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a b s t r a c t 

Saliency detection methods proposed in the literature exploit different rationales, visual clues, and assumptions, 

but there is no single best saliency detection algorithm that is able to achieve good results on all the different 

benchmark datasets. In this paper we show that fusing different saliency detection algorithms together by exploit- 

ing neural network architectures makes it possible to obtain better results. Designing the best architecture for a 

given task is still an open problem since the existing techniques have some limits with respect to the problem 

formulation, to the search space, and require very high computational resources. To overcome these problems, 

in this paper we propose a three-step fusion approach. In the first step, genetic programming techniques are 

exploited to combine the outputs of existing saliency algorithms using a set of provided operations. Having a 

discrete search space allows us a fast generation of the candidate solutions. In the second step, the obtained 

solutions are converted into backbone Convolutional Neural Networks (CNNs) where operations are all imple- 

mented with differentiable functions, allowing an efficient optimization of the corresponding parameters (in a 

continuous space) by backpropagation. In the last step, to enrich the expressiveness of the initial architectures, 

the networks are further extended with additional operations on intermediate levels of the processing that are 

once again efficiently optimized through backpropagation. 

Extensive experimental evaluations show that the proposed saliency fusion approach outperforms the state-of- 

the-art on the MSRAB dataset and it is able to generalize to unseen data of different benchmark datasets. 
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. Introduction 

According to [1] , “Visual salience (or visual saliency) is the distinct

ubjective perceptual quality which makes some items in the world stand out

rom their neighbors and immediately grab our attention ”. The human vision

ystem is able to efficiently detect salient areas in a scene and further

rocess them to extract high-level information [2,3] . Visual saliency has

een primarily studied by neuroscientists, cognitive scientists and re-

ently has received attention from other research communities working

n the fields of computer vision, computer graphics and multimedia e.g.

4] . In the area of multimedia and computer vision, visual saliency can

e used to emphasize object-level regions in the scene that can serve as

 pre-processing step for scene recognition [5,6] , object detection [7,8] ,

egmentation [9] , and tracking [10] . It can also be exploited for image

anipulation and visualization in applications such as image retargeting

11] , image collage [12] , and non-photorealistic rendering [13] . More-

ver, in multimedia application saliency can be exploited for image and

ideo summarization [14–16] , enhancement [17] , retrieval [18] , and

mage quality or aesthetic assessment [19,20] . 

Saliency detection methods can be divided into two categories:

ottom-up and top-down. Bottom-up methods are stimuli-driven [21] .
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he saliency is usually modeled by local or global contrast on hand-

rafted visual features and knowledge about human visual attention is

mbedded in the model exploiting some heuristic priors such as back-

round [22] , compactness [23] , or objectness [24] . With these methods

o explicit information about the semantics of the salient regions is pro-

ided but it is indirectly embedded via prior assumptions that are made

n the location, shape or visual properties of the salient regions to be

etected. Bottom-up methods can be considered general purpose. 

Top-down saliency methods are designed to find regions in the im-

ges that are relevant for a given task. They are often also referred to as

ask-driven approaches. These methods usually formulate the saliency

etection as a supervised learning problem [25] . The rationale of top-

own saliency methods is to identify image regions that belong to a

re-defined object category [26] . For this reason, these methods are the-

retically more robust for identifying salient regions in cluttered back-

rounds where bottom-up methods may fail. Top-down approaches rely

n the use of training data to build the detection model. They can be

ery robust for the specific task on which they are trained but may not

eneralize well to other tasks. 

In order to make the detection more robust and to improve the gener-

lization capabilities, saliency methods often integrate different features
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27] that can be both hand-crafted or learned by Convolutional Neural

etworks (CNNs) [28–30] , or fuse saliency maps generated from differ-

nt methods [31] . However, the feature definition and selection, and

he combination strategies are usually empirically designed. 

Since multiple observers may consider salient different regions in the

cene depending on the scene context and/or on the observer’s cultural

ackground, saliency detection is an ill-posed problem [22,32] . Saliency

etection methods proposed in the literature exploit different rationales,

isual clues, and assumptions but as demonstrated by the experiments

n [33] , there is no best overall saliency detection algorithm that is able

o achieve good results on all the different benchmark datasets. 

In our previous works [34,35] , we have exploited genetic program-

ing (GP) to build the rationale with which to combine the binary out-

uts of several change detection algorithms. By using a-priori defined

nary, binary and n-ary operators, the GP approach automatically com-

ined the inputs using the provided operators and built an optimal, task-

riven, solution (i.e. program) in the form of a hierarchical tree struc-

ure. 

In this work we want to further investigate and extend this approach

o combine graylevel saliency maps, a domain we first addressed in [36] .

e first create a candidate solution for combining the saliency maps us-

ng GP with a set of operations whose parameters are a-priori fixed.

o further improve this solution, we should also tune these parameters,

ut they cannot be easily (or efficiently) optimized within the GP frame-

ork. In order to optimize the parameters, we use the candidate solution

btained by the GP as a blueprint upon which to design the architecture

f a backbone Convolutional Neural Network. Within the CNN optimiza-

ion framework, it is now easier and much more efficient to search for

he optimal parameters of the operations of the GP solution. Another im-

ortant advantage of the implementation of the backbone CNN is that

he proposed solutions can be evaluated and then we can easily and

afely create deeper variants of the CNN by including other operations

e.g. post-processing) on intermediate results. These operations, initial-

zed as identities, are further optimized or can be completely ignored by

he CNN during training. 

The extensive experiments on benchmark datasets, both qualitative

nd quantitative, validate the effectiveness of the proposed fusion strat-

gy. 

Finally, beyond the focus on saliency estimation for the scope of this

aper, the proposed information fusion technique can be considered a

eneral purpose method, with possible applications to other fields such

s change detection [35] and semantic segmentation [37] . 

. State of the art 

.1. Saliency detection algorithms 

Borji et al. [33] benchmarked 41 different saliency detection algo-

ithm each based on different assumptions and heuristics. For example,

i et al. [38] compute saliency from the perspective of image reconstruc-

ion error of background images generated at different level of details. A

raph-based approach is used instead by Yang et al. [39] . Again, super-

ixels are the base for the saliency computation. Foreground and back-

round region queries are used to rank each image regions using a graph-

ased manifold ranking. Other graph-based approaches are the ones pre-

ented by Jiang et al. [40] and Aytekin et al. [41] . In [40] the salient

egions are detected as those regions that, in an absorbing Markov chain

n an image graph model, require the most time to be absorbed in the

ackground nodes. In [41] saliency is determined from a graph built on

uperpixels and by optimizing a criterion related to the image bound-

ry, local contrast and area information. Zhu et al. [42] subdivide the

mages into patches, and an image patch is considered not salient only

hen the region it belongs to is heavily connected to the image bound-

ry. Since computing superpixels is often time consuming, Zhang et al.

