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Abstract

This paper presents a review of the NTIRE 2023 chal-
lenge on night photography rendering. The goal of the chal-
lenge was to find solutions that process raw camera images
taken in nighttime conditions conditions, and thereby pro-
duce a photo-quality output images in the standard RGB
(SRGB) space. Unlike the previous year’s competition, par-
ticipants were not provided with a large training dataset
for the target sensor. Instead, this time they were given im-
ages of a color checker illuminated by a known light source.
To evaluate the results, a sufficient number of viewers were
asked to assess the visual quality of the proposed solutions,
considering the subjective nature of the task. The highest
ranking solutions were further ranked by Richard Collins,
a renowned photographer. The top ranking participants’
solutions effectively represent the state-of-the-art in night-
time photography rendering. More results can be found at
https://nightimaging.org/

1. Introduction

In-camera processing is widely used to process raw im-
ages obtained directly from the sensor into photographies
encoded in a standard color space, such as SRGB. The main
objective of this processing is to produce images that are
visually pleasing and that simultaneously realistically rep-
resent the captured scene. However, nighttime photography
presents unique challenges that are not typically encoun-
tered in daytime photography. For example, while a sin-
gle illuminant can often be assumed for daytime images,
there are typically multiple illuminants present in night-

time scenes and these can be significantly different. This
makes it difficult to determine which illuminant(s) should
be primarily taken into account during scene color correc-
tion. Moreover, common photo-finishing strategies used for
daytime images may not be appropriate for night images
due to differences in lighting conditions. Additionally, com-
monly used image metrics such as SSIM [45], LPIPS [50]
or MetaQA [53]) do not appropriately assess the quality of
night images. Furthermore, there is a dearth of published
research focused specifically on image processing for night
photography, resulting in fewer established “best practices”
than for daytime photography. Having all this in mind, the
main objective of this challenge is, similarly to the previous
one, to further encourage research into image processing
techniques for night photography. The following sections
provide a detailed description of the NTIRE challenge and
the solutions proposed by the participating teams.

The Challenge on Night Photography Rendering is one
of the NTIRE 2023 Workshop ! series of challenges on:
HR depth from images of specular and transparent sur-
faces [47], image denoising [29], video colorization [26],
shadow removal [42], quality assessment of video enhance-
ment [32], stereo super-resolution [43], light field image
super-resolution [44], image super-resolution (x4) [51],
360° omnidirectional image and video super-resolution [9],
lens-to-lens bokeh effect transformation [13], real-time 4K
super-resolution [ 16], HR nonhomogenous dehazing [3], ef-
ficient super-resolution [28].

Ihttps://cvlai.net/ntire/2023/
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Figure 1. A graphical summary — prepared by Richard Collins — of the main aesthetic issues in urban night scene photographs.

2. Challenge

In the challenge, the participating teams were required
to develop automated solutions capable of producing visu-
ally appealing images. To this end, the teams were provided
with several raw images of ColorChecker SG, captured un-
der lab conditions by a Canon 7D camera. Illumination
spectra were also provided to the participants. The teams’
objective was to submit the corresponding rendered sSRGB
images. Given the subjective nature of this task, the submis-
sions were evaluated using mean opinion scores assigned by
observers who were presented with pairs of two different
renderings of the same scene and who then had to choose
the rendering that they deemed visually more appealing.

2.1. Challenge Data

The raw images of night scenes were captured using
Canon 7D and encoded in 16-bit PNG files with additional
meta-data provided in JSON files. The challenge started
with an initial 50 images provided to participants for al-
gorithm development and testing. Additional images were
made available during the challenge. A baseline code was
provided to emulate the basic in-camera rendering as a start-
ing point.

2.2. Evaluation

The evaluation consisted of two validation checkpoints
during the contest and a final evaluation to determine the
winners. Mean opinion scores were obtained using Toloka
(a service similar to Mechanical Turk) for the checkpoints
and final evaluation. Toloka users ranked their preferred so-
lutions in a forced-choice manner with a question: “Which
image is more pleasant?”. The answer options were: “left”,
“right” or “they are the same”. To ensure basic quality con-
trol, all Toloka users who chose “left” of “right” for a pair

of same images have been banned, while all their previous
answers have been declined. It is worth noting that in our
setup Toloka mainly relied on labelers from Eastern Europe
to perform the image ranking. As a result, there may be a
cultural bias in terms of the preferred image aesthetics by
the labelers. All solutions have been anonymized to guar-
antee unbiased results.

