. 2) and f(x) and ȳ are their averages over the selected

training set.

As we have chosen only four variables, to penalize the GP solutions with a high number of

nodes, we have introduced the following penalty term:

P (X) = w ∗ Number of terminal nodes(X)

2 ∗Number of V ariables(X)
(4)
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Table 3 Parameters used in the GP framework

Parameter Description Setting
Terminals Leaves of the tree: variable and constants M5,M8,M9,M11,

’rand(-1,1)’
Functions Internal nodes: arithmetic operations +, −, ×, ÷, log
Fitness Objective function to be optimized Eq. (5)
Max number of gen-
erations

A stopping condition 25

Population size Number of individuals (trees) 300
Max Tree depth Size of the tree Dynamic
Initialization algo-
rithm

Initial set of tree ramped half-and-half
method

Selection Algorithm Method for selecting individuals lexictour
Crossover A genetic operator that exchanges subtrees from two

parents to form two new children.
rate = 45%

Mutation A genetic operator that replaces a randomly picked
individual’s subtree, with a randomly generated one.

rate = 45%

Reproduction A genetic operator that selects individuals based on
fitness and copies them in the next generation.

rate = 10%

where w = 0.1. The rationale of the penalty term is that we prefer solution trees that are not

very deep and they have a balanced number of variable occurrences with respect to the number of

terminal nodes. The value of the weight w was chosen to tune the influence of the penalty term

with respect to the PCC term. After several experiments, we found that the value 0.1 was a good

tradeoff between solution sizes and results.

The fitness function to be maximized is given by:

f(X) = PCC(X)− P (X) (5)

In order to apply GP to solve a given problem, several other GP parameters need to be de-

fined. In Table 3 the parameters adopted within our framework are summarized, together with

their descriptions.
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5 Results and discussions

We have used the GP-framework above described to define our complexity measure. We have

adopted the FOOD dataset as training set. The choice of the individual with the best performance

might not correspond to the best solution of the problem, due to over-fitting. Over-fitting generally

occurs when a model fits overly well the training data, making the model itself not generalizable

to new sets of data. To avoid the effect of over-fitting, we have here considered a validation set

and we have chosen as best solution of a GP run the individual that presents the best average

performance in both training and validation datasets, as already done in the literature.30, 48 As

validation set we have chosen the VisCol dataset. Furthermore we have also tested the proposed

measure on the VisGray dataset. As the four measures here considered have significantly different

ranges, to have a better comprehension of their final combination we have performed a preliminary

normalization step. Following a procedure commonly used when applying other machine learning

techniques, such as Support Vector Machines (SVM),49 we have normalized these four measures

for the training set mapping the minimum and maximum values to 0 and 1 respectively. During

validation and testing, the corresponding measures were rescaled using the extrema of the training

set. We have performed 150 GP runs. Averaging over the 150 best solutions, the mean PCC for

the training set is PCC= 0.889 while for the validation set is PCC=0.732, with standard deviations

of 0.012 and 0.032 respectively.

Among the 150 possible solutions, we have chosen as our complexity measure MGP , the one

with the performance on the training set nearest to the obtained mean value. In Fig. 5 the tree

representation of this solution is shown. The proposed complexity measure reads as follows:
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Fig 5 GP tree representing the proposed complexity measure.

Table 4 Performance comparison of our MGP measure against the single measures used in deriving it, and the Visual
Clutter measure, on the three datasets.

MGP M5 M8 M9 M11 Visual Clutter
training: FOOD 0.890 0.862 0.617 0.828 0.426 0.710

validation: VisCol 0.728 0.628 0.582 0.695 0.330 0.623
test: VisGray 0.724 0.646 0.587 0 0.322 0.529

MGP =

(
2 +

1.39

6.65M5 +M8 − 2.1M5(M11 +M5) + 2

)−1

(6)

In Table 4 we report the performance in terms of PCC of our MGP measure on each of the

three datasets, compared with the performance of the single measuresM5, M8, M9, andM11.

We also consider the Visual Clutter measure,50 as a benchmark algorithm. This measure was not

specifically designed to predict image complexity but it has shown good correlation in case of

real world images38 and in computer graphic scenes.51 Our proposal MGP outperforms all the

considered single measures, in all cases of training, validation, and test sets.