43] presented an alternative approach based on a fast Minimum Barrier

istance to measure a pixels connectivity to the image boundary that is
90 
ble to perform saliency detection at 80 fps. The previous approaches

xploit the boundary prior assumption for the saliency. The work by

heng et al. [44] , relies on the contrast assumption instead. The saliency

f each image region is carried out by simultaneously evaluating global

ontrast differences and spatial coherence with nearby regions. Color is

lso an important cue for locating salient regions. Kim et al. [45] rep-

esented the saliency as a linear combination of high-dimensional color

pace where salient regions and backgrounds can be distinctively sepa-

ated. 

Multiple cues can be also exploited in the definition of salient re-

ions. For example, Liu et al. [46] integrated global contrast, spatial

parsity, and object prior with regional similarities to generate initial

aliency measure for image regions. Another approach that uses multi-

le features for saliency detection is presented by Wang et al. [47] . This

pproach considers different regional features (contrast, appearance, ge-

metry) that are computed in a multi-level segmentation schema. 

Compared with traditional approaches CNN-based ones are able to

rocess images extracting information at different levels of details. They

an automatically learn what is the relevant information within an im-

ge given a specific task. This make them most suitable and effective

or designing top-down supervised saliency detection algorithms. Zhao

t al. [48] designed an end-to-end CNN framework composed of two-

ranches network where one branch analyzes the image at a local level

local context), while the other analyzes it at a global level (global con-

ext). Similarly, a three-branches fully convolutional neural network is

roposed by Li and Yu [49] where each branch processes an image seg-

ented at a different scale. 

One of the drawback of the previous methods is that they work on

 pre-segmented image (usually using super-pixel approaches), and the

esulting saliency maps are thus not pixel-precise. To mitigate this prob-

em, Li and Yu [28] devised an end-to-end deep contrast network con-

isting in two streams that produce two saliency maps, one at pixel-

evel and the other at superpixel-level that are fused together. Li et al.

50] incorporated the objectness cue into a deep learning-based saliency

odel by designing a multi-task learning scheme to explore the corre-

ations between saliency detection and semantic image segmentation.

iu and Han [51] propose to learn feature representations and various

lobal structured saliency cues by concatenating two different networks:

he first roughly localizes the relevant object in the image; the second

mplements a hierarchical recurrent convolutional neural network to

efine the previous saliency map by incorporating local contexts. Lee

t al. [52] propose to exploit both low level and high level features in a

nified deep learning approach. The rationale is that hand-crafted fea-

ures can provide complementary information to enhance performance

f saliency detection algorithms. 

Using features from different layers in the network architecture pro-

ides multi-scale feature maps that can be exploited for an efficient

alient object detection. Example of algorithms using this approach are

hose proposed by Hou et al. [29] , which uses a combination of side-

utputs and short connections, and Bianco et al. [30] which uses a Fully

onvolutional Network that builds a semantically aware internal repre-

entation of what is a salient object. 

Recurrent network architectures can help reducing prediction er-

ors by iteratively integrating contextual information which is im-

ortant for saliency detection. For example Wang et al. [53] pre-

ented a recurrent fully convolutional network that is used to auto-

atically learn to refine the saliency map by correcting its previous

rrors. Liu and Han [54] fine tuned a pre-trained CNN, on the Ima-

eNet large scale dataset, on saliency data and long short-term-memory

LSTM) is applied to model the global context. A Recurrent Localiza-

ion Network (RLN) is proposed by Wang et al. [55] where salient

bjects are localized exploiting contextual information in a weighted

esponse map. Wang et al. [56] also propose a hierarchy of convolu-

ional LSTMs to generate saliency maps using an Attentive Saliency Net-

ork that has learned to locate salient objects from detected fixation

aps. 
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Recent works tackle the problem of saliency detection from a differ-

nt perspective with respect to previous works. For example [57] in-

roduces a game-theoretic approach by formulating the saliency de-

ection problem as a non-cooperative game. Zeng et al. [58] trained

 DNN as an embedding function to map pixels and the attributes

f the salient/background regions of an image into the same metric

pace that are used in an iterative process to classify the pixels as

alient/background. Finally, Azaza et al. [59] incorporated into an ob-

ect proposal method the importance of the object’s immediate context

sing a context proposal algorithm in order to improve saliency detec-

ion. 

.2. Saliency information fusion 

In the literature some works specifically tackle the problem of infor-

ation fusion in the context of saliency detection. Combining different

nformation is a possible way to improve saliency detection. 

Some works use different cues in order to capture the many aspects

f a salient region. This can be considered as an early fusion infor-

ation approach since it combines features for generating the saliency

ap. For example Xu et al. [60] proposed to generate a saliency map

or video frames by a combination of three different maps together: a

tatic saliency map, a motion saliency map and a top-down saliency

ap. A linear method with adaptive coefficients is used to fit different

ypes of videos. In the context of high dynamic range videos, Banitalebi-

ehkordi et al. [61] exploited several hand-crafted saliency features

uch as motion, color, brightness intensity, and texture orientations to

enerate conspicuous maps that are then fused in a single saliency map

ith a Random Forest learning algorithm. 

Also late fusion information, i.e. directly combining saliency maps

enerated by existing algorithms, could be exploited for improving the

verall performance of the saliency detection algorithm. The idea is that

he saliency detection algorithms often complement each other, and thus

y combining their results we can leverage the different rationales be-

ind these approaches. An example of this is the work by Mai et al.

31] . They propose a data-driven saliency aggregation approach that

ust be method-aware and individual image-aware in order to adapt it

o the specificity of the available data. This is achieved by considering

mage similarity (similar images should have similar saliency maps) and

raining the model using a Conditional Random Field algorithm. A sim-

lar approach is also described in [62] where deep features are used for

omparing images instead of hand-crafted ones. Given the set of similar

mages and their saliency maps, the final output is a weighted combina-

ion of these maps where the weights are set according to the accuracy

f each saliency detection algorithm. Another way to evaluate the con-

ribution of the different outputs of saliency detection algorithms is pro-

osed by Jiang et al. [63] . A no-reference saliency map quality metric

s first defined, and then used to assess the saliency maps to be com-

ined. The final saliency map is constructed by weighted-averaging the

est saliency maps according to the metric. Wei et al. [64] consider the

aliency fusion problem as a statistics inference process and propose an

nsupervised saliency detection algorithm. They combine saliency maps

enerated by state-of-the-art algorithms and structural information ob-

ained by superpixels with a Dempster–Shafer theory based saliency fu-

ion framework. 

.3. Optimizing the network architecture design 

In recent years, with the increasing complexity of neural network

rchitectures, many automatic approaches to design or optimize neural

etworks have been proposed, either in terms of internal architecture or

ith respect to the network hyper-parameters. Most of these approaches

re based on evolutionary algorithms such as genetic algorithms. Benar-

os et al. [80] determined the best neural network architecture, for a

iven task, using genetic algorithms optimizing the performance and the
91 
omplexity of the network. The complexity is expressed in terms of num-

er of layers, the number of neurons in each layer, the activation func-

ion in each layer, and the optimization function. Stanley and Miikku-

ainen [65] designed the NEAT algorithm aimed at optimizing small re-

urrent networks by evolving their topology and weights. An improved

ersion of the NEAT algorithm, named CoDeepNEAT, has been recently

resented [66] . It is aimed at optimizing deep learning architectures by

xtending existing neuro-evolution methods to topology, components

nd hyper-parameters. Sugurama et al. [67] introduced CGP-CNN which

xploits Cartesian Genetic Programming to encode and evolve the net-

ork architecture. 