During each validation checkpoint, 50 new test images
were provided, and each participating team could submit
up to two distinct solution image sets, each consisting of
exactly 50 images. The purpose of having two validation
sets was to allow participants to test different solutions’ be-
havior and receive feedback on their solution’s quality.

For the final submission, only one solution was allowed,
and 50 test images were provided. Additionally, 50 hidden
images were used for the final evaluation. The user study
images were generated using the code provided by the par-
ticipants by means of Docker. Only open and reproducible
results were accepted. The top 10 solutions according to
Toloka proceeded to the professional judgment stage, where
Richard Collins provided his selection of the final winners.

3. Results

The section presents the ranking results obtained using
the Toloka service, as well as the ranking performed by the
professional photographer.

3.1. People Choice and Discussion

Table 1 provides the ranking of the mean opinion re-
ported by Toloka users for the different teams’ final sub-
missions.

Before this challenge was started, there were concerns
regarding three issues that were suspected to potentially
negatively impact the results. First, the observation con-
ditions such as operating system and environment lighting
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could not be controlled. Second, there were concerns re-
garding the quality and variations in Tolokers. Despite the
fact that limits on age, nationality, and language could be
imposed in advance, there was no guarantee that the tasks
would be carried out exactly by the person registered on
Toloka. To control this factor, only those Tolokers who
had a top 10% rating were chosen. Third, there were con-
cerns that technical difficulties might make it hard to pro-
vide checkpoint results and a timely final evaluation. This
is one of the reasons why the solutions had to be provided
1300x866 for landscape orientation and 866x1300 for por-
trait orientation. Namely, these resolutions were found to
be suitable for quick download. An option was also given
to Tolokers to flag any images that did not download cor-
rectly. Out of the several thousand images downloaded and
observed, this happened only a handful of times.

In the end, the people’s choice evaluation worked for
both checkpoints and the final judging smoothly and sat-
isfactory.

Rank Team Mean Score
1 IVLTeam 0.67
2 DH _ImageAlgo 0.645
3 MiAlgo 0.626
4 BSSC 0.606
5 DH-AISP 0.583
6 Manual image enhancement 0.491
7 0zUVGL 0.453
8 The Majestic Mavericks 0.444
9 JMUCVLAB 0.439
10 NTU607 0.376
11 Baseline ISP 0.345

Table 1. People’s choice ranking results.

This year’s competitors have presented a diverse range
of solutions that produce visually appealing images. All of
the submitted solutions have surpassed the ISP baseline (the
winner has a two times higher MOS than the baseline), with
only half of them being outperformed by non-professional
photographers.

3.2. Professional Choice and Discussion

Table 2 provides the ranking provided by Richard
Collins. The following text describes several factors used
to make the final evaluation briefly summarized in Fig. 1.
Characteristics of urban night scenes

Urban night scenes are now more significant in photog-
raphy, not only because lighting itself and signage have be-
come stronger, more varied and more colourful over the
years, but because improvements in camera sensors and
computational techniques allow easy capture without effort
or tripods for many people. Unlike daytime scenes, how-

ever, there has been little or no evolution of perceptual ex-
perience as to how such scenes should look in a photograph.
The principal characteristics are:

1. Large unlit areas.
2. Several-to-many point light sources and speculars.

3. Colored illuminants, including some with restricted
spectrum.

4. Localized high contrast from light pooling, e.g., build-
ing floodlighting.

5. Lighting may be dominated by a single-hue illuminant,
or there may be dual-hue illuminants.

Likely rendering issues

1. Artefacting, in particular noise in large featureless ar-
eas such as sky, banding, and sharp clipping edges and
colour banding around light sources.

2. Colour balance of lit areas. Here, memory colors
(canonical colors) can help as references. In descend-
ing order of usefulness and reliability, for the night
scenes here, they are:

— Roads, pavements. Assumed to be neutral grey.
— Concrete. Assumed to be neutral grey.

— Snow. Assumed to be neutral white with light
grey shadows.

— Clouds, steam, smoke. Assumed to be neutral
grey.

— Clear sky. Assumed to be dark blue, with an HSB
hue angle about 216°.

3. Over-saturation of small, bright colored areas (see be-
low).

Deciding overall brightness.

Deciding overall colourfulness.

Legibility of signage.

N o s

Suppression of flare around prominent light sources.
Aesthetic expectations

1. Artefact-free.

2. Opverall fairly neutral color balance with colorful small
elements. If there is any color cast, blue is more ac-
ceptable, while greens (from cyan to yellow-green) are
by tradition less acceptable.