Trying to better understand the role of the three measures inMGP we rewrite Eq. (6) as follows:
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MGP (t) =
(

2 +
1.39

t

)−1

=
t

2 t+ 1.39
(7)

where

t = 6.65M5 +M8 − 2.1M5(M11 +M5) + 2. (8)

However it is not straightforward to understand Eq. (7) as it is. Thus we propose to analyze its

Taylor series, centered at a point t0:

MGP (t) = MGP (t0) +
d

dt
MGP (t)

∣∣∣∣∣
t0

(t− t0) +
d2

dt2
MGP (t)

∣∣∣∣∣
t0

(t− t0)2 + o((t− t0)3) (9)

In Fig. 6 we observe that MGP (t) is well approximated by its Taylor series up to the second

order. This helps us in understanding the role of the three single measures starting from Eq. (9),

evaluated in t0 = 5:

MGP (t) ≈ 0.44 + 0.01 (t− 5)− 0.0047 (t− 5)2 (10)

Recalling that all the measures were previously normalized in the range [0 1], and given t by

Eq. (8), we observe that M5 (Roughness) and M8 (Number of regions), are the two dominant

measures, whose effects sum up through a linear combination. Within this linear combination,

their weighting coefficients demonstrate thatM5 gives the highest contribution. The third measure

M11 (Memorability) seems to interfere withM5 introducing a mutual attenuation.
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Fig 6 Taylor series up to the second order of MGP evaluated in t0 = 5.

In the proposed MGP ,M9, mainly devoted to evaluate color properties, has not been chosen.

However, bothM8 andM11 are evaluated on color images and thus color information is included as

well. To better understand the influence of each of the four measures considered, we have analyzed

all the 150 best solutions. In Table 5 we report the percentage of solutions where each measure

appears at least once (solution rate), and the overall frequency of each measure as terminal variable

node (variable frequency). From this table it emerges that M5 is the most frequent measure chosen

by the GP. This measure is evaluated on the intensity channel, and was specifically introduced

by Tamura to describe texture. Among the remaining three measures, M11 (Memorability) is the

most frequent one even if, when considered singularly, its performance is the lowest (see Table

4). This suggests that high level measures, that can describe top down mechanisms, have to be

also considered to measure complexity perception. The dominant role of a grayscale measure with

respect to color measures, agrees with the results obtained from the psycho-physical data. In fact,
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Table 5 Solution rates and variable frequencies of the measures derived from the best 150 GP solutions.

M5 M8 M9 M11

solution rate 96.00% 83.33% 52.00% 91.33%
variable frequency 40.17% 22.03% 13.63% 24.17%

Average Scores - VisTex color dataset
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Fig 7 Correlation between subjective score of the VisCol dataset and its grayscale version VisGray.

we found a high correlation (PCC = 0.825) between the subjective scores collected on the VisCol

dataset and those collected on the VisGray dataset, as shown in Fig. 7.

6 Conclusions

We have demonstrated that a GP framework is able to design a complexity measure as a nonlinear

combination of measures of single image features. This measure outperforms single ones confirm-

ing that complexity perception is affected by several visual aspects that mutually interact. We have

also found that low level features are suitable to describe complexity perception, but maybe what

still lacks to reach higher performance are ad-hoc measures able to better describe top-down as-
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pects, such as familiarity and understandability. The proposed GP framework is generic and allows

in the future the combination of other measures that could encode also these properties. To this

end, we plan to enlarge the set of image feature measures that can be used in the combination, as

well as use other image datasets on which evaluate the complexity. Moreover an extensive analysis

of the GP parameters and inclusions of new node functions could be considered to obtain better

solutions. One research direction that we plan to pursue is to investigate how image complexity

perception depends on the type of semantic content considered (for example texture images versus

images representing real world scenes). On this direction we plan to study if a general complex-

ity measure can be derived, in particular considering a dataset that contains images with several

different semantic content at the same time.
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1 GP tree representing the program: 5×X1 + sin(X2) +X3
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