Another approach for the design of network architecture is Rein-

orcement Learning. Baker et al. [68] use Q-learning by training an

gent whose goal is to discover CNN architectures that performs well

n a given machine learning task. The learning agent sequentially picks

ayers of a CNN model to build the final model. Zoph and Le [69,70] de-

ned a Neural Architecture Search algorithm based on reinforcement

earning. The authors defined a search space of different types of convo-

utional and pooling layers with different possible settings for each and

ays to combine them. They train a recurrent neural network (NASNet)

o generate the model descriptions of neural networks maximizing the

xpected accuracy of the generated architectures for a given task. 

Genetic and evolutionary algorithms are able to find network archi-

ectures by selecting the best solution among a finite set of possibilities.

hey can combine predefined blocks and parameters by optimizing an

bjective function. The discrete search space allows these algorithms to

fficiently perform the search for the best solution. Algorithms based

n reinforcement learning, also explore a discrete space when search-

ng for the network topology, but are more powerful for parameters

i.e. weights) optimization of the network thanks to backpropagation.

owever, they suffer from very high requirements with respect to the

omputational resources. As an example, for the CIFAR-10 classification

roblem, the NASNet approach was trained across 500 P100 GPUs over

 days resulting in 2000 GPU-hours and 20,000 networks evaluated.

imilarly, a recent approach proposed by Real et al. [71] , and based on

he same search space but using genetic algorithm, required the power

f 450 K40 GPUs working for 7 days to generate the final network ar-

hitecture (AmoebaNet-A). These drawbacks prompted researchers to

nvestigate more efficient approaches to accelerate the search for good

NN structures within the search space [72,73] . 

. Proposed method 

Our proposed saliency estimation approach aims at combining the

dvantages of Genetic Programming with those of Convolutional Neu-

al Networks. With our approach, we design and optimize GP-generated

olutions for saliency estimation in three steps. In the first step, Genetic

rogramming techniques are exploited to combine existing saliency

aps using a set of provided operations. The output of this step is a fu-

ion tree that encodes the optimal fusion strategy with respect to the de-

ned objective function and operations. In the second step, the obtained

usion tree is converted into a backbone CNN where operations are all

mplemented with differentiable functions. The network’s parameters

defined in a continuous space) are efficiently optimized using back-

ropagation. Finally, in the third step, the backbone CNN is extended

ith additional operations on intermediate layers. These additional op-

rations, once again optimized through backpropagation, are introduced

o enrich the expressiveness of the initial architecture. 

.1. Creation of the fusion tree 

The first step of our method consists in finding the operations that

roduce the best fusion of the input saliency estimation algorithms con-

idered exploiting GP [74] . The candidate solutions found by GP, are

ncoded as trees of operations built using a set of terminal symbols T
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Table 1 

The set of functional symbols used in GP with their name, their n -arity, the domain on which they operate, 

and their corresponding operators. 

Name Operation Inputs Domain Effect 

ERO Erosion 1 Spatial Morphological erosion with 5 × 5 square structuring element 

DIL Dilation 1 Spatial Morphological dilation with 5 × 5 square structuring element 

MF Median 1 Spatial 2D median filter with 5 × 5 kernel 

MIN MinStack ≥ 2 Stack 1D minimum filter 

MAX MaxStack ≥ 2 Stack 1D maximum filter 

MED MedianStack ≥ 2 Stack 1D median filter 

AVG AverageStack ≥ 2 Stack 1D average filter 

LOG Quantization 1 Pixel Generalized logistic non-linearity 
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nd a set of non-terminal or functional symbols F . The solution space of

ll the possible fusion trees is explored by GP as follows: 

1. Randomly create the initial population 

2. Repeat until the maximum number of iterations is reached: 

(a) Calculate the fitness value of the individuals 

(b) Select individuals based on fitness value 

(c) Apply genetic operators to obtain new individuals 

(d) Replace the old population with the new one, eventually

copying the fittest individual(s) 

3. Return the best individual 

ore in detail, given a set of n input saliency estimation algorithms

 = { 𝑆 𝑘 } 𝑛 𝑘 =1 , the candidate solutions evolved by GP are built using the

et of functional (or non-terminal) symbols F and the set of terminal

ymbols 𝑇 = 𝑆. The functional symbols correspond to operations per-

ormed on the inputs. We incorporate into the GP framework the list of

perators given in Table 1 along with their functional symbols. They can

e grouped on the basis of the support on which they operate: the first

roup operates in the 2D spatial neighborhood of the pixels belonging

o the same saliency map; the second group operates on stacks of pix-

ls across different saliency maps; the third one operates on individual

ixels without considering any neighborhood. 

Following the procedure defined in [29] , we define the fitness func-

ion as a weighted average of two different measures, based on Mean

bsolute Error (MAE) and F -measure ( F 𝛽): 

 𝐴𝐸 = 

1 
|𝐼 |

∑
𝑖 ∈𝐼 

1 
|𝐶|

∑
𝑐∈𝐶 

||𝑃 𝑅 𝑖,𝑐 − 𝐺𝑇 𝑖,𝑐 
|| (1)

 𝛽 = max 
𝑡 ∈𝑇 

(
1 + 𝛽2 

) 1 
|𝐼|

∑
𝑖 ∈𝐼 𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 𝑖 ( 𝑡 ) ⋅

1 
|𝐼|

∑
𝑖 ∈𝐼 𝑅𝑒𝑐 𝑎𝑙𝑙 𝑖 ( 𝑡 ) 

𝛽2 ⋅ 1 
|𝐼|

∑
𝑖 ∈𝐼 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑖 ( 𝑡 ) + 

1 
|𝐼|

∑
𝑖 ∈𝐼 𝑅𝑒𝑐𝑎𝑙𝑙 𝑖 ( 𝑡 ) 

(2)

Where I is the set of images, C the set of coordinates for every given

mage, and T the set of possible thresholds. PR and GT are, respectively,

he saliency prediction and ground truth. Expansion of Precision and

ecall is here omitted for brevity reasons. 𝛽 is set to 
√
0 . 3 as suggested in

29] . While MAE is computed as an average over all individual images,

 𝛽 is selected according to the best binarization threshold on precision

nd recall values that are in turn averaged across all images. 