3. Full tonal range from 1% above black to white.
4. Unlit and weakly lit areas dark.

5. No clipping except for point light sources and specu-
lars.
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6. Overall moderately colorful.

7. Saturation not to reach 100%, which reads as unreal-
istic. This is particularly important for night scenes,
featuring both light sources and illuminated small ar-
eas against an overall dark background, which en-
hances brightness. Both the Hunt effect (colorfulness
increases with luminance) and Helmholtz-Kohlrausch
effect (saturation increases with brightness) help exag-
gerate these.

8. Signage and any significant lettering legible.

9. With all the above in mind, the scene should not look
like daytime. In most cases there should already be
sufficient clues that it is night-time, but in some cases
it might be desirable to lower the overall brightness.

The above represent a broad “envelope” of expectations,
but within this there is an as yet undefined latitude for inter-
pretation. This is likely to be in the overall brightness of lit
areas, overall colorfulness, and in a multi-illuminant scene,
the balance of hue between two (or possibly three) equally
important, but different illuminants. In the last case, the bias
could be toward one of the illuminants or at some point in
between.

Rank Team
MiAlgo
DH_ImageAlgo
IVLTeam
The Majestic Mavericks
BSSC
NTU607
DH-AISP
Manual image enhancement
OzUVGL

0 JMUCVLAB

— O 00 1O\ L W=

Table 2. Professional choice ranking results.

This year Spearman correlation coefficient between peo-
ples and professional choices is 0.67 (against 0.82 in pre-
vious year). Apparently, it is reasonably to argue that this
is due to the personal aesthetic criteria of the professional
photographers. In part, this effect can also be associated
with the inefficiency of mass pairwise comparisons when
comparing aesthetically close solutions.

3.3. Teams’ solutions

3.3.1 Baselines

In this year’s challenge, two baseline methods were given
to the participants to use: a simple classic ISP and manual
image enhancement. The simple classic pipeline involved
debayering using linear interpolation, white balancing with

RAW input

RAW Processing
(1) Black-white level normalization
(2) Demosaicing
(3) Gray World AWB
(4) to sSRGB

Contrast enhancement
A (1) Local contrast correction
N Sharpening (2) Global mean contrast + S-curve
Grayness Index Unsharp masking

(3) Histogram stretching
(4) Conditional contrast correction

Denoising
Non-local means

RGB output

Figure 2. IVLTeam pipeline schema.

Gray World [7], a single matrix for CST, and a standard
transform from XYZ to sSRGB. This pipeline was also pro-
vided as a baseline for participants.

To enhance the images manually, we employed
the Adobe Camera RAW application and invited non-
professional photographers to participate. Each image was
corrected individually within a short span of 3 to 5 minutes.
The corrections comprised of adjusting the temperature to
cool down the image, adding a violet tint, increasing bright-
ness via exposure adjustment, enhancing contrast, reducing
highlights, brightening shadows, and reducing whites. Fi-
nally, the built-in noise reduction and color mixer were used
to correct the hue and intensity of red, orange, and yellow
(and sometimes blue and purple).

3.3.2 IVLTeam

Our solution [55] is illustrated in Figure 2. It relies on con-
ventional image processing techniques and consists of five
stages, each one addressing different aspects of the image.
It is based on our previous work [54], where we improved
some critical aspects related to contrast enhancement and
color management.

The first stage works in the raw domain and consists of
four steps: black and white levels image normalization, raw
demosaicing operation, Automatic White Balancing (AWB)
using the GrayWorld algorithm [7], and conversion from the
camera-sensor color space to the SRGB color space.

The second stage consists of a denoising operation using
the Non-local means algorithm [6]. The intensity of denois-
ing is proportional to the noise standard deviation estimated
in the image using the method in [17]. Stronger denoising is
applied to the color channels than to the luma channel to ef-
fectively remove color noise while preserving image details
and edges.

The third stage is made of several algorithms that en-
hance image contrast by manipulating the histogram distri-
bution. First, the Local Contrast Correction (LCC) algo-
rithm in [37] is applied. As this process tends to decrease
the overall contrast and saturation, the next step consists of
a contrast and saturation enhancement using the approach

2available at https://github.com/createcolor/nightimaging23

1985


https://github.com/createcolor/nightimaging23

RAW 1

Figure 3. DH_ImageAlgo’s algorithm pipeline scheme.

proposed in [41]. Then, three steps to improve the image
color appearance are applied. The first one adjusts the con-
trast by stretching the pixel values by a given factor around
their mean. The second one is the application of the S-curve
defined in [25], where the center of the curve is set at zero.
The third one consists of a histogram stretching operation
that increases the dynamic range and improves the overall
contrast. An extra conditional contrast correction operation,
consisting of an additional S-curve or gamma correction,
is applied depending on the mean value of the histogram
to improve visibility for very dark images and restore the
mood of nighttime scenes when images are too bright.