Mathematically the fitness function is defined as 

 = 𝑤 1 ⋅
√ 

𝐹 𝛽 + 𝑤 2 ⋅MAE , (3)

ith 𝑤 1 = 1 , and 𝑤 2 = −0 . 01 . The weights are chosen with opposite signs

ince F 𝛽 should be maximized while MAE minimized: in this way fittest

ndividuals have larger f values. The magnitudes of the weights have

een empirically chosen on the basis of the difficulty to optimize the

orresponding measures, and specifically with F 𝛽 driving the optimiza-

ion process. 

.2. Creation of the backbone and extended CNN 

The fusion tree generated from the genetic programming step in-

olves different types of operations ( Table 1 ). The intention is to
92 
urther refine some of these operations by exploiting backpropagation

ptimization. In order to do so, it is necessary to build the corresponding

ackbone CNN architecture, by representing all tree nodes with differ-

ntiable functions, for the gradients to correctly flow to the input nodes.

he resulting neural network can also be augmented with further oper-

tions, defining an extended CNN. Both backbone CNN and extended

NN are designed as a generalization of the behavior defined by GP,

.e. in their initialization state they produce the same output. Via back-

ropagation, then the CNNs can be optimized to generate more accurate

olutions. 

.2.1. Conversion from fusion tree into CNN 

Details of the mapping between operations in the fusion tree and the

orresponding CNN are presented in the following. 

• MaxStack and MinStack : 

MaxStack is implemented as 3-dimensional max-pooling with kernel

of spatial size 1 × 1, and depth D equals to the number of input

channels. 

MinStack is implemented through 3D min-pooling, i.e. by changing

the sign to the input and output of MaxStack as just defined. 
• Dilation and rosion : 

Greyscale dilation with a squared structural element corresponds to

2-dimensional max-pooling. The kernel has spatial size 5 × 5 as in

the genetic programming setup. 

Erosion is obtained through 2D min-pooling, i.e. by changing the

sign to the input and output of dilation. 
• AverageStack : 

Stacked-channel average is implemented as a convolutional layer

with one kernel of size 1 × 1, depth D equal to the number of in-

put channels determined by GP, and bias initialized at 0. For the

extended CNN, two different behaviors are imposed, depending on

the location of the node: 
• Input node: 

Convolutional layer with a bank of M filters with size N × N , and

depth S equal to the number of all input saliency algorithms. The

filters are initialized to all zeros, except the middle value of the D

kernel channels selected by GP. The layer is followed by a ReLU

non-linearity, and by a compacter module that maps M channels

to 1, which is the expected size for the subsequent operation.

The compacter is based on a channel-wise average, minimum, or

maximum operation. The actual final operation is experimentally

determined. 
• Intermediate node: 

Convolutional layer with one kernel of spatial size N ′ × N ′ , and

depth D . The best value for N is defined experimentally. 

The hyperparameters of the input and internal nodes have been

determined through a greedy search algorithm, as reported in

Section 4.2 . 

All the weights are optimized via backpropagation. 
• Quantization : 
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Fig. 1. Two specialization of the 7-parameter logistic function described in 

Eq. (4) (soft quantization and pseudo-identity) compared to a hard quantiza- 

tion function. 
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Table 2 

Comparison of traditional statistics computation (True Positives 

TP , False Positives FP , False Negatives FN , True Negatives TN ) 

with threshold set to 0.5, and continuous statistics computation. 

Highlighted in boldface the different behavior between the two 

approaches. 

PR GT TP FP FN TN TP ′ FP ′ FN ′ TN ′ 

0.0 0 0 0 0 1 0.0 0.0 0.0 1.0 

0.4 0 0 0 0 1 0.0 0.4 0.0 0.6 

0.6 0 0 1 0 0 0.0 0.6 0.0 0.4 

1.0 0 0 1 0 0 0.0 1.0 0.0 0.0 

0.0 1 0 0 1 0 0.0 0.0 1.0 0.0 

0.4 1 0 0 1 0 0.4 0.0 0.6 0.0 

0.6 1 1 0 0 0 0.6 0.0 0.4 0.0 

1.0 1 1 0 0 0 1.0 0.0 0.0 0.0 
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Quantization is approximated and generalized with a logistic func-

tion in its 7-parameter formulation: 

𝑦 = ( 𝐾 − 𝐴 ) ⋅ ( 𝑄 ⋅ exp − 𝐵⋅( 𝑥 − 𝐺) + 𝐶) (−1∕ 𝑉 ) + 𝐴 (4)

Hard quantization would impair the gradient flow during backprop-

agation, as its derivative is always null where defined. It is therefore

replaced with a soft quantization implemented as a sigmoid centered

in 0.5, defined to cover the same co-domain of hard quantization,

without ever reaching completely horizontal or vertical slope: 

𝐴 = 0 . 0 𝐵 = 14 . 0 𝑉 = 1 . 0 𝐶 = 1 . 0 
𝐾 = 1 . 0 𝑄 = 1 . 0 𝐺 = 0 . 5 

The effect of this approximation is shown in Fig. 1 , and the whole

set of parameters is then optimized through backpropagation. 
• MedianStack : 

Directly implemented as the median operation applied across the

depth dimension: the value at each image coordinate is determined

as the median at the corresponding coordinates from input channels.
• Median : 

The median filter is implemented in a two-step processing. First, the

input is unfolded once per each spatial dimension, i.e. sliding win-

dows are explicitly replicated using unitary stride and kernel size

5 × 5. Then, the copies are unrolled along an extra dimension, where

the median operation is applied, effectively producing one value per

sliding window location. 

At the end of the tree, a final non-linearity is introduced using a

ogistic function in the form of Eq. (4) , followed by a clamping of the

alues between 0 and 1. In this case, the logistic is initialized as an

pproximation of the identity function: 

𝐴 = − 1 . 557 𝐵 = 0 . 666 𝑉 = 0 . 354 𝐶 = 0 . 817 
𝐾 = 1 . 165 𝑄 = 19.747 𝐺 = − 5 . 856 

The goal of this configuration, shown in Fig. 1 , is to provide a neutral

dditional operation, which if needed can be exploited and adapted to

 non-linearity by the CNN optimization. Clamping replicates the even-

ual cut-off given by saving the image to file before final application

r evaluation. It also allows the logistic curve to create strong distor-

ions inside the [0,1] range, preventing instead the loss function from

enalizing values outside of it. 

In the extended CNN, the same “logistic+clamping ” block is intro-

uced at each node of the computation (i.e. after each operation). 

An example application of the mapping from fusion tree to backbone

nd extended CNNs is provided in Fig. 5 . 
93 
.2.2. Loss function 

The final objective is to optimize both Mean Absolute Error (MAE)

nd F -measure ( F 𝛽). F 𝛽 is the weighted harmonic mean between preci-

ion and recall, therefore relying on a hard thresholding step for compu-

ation. MAE is instead evaluated directly on the raw prediction, without

equiring any binarization. While MAE can be employed in its original

orm as a loss function, F 𝛽 is not suitable for backpropagation: according

o the procedure defined in [29] , in fact, the specific value for threshold

s chosen by performing binarization at different levels, and selecting

he one that eventually produces the best performance. We, therefore,

ropose learning through a continuous version of True Positives ( TP ),

alse Positives ( FP ), and False Negatives ( FN ), in order to avoid both the

eed for a hard threshold, as well as the process of its selection. F 𝛽 can

e adapted as a loss function, here called 𝐹 𝐶𝐶 
𝛽

, as follows: 

1. We consider the continuous variants of TP, FP and FN : 

𝑇 𝑃 ′
𝑖,𝑐 

= 𝑃 𝑅 𝑖,𝑐 ⋅ 𝐺𝑇 𝑖,𝑐 (5)

𝐹 𝑃 ′
𝑖,𝑐 

= 𝑃 𝑅 𝑖,𝑐 ⋅ (1 − 𝐺𝑇 𝑖,𝑐 ) (6)

𝐹 𝑁 

′
𝑖,𝑐 

= (1 − 𝑃 𝑅 𝑖,𝑐 ) ⋅ 𝐺𝑇 𝑖,𝑐 (7)

Where PR is the saliency prediction on each pixel, and GT the

corresponding ground truth. The effect of this formulation can

be observed in Table 2 . 

2. We sum the above measures over all coordinates c in each image

i , and compute the continuous variants of precision and recall as:

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ′
𝑖 
= 

∑
𝑐∈𝐶 𝑇 𝑃 

′
𝑖,𝑐 ∑

𝑐∈𝐶 𝑇 𝑃 
′
𝑖,𝑐 

+ 

∑
𝑐∈𝐶 𝐹 𝑃 

′
𝑖,𝑐 

= 

∑
𝑐∈𝐶 𝑃 𝑅 𝑖,𝑐 ⋅ 𝐺𝑇 𝑖,𝑐 ∑

𝑐∈𝐶 𝑃 𝑅 𝑖,𝑐 

(8)

𝑅𝑒𝑐𝑎𝑙 𝑙 ′
𝑖 
= 

∑
𝑐∈𝐶 𝑇 𝑃 

′
𝑖,𝑐 ∑

𝑐∈𝐶 𝑇 𝑃 
′
𝑖,𝑐 

+ 

∑
𝑐∈𝐶 𝐹 𝑁 

′
𝑖,𝑐 

= 

∑
𝑐∈𝐶 𝑃 𝑅 𝑖,𝑐 ⋅ 𝐺 𝑇 𝑖,𝑐 ∑

𝑐∈𝐶 𝐺 𝑇 𝑖,𝑐 
(9)

3. We compute a continuous variant of F 𝛽 from these values using

fixed 𝛽 = 

√
0 . 3 as suggested in [29] , and we complement it in

order to effectively obtain a measure related to error: 

𝐹 𝐶𝐶 
𝛽

= 1 − 

(
1 + 𝛽2 

) 1 
|𝐼|

∑
𝑖 ∈𝐼 𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 

′
𝑖 
⋅ 1 
|𝐼|

∑
𝑖 ∈𝐼 𝑅𝑒𝑐 𝑎𝑙 𝑙 

′
𝑖 

𝛽2 1 |𝐼|
∑

𝑖 ∈𝐼 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
′
𝑖 
+ 

1 
|𝐼|

∑
𝑖 ∈𝐼 𝑅𝑒𝑐𝑎𝑙 𝑙 

′
𝑖 

(10)

MAE and 𝐹 𝐶𝐶 
𝛽

(complemented continuous F 𝛽) are then combined

nto a unique loss by means of a weighted average. Since we don’t want,

n principle, to have one measure overweighting the other, the weight

s determined by bringing the two losses to the same value at the begin-

ing of the backpropagation optimization process, i.e. in the sub-optimal

onfiguration proposed by the Genetic Programming step. 
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Fig. 2. Partitions and cardinalities of the MSRAB dataset, and intersection 

with the MSRAB10K. The Validation Subset has been used to train our fu- 

sion optimization, which has been then tested on the Test Subset. 
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C  
. Experiments 

In this section, we first describe the experimental setup, by intro-

ucing the input saliency estimation algorithms, the datasets that have

een adopted at different phases of the optimization, and the evaluation

etrics. We then present the following experiments: we select different

usion trees from the Genetic Programming phase, generate the corre-

ponding CNNs, and evaluate them on various datasets for a comparison

ith the input algorithms. 

.1. Setup 

The proposed method is a general purpose algorithm that can operate

ith an arbitrary set of input data, in this case focused on optimizing a

usion tree for saliency estimation. As the final quality of saliency fusion

s highly dependent on the quality of the chosen input saliency estima-

ion methods, particular care has been given to conduct an appropriate

election of such methods. We wanted to investigate if it is possible to

urther improve the results of saliency estimation algorithms through

heir fusion. We focused our attention on two families of algorithms as

escribed in Section 2 : those based on hand-crafted features, and those

ased on deep learning techniques. Specifically, for the hand-crafted

amily we selected the ten best performing methods from the bench-

ark conducted by Borji et al. [33] . For deep learning we adopted all

he methods described in the state of the art comparison from Hou et al.

29] , with the addition of more recent architectures (DRCN [54] and

FCN [30] ). 

Most of the data-driven methods behind the exploited input saliency

aps were originally trained on the training set of the MSRAB dataset

27] or its variants, as reported in [29] . The process of optimizing the

est fusion trees, instead, has been here performed on a subset of the

alidation set of MSRAB. The prediction quality of the input methods,

n fact, is expected to be slightly lower on “new ” images, so we want to

mulate, during the optimization process, the actual input distribution

hat will be obtained at inference time. Precomputed saliency maps for

he input algorithms are available, in some cases, only on the MSRA10K

ataset [44] , which shares 3756 input images with MSRAB. We there-

ore defined the MSRAB Validation Subset (366 images) and MSRAB

est Subset (1516 images), based on the intersection between the origi-

al splits of MSRAB and the entire MSRA10K dataset, in order to define

 common dataset among all input algorithms. Fig. 2 shows the defi-

ition of the MSRAB Subsets. The Validation Subset has been used for

ptimization, and the Test Subset for performance comparison against

he input algorithms. 

Table 3 reports the availability of already computed saliency maps

or different algorithms on different datasets. Special attention has been
94 
iven to deep learning methods, which are further tested on datasets

ifferent than the MSRAB, namely: DUTOMRON [39] (5166 images),

CSSD [75] (1000 images), HKU-IS [49] (1447 images), PASCALS

24] (850 images) and SOD [76] (300 images). Whenever precomputed

aliency maps for a given deep learning method are not available for

ny one of the involved datasets, we resort to computing them all with

fficial code implementations. We do not want, in fact, to risk exposing

he model to different behaviors across experiments. 

All solutions have been evaluated according to MAE and F 𝛽 as de-

ned in Section 3 , using the evaluation code provided with [29] . 