The fourth and fifth stages perform sharpening and
AWRB, respectively. Unsharp masking is used to sharpen im-
age details, which may have been flattened by the denoising
operation in stage two. AWB is performed using the Gray-
ness Index algorithm [39] to reduce color casts in certain
scenarios where the Gray World approach may have failed.

3.3.3 DH_ImageAlgo

Our algorithm proposes to aggregate the advantages of the
traditional and deep learning approaches to achieve the en-
hancement effect of night image. The main modules are the
raw2rgb module and exposure fusion module. The former is
used to learn the projection from raw to RGB with the deep
CNN while the latter adopts the traditional fusion strategy
to adjust the light distribution, see Figure 3.

Raw2rgb module. It is known that the image captured
at night has lower brightness value. To capture more details
with better visual effect, a higher gain is commonly used
for the sensor, but simple gain multiplication causes noise
degradation. To solve this problem, we used a modifica-
tion of end-to-end U-Net++ model [52] to learn the projec-
tion relationship between raw data and GT. Compared with
U-Net [40], U-Net++ enjoys better capability to aggregate
the multi-scale features to reconstruct more robust results.
Meanwhile, the joint constraints of L1 and adversarial loss
are used to encourage more realistic contents generation.
Then, to get different exposure data in the exposure fusion
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Figure 4. BSSC team pipeline scheme.

algorithm, we adjust the gain of the input data to obtain the
underexposed, normal exposed and overexposed images re-
spectively.

Exposure fusion module based on traditional methods
[36]. To guarantee the fusion effect, the fusion weight is cal-
culated by considering the contrast, saturation, and bright-
ness of the images with different exposures. More specif-
ically, we generate different exposures Laplace pyramids
from the original images, while the Gaussian pyramid is de-
composed from the corresponding weight map. To produce
the high-quality output, the corresponding components are
fused at each scale.

3.34 BSSC

The BSSC team proposed a three-stage framework as
shown in Figure 4, including raw Image Denoising, raw Im-
age White Balance, and raw to sSRGB Mapping with Color
Correction. For raw Image Denoising and raw Image White
Balance, pretrained models are used [1,31]. After obtain-
ing the initial color corrected raw images, we process the
images with standard ISP modules and adjust the results
based on photographer’s opinion. The adjusted ISP results
are used as ground truth for raw to sSRGB Mapping train-
ing [24].

The raw to sSRGB Mapping model is further fine-tuned to
remove color casts caused by scene illumination. Color cor-
rected data is achieved by fusing dual white balance results.
Based on the color distribution of the night image dataset,
we render the captured scene using two predefined white
balance settings as shown in Figure 4. A content-preserve
weight prediction module is proposed, which takes two ren-
dered images as input and predicts fusion weight map with
the same spatial size.

3.3.5 MiAlgo

We made improvements based on Deep-FlexISP [31], and
the overall pipeline is shown in the Figure 5. We keep the
denoising and white balance modules unchanged, and split
the implementation of the Bayer to SRGB module into sev-
eral sub-modules, as follows.
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balancing performed using the simple Gray World algo-
Input RAW Data RAW2RGB HDR Output RGB rithm [21]. With these two modules, we can obtain a cor-

Preprocessing

Figure 6. DH-AISP pipeline illustration.

The input image is first processed by the Bayer domain
denoising module, which utilizes a simplistic U-Net [40].
Following this, the FC4 [20] network is employed to predict
white balance parameters and adjust the Bayer image ac-
cordingly. The Bayer image is then subjected to a demosaic
operation utilizing the OpenCV [38] library’s built-in func-
tions. Since white balance is conducted in the Bayer do-
main during the second stage, the white balance parameters
are predicted and corrected using the Shades of Gray [11]
in the RGB domain. The image is then subjected to color
space conversion and at this point, it has been converted
from Bayer to sSRGB. Using a fixed curve, tone mapping is
carried out on the SRGB image, and gamma correction with
a value of v = 3.2 is applied. MWISPNet [24, 30] is used
to enhance the image by adjusting brightness