.2. Hyperparameters search 

We have conducted a greedy search to determine, in order, the op-

imal values for the hyperparameters that define the backbone and ex-

ended CNNs introduced in Section 3.2.1 : 

• Input kernel size ( N ) 
• Input channel size ( M ) 
• Compacter module 
• Internal kernel size ( N ′ ) 

For an input node, the best values for M and N are found to be, re-

pectively, 3 and 1, suggesting that keeping a pixel-precise processing

s preferable at such an early stage. The best compacter is experimen-

ally determined to be a channel-wise average, in a comparison against

he minimum and maximum operations. For an internal node, the best

alue for N ′ is experimentally found to be 5. The entire set of values was

etermined through experiments conducted on the hand-crafted fusion

ree HC-f on the MSRAB Validation Subset. 

.3. Optimization 

We run two different experiments: in the first one we consider as in-

ut for Genetic Programming only saliency estimation algorithms based

n hand-crafted features; in the second one we consider input maps com-

ng from algorithms based on deep learning. The aim of the first exper-

ment is to assess how much our proposal can improve over individual

ethods, and how it compares with deep learning solutions. The second

xperiment aims to assess if the proposed method is able to improve also

he results of state of the art algorithms. 

For the first experiment, we analyze the fittest individual at the end

f the GP optimization. The fusion tree found, named HC-f, is reported

n Fig. 3 . An analysis of the tree shows that the optimization process

elected only five out of the ten input algorithms available. The results

btained by the HC-f fusion tree, HC-f backbone CNN and HC-f extended

NN on the MSRAB Validation Subset are reported in Table 4 . From



S. Bianco, M. Buzzelli and G. Ciocca et al. Information Fusion 57 (2020) 89–101 

Table 3 

Input saliency algorithms on the various datasets that have been used at different phases of optimization and evaluation. The symbols denote, respectively, ○: 

unavailability of official saliency maps, f : only partial availability (as prediction was performed on the MSRA10K dataset), ●: full availability. The last column 

indicates whether saliency maps have been recomputed (on all datasets) on grounds of the observed availability. 

Datasets M [27] Computed Datasets M [27] D E H P S Computed 

Methods (HC) Val Test Locally ∗ Methods (DL) Val Test [39] [75] [49] [24] [76] locally ∗ 

DRFI [47] f f DCL [28] ○ ● ● ● ● ○ ○ ✓
DSR [38] f f DHS [51] ○ ○ ○ ● ○ ● ○ ✓
EQC [41] ○ ○ ✓ DS [50] ○ ● ● ● ○ ● ● ✓
GMR [39] f f DRCN [54] ○ ○ ○ ○ ○ ○ ○ ✓
HDCT [45] ○ ○ ✓ DSS [29] ○ ● ● ● ● ● ● ✓
MB + [43] ○ ○ ✓ ELD [52] ○ ○ ● ● ○ ● ○ ✓
MC [40] f f MDF [49] ○ ● ● ● ● ● ○ ✓
RBD [42] ○ ○ ✓ MFCN [30] ● ● ● ● ● ● ●
RC [44] f f RFCN [53] ○ ○ ○ ○ ○ ○ ○ ✓
ST [46] ○ ○ ✓ SC [48] ○ ○ ○ ○ ○ ○ ○ ✓

∗ Recomputed locally using official code implementations 

Table 4 

Results for fusion trees of hand-crafted saliency 

algorithms at different levels of optimization on 

the MSRAB Validation Subset. Lower MAE is bet- 

ter, higher F 𝛽 is better. 

Optimization MAE F 𝛽

HC-f Fusion tree 0.1143 0.9040 

Backbone CNN 0.0494 0.9039 

Extended CNN 0.0471 0.9074 

Fig. 3. Fusion tree based on hand-crafted input saliency algorithms and gener- 

ated through Genetic Programming. 
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Table 5 

Comparison of the optimized fusion trees with 

input hand-crafted saliency algorithms on the 

MSRAB Test Subset. Lower MAE is better, higher 

F 𝛽 is better. Column-specific ranking is indicated 

as a pedix. Best results (ranking 1) are highlighted 

in boldface. 

MAE F 𝛽

DRFI [47] 0.1201 5 0.8655 2 
DSR [38] 0.1227 6 0.8237 11 

EQC [41] 0.1150 4 0.8612 3 
GMR [39] 0.1251 8 0.8375 7 
HDCT [45] 0.1477 11 0.8340 10 

MB + [43] 0.1095 2 0.8390 6 
MC [40] 0.1435 10 0.8404 5 
RBD [42] 0.1120 3 0.8367 8 
RC [44] 0.1378 9 0.8354 9 
ST [46] 0.1251 7 0.8583 4 
HC-f (Extended CNN) 0.0544 1 0.8971 1 
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hese results it is possible to see how the backbone CNN version of HC-f

s able to reduce the MAE by almost 57% with a negligible reduction of

 𝛽 . The extended CNN further reduces the MAE of the backbone CNN

y almost 5% at the same time increasing the F 𝛽 . 

Table 5 reports the results of the extended CNN on the MSRAB Test

ubset, in a comparison with the input saliency estimation algorithms.

C-f outperforms all other hand-crafted methods, reducing MAE on the

econd best (MB+) by 50% and improving F 𝛽 of DRFI by 4%. 

For the second experiment, we analyze three individuals within the

opulation at the last iteration of the GP optimization: the fittest individ-

al, named DL-f; the individual with the lowest MAE, named DL-MAE;

he individual with the maximum F 𝛽 , named DL- F 𝛽 . The correspond-

ng fusion trees are depicted in Fig. 4 . The analysis of the corresponding
95 
rees reveals that all three solutions selected only six out of the ten input

lgorithms available. 

Focusing on DL-MAE, which has the largest variety of operators used,

e report in Fig. 5 the initial fusion tree, its conversion into backbone

NN, and extended CNN. It is possible to observe how the genetic pro-

ramming phase autonomously created a pseudo-morphological open-

ng, by selecting erosion and dilation in this specific order, although

eparated by further processing. This allows the tree to exclude spuri-

us elements coming from any of the input saliency maps, at the expense

f a slightly less precise final estimation. Fig. 6 shows the step-by-step

isualization of the three versions of DL-MAE on one example input.

he backpropagation-based optimization exploits the minimum oper-

tion to severe the right-most branch of the tree. This is obtained by

roducing maps with overall high values (it can be easily seen in the ex-

ended CNN, and less obviously in the backbone CNN), which are then

ompletely ignored by the minimum operation itself. 

The results obtained by the fusion tree, backbone CNN and extended

NN of the DL-f, DL-MAE and DL- F 𝛽 on the MSRAB Validation Subset are

eported in Table 6 . From these results it can be noticed that the back-

one CNNs produce further improvements of MAE with respect to the

orresponding fusion trees, the most relevant being DL- F 𝛽 , which sees a

rop in error by almost 72%. F 𝛽 presents a small average improvement

cross all backbone CNNs. On the contrary, the extended CNNs tend to

roduce overall slightly lower values for F 𝛽 . We, however, consider this

n acceptable compromise to reach a further level of reduction for MAE.

In a comparison with the input saliency estimation algorithms on

he MSRAB Test Subset ( Table 7 ), the three deep learning fusion trees

nce again present similar performance with respect to each other,
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Fig. 4. Fusion trees based on deep learn- 

ing saliency algorithms and generated 

through Genetic programming. 

Fig. 5. Different implementation stages of the automatically designed DL-MAE: (a) fusion tree, (b) backbone CNN, and (c) extended CNN. Convolutional layers are 

described with D × N × N × M, where D is the filter depth (number of input channels), N denotes the filter spatial size, and M is the cardinality of filter bank (number 

of output channels). 
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nd produce the overall best results in a comparison with the input

lgorithms. DL-MAE in particular outperforms the second best deep

earning method (DHS) in reducing MAE by 23%, and improving F 𝛽
y less than 1%. This is a further manifestation of the difficulties

ncountered in significantly improving the F 𝛽 measure. 

In a cross-domain evaluation, the extended CNN based on HC-f re-

ults in better performance than 7 out of 10 deep learning methods,

ccording to MAE, and better than three of them according to F 𝛽 . This

uggests to what extent it is possible to reach deep-learning-level per-

ormance by proper fusion of hand-crafted solutions. 

Fig. 7 shows the precision and recall curves for input deep learning

aliency algorithms, compared with different fusions produced by our
 t  

96 
ptimization. Due to the close-to-binary nature of our predictions, the

oints forming our precision–recall curves are concentrated in a small

rea near the optimal 1.0–1.0 corner of the plot. 

.4. Comparison with other information fusion techniques 

As a further experiment, we compare our proposed approach against

wo reference fusion algorithms. The first algorithm is the Simultaneous

ruth And Performance Level Estimation (STAPLE) [77] . It is based on

n Expected Maximization strategy and it was devised for estimating the

ground truth ” segmentation from a group of experts’ segmentations in

he context of medical imaging. STAPLE takes different segmentations
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Fig. 6. Step-by-step visualization of the three levels of optimization of DL-MAE, namely: (a) fusion tree, (b) backbone CNN, and (c) extended CNN. 

Fig. 7. Precision and recall curves on the MSRAB Test set. Our extended CNNs based on the fusion of input saliency algorithms (DL-MAE, DL- F 𝛽 , DL-f) are the closest 

to the optimal 1.0–1.0 corner of the plot. 

Table 6 

Results for fusion trees of deep learning saliency al- 

gorithms at different levels of optimization on the 

MSRAB Validation Subset. Lower MAE is better, 

higher F 𝛽 is better. 

Optimization MAE F 𝛽

DL-f Fusion tree 0.0412 0.9457 

Backbone CNN 0.0259 0.9454 

Extended CNN 0.0260 0.9439 

DL-MAE Fusion tree 0.0284 0.9447 

Backbone CNN 0.0258 0.9457 

Extended CNN 0.0253 0.9446 

DL- F 𝛽 Fusion tree 0.0903 0.9464 

Backbone CNN 0.0267 0.9467 

Extended CNN 0.0252 0.9448 

a  

i  

e  

(  

v  

a  

s  

Table 7 

Comparison of the optimized fusion trees with in- 

put deep learning saliency algorithms on the MSRAB 

Test Subset. Lower MAE is better, higher F 𝛽 is better. 

Column-specific ranking is indicated as a pedix. Best 

results (ranking 1) are highlighted in boldface. 

MAE F 𝛽

DSS [29] 0.0461 6 0.9226 7 
MFCN [30] 0.0738 11 0.9138 8 
DCL [28] 0.0590 8 0.9133 9 
DHS [51] 0.0326 4 0.9408 4 
DS [50] 0.0665 10 0.9069 10 

DRCN [54] 0.2065 13 0.7326 13 

ELD [52] 0.0400 5 0.9229 6 
MDF [49] 0.0793 12 0.8765 12 

RFCN [53] 0.0605 9 0.9365 5 
SC [48] 0.0572 7 0.8871 11 

DL-MAE (Extended CNN) 0.0250 1 0.9467 1 
DL- F 𝛽 (Extended CNN) 0.0253 3 0.9462 3 
DL-f (Extended CNN) 0.0253 2 0.9467 2 

t  

t  
nd simultaneously estimates the final segmentation and the sensitiv-

ty and specificity parameters characterizing the performance of each

xpert. The second algorithm is the Probabilistic Rand Index Fusion

PRIF) [78] . The fusion strategy defined in PRIF is based on a Marko-

ian Bayesian fusion procedure, and the fusion is guided by the Prob-

bilistic Rand Index [79] . This index measures the agreement of one

egmentation result to multiple ground truth segmentations, in a quan-
97 
itative and perceptual way. We choose these two fusion strategies since

hey work taking into account the saliency maps only, and due to the
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Fig. 8. Performance comparison with other fusion techniques on both deep 

learning and hand-crafted solutions, on the MSRAB Test Subset. The opti- 

mal solution is in the top-right corner of the plot. 

Table 8 

Comparison of deep learning fusion trees and input saliency algorithms on various datasets. Lower MAE is better, higher F 𝛽 is better. Column-specific ranking is 

indicated as subscript. Best results (ranking 1) are also highlighted in boldface. 

MSRAB test [27] DUTOMRON [39] ECSSD [75] HKU-IS [49] PASCALS [24] SOD [76] 

MAE F 𝛽 MAE F 𝛽 MAE F 𝛽 MAE F 𝛽 MAE F 𝛽 MAE F 𝛽

DSS [29] 0.0447 6 0.9182 6 0.0740 5 0.7605 6 0.0647 5 0.9062 4 0.0502 4 0.9003 4 0.1016 5 0.8228 7 0.1259 2 0.8364 2 
MFCN [30] 0.0775 12 0.9024 9 0.1626 12 0.7024 10 0.1181 12 0.8645 10 0.1153 12 0.8518 9 0.1613 12 0.7826 9 0.1821 12 0.7693 10 

DCL [28] 0.0578 7 0.9094 8 0.0944 9 0.7334 9 0.0800 6 0.8958 8 0.0634 6 0.8934 6 0.1146 7 0.8071 8 0.1308 6 0.8331 5 
DHS [51] 0.0347 4 0.9315 4 0.0271 1 0.9090 1 0.0621 4 0.9052 5 0.0524 5 0.8918 7 0.0918 4 0.8275 6 0.1279 4 0.8247 7 
DS [50] 0.0672 10 0.8981 10 0.0835 6 0.7735 5 0.0802 7 0.9002 6 0.0789 9 0.8664 8 0.1087 6 0.8300 4 0.1267 3 0.8320 6 
DRCN [54] 0.3533 13 0.6066 13 0.4118 13 0.4167 13 0.3431 13 0.6252 13 0.3373 13 0.5783 13 0.3294 13 0.5950 13 0.3421 13 0.6189 13 

ELD [52] 0.0429 5 0.9139 7 0.0923 7 0.7381 8 0.0816 8 0.8652 9 0.0722 7 0.8430 10 0.1216 9 0.7739 10 0.1545 8 0.7645 11 

MDF [49] 0.0767 11 0.8695 12 0.0982 11 0.6970 11 0.1137 11 0.8313 11 0.0952 10 0.8241 11 0.1449 10 0.7636 11 0.1641 10 0.7863 9 
RFCN [53] 0.0620 9 0.9258 5 0.0940 8 0.7470 7 0.0972 9 0.8978 7 0.0779 8 0.8950 5 0.1176 8 0.8287 5 0.1611 9 0.8072 8 
SC [48] 0.0602 8 0.8712 11 0.0980 10 0.6755 12 0.1056 10 0.8158 12 0.0978 11 0.7715 12 0.1483 11 0.7124 12 0.1819 11 0.7039 12 

DL-MAE 0.0261 1 0.9368 3 0.0419 3 0.8435 4 0.0524 2 0.9195 2 0.0386 2 0.9125 2 0.0811 2 0.8490 3 0.1279 5 0.8355 3 
DL- F 𝛽 0.0265 2 0.9379 2 0.0411 2 0.8503 2 0.0517 1 0.9209 1 0.0380 1 0.9151 1 0.0791 1 0.8549 1 0.1256 1 0.8415 1 
DL-f 0.0269 3 0.9389 1 0.0425 4 0.8441 3 0.0545 3 0.9187 3 0.0410 3 0.9107 3 0.0832 3 0.8511 2 0.1315 7 0.8332 4 
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vailability of the implementation codes of the algorithms. We further

nclude some baseline fusion techniques based on cross-channel oper-

tions: MV (majority voting, implemented with the median operator),

VG (average operator), and EXP (average operator over maps that are

istorted with an exponential operator). All baselines are followed by

ard quantization at mid-gray level. As noted in [30] , in fact, MAE is

ssentially a direct comparison between prediction and (binary) ground

ruth, so with a continuous-valued prediction there is always going to

e some residual difference on “true positive ” and “true negative ” areas.

uch differences, however small, would accumulate over the whole im-

ge and result in sub-optimal performance according to this particular

valuation measure. 

Fig. 8 shows the performance obtained by these fusion algorithms

n the MSRAB Test Subset, compared with our proposed solution for

oth the hand-crafted (HC) saliency algorithms and the deep learning

DL) saliency algorithms. This results in the formation of two distinct

roups of points. For each group, the fusion proposed in this paper (rep-

esented respectively by HC-f and DL-MAE) dominates all other meth-

ds. PRIF appears to perform better than STAPLE in both groups, but

hile it also outperforms baseline solutions MV, AVG and EXP for hand-

rafted methods, it presents inferior performance in the context of deep

earning methods. Due to the nature of this approach, the reason is prob-

bly to be found in the different distribution of the input saliency maps

rom the two groups. It is worth noting that differently from our method,

oth PRIF and STAPLE require an examination of the saliency map of

ach image. That is, they change the fusion strategy based on the map
98 
ontents, while our method applies the same learned fusion operations

or all the inputs. 

.5. Extension to other datasets 

With the intent of focusing on the most effective solutions, the deep

earning input algorithms, and the resulting fusion CNNs, have been also

valuated on other standard datasets for saliency estimation, namely

UTOMRON [39] , ECSSD [75] , HKU-IS [49] , PASCALS [24] , and SOD

76] . Each of these datasets has been annotated with potentially dif-

erent criteria from the other ones, as noted in [29] , so they constitute

n interesting benchmark to assess the generalization capabilities of the

roposed fusion strategy. Results are reported in Table 8 , along with

esults on the full Test set from MSRAB. 

Although the three optimized CNNs exhibit comparable perfor-

ance, there is a subtle yet consistent advantage of DL- F 𝛽 over DL-MAE,

ifferently from what was observed in the previous experiments. 

DL- F 𝛽 is the fusion tree that best optimizes F 𝛽 , by proper selection

nd combination of input algorithms. From this starting point, it is

elatively easy to further optimize for MAE via backpropagation, for

xample by operating on logistic curves to regulate the confidence of

stimated saliency, and thus reducing the gap with the binary ground

ruth. On the other hand, if the initial fusion tree is sub-optimal with

espect to F 𝛽 , due for example to low recall, it becomes hard or impossi-

le to further increase performance on such metric. This might require,

n fact, involving areas that were completely excluded by the input
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Fig. 9. Visual results of the extended CNN from DL-MAE. Rows (a) and (b) show, respectively, the starting image and the corresponding ground truth annotation. 

(c) is the output of DL-MAE. Rows (d)–(i) are the input saliency maps used by DL-MAE, namely: (d) DSS, (e) MDF, (f) MFCN, (g) DHS, (h) ELD, (i) RFCN. 
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aliency algorithms, in order to increase the recall level. DL-MAE has

herefore slightly overfitted on the annotation choices that are specific

o the MSRAB dataset, while DL- F 𝛽 produced a better generalization.

verall, the CNNs obtained through the optimization process appear

o improve on the input algorithms on all datasets, with the exception

f DUTOMRON, where DHS stands out from all other reported perfor-

ance values. However, by further inspection, according to [51] and

29] DHS was trained on both the MSRA10K dataset and the DUTOM-

ON dataset itself, thus explaining the observed outlying performance. 

Fig. 9 shows the effect of DL-MAE on different sample images, along

ith the exploited input saliency maps coming from the corresponding

aliency estimation algorithms. It can be observed that the saliency es-

imations obtained with our fusion technique are extremely sharp, as

 result of including MAE in the optimization function. As previously

oted, in fact, this measure would be negatively affected by residual

ifferences between a continuous prediction and a binary ground truth.

. Conclusions 

We have proposed a general purpose neural architecture search strat-

gy, with a focus on the estimation of image saliency. Specifically, we

ave devised a three-step optimization process that combines the output

f existing algorithms for saliency estimation. 
99 
First, a fusion tree is generated through genetic programming, work-

ng on a set of predefined operators. The discrete search space of the

perators to be used and combined is efficiently handled by the evolu-

ionary algorithm. This initial solution is then converted into a neural

etwork following two different generalizations (backbone CNN and ex-

ended CNN). Backpropagation is eventually used to efficiently fine-tune

he continuous parameters that characterize the operators chosen in the

rst step. 

We have evaluated our solution by training on a fixed dataset and

esting on multiple datasets adopted by the state of the art. The resulting

odel improves upon all the input saliency estimation algorithms, and

utperforms other compared fusion techniques. By manual inspection

f some fusion trees generated with our method, we have observed the

mergence of interesting behaviors, such as the implementation of mor-

hological opening by the genetic programming step, and the inhibition

f entire branches of the tree by the backpropagation steps. 

Experiments have been carried out starting from two independent

ets of saliency estimation methods: hand-crafted and deep learning

olutions. As a direction for future work we will consider jointly fus-

ng both kinds of methods, as well as breaking-up the input saliency

stimation algorithms into logical blocks. By applying our archi-

ecture search over such blocks, we aim at reducing any possible

edundancies. 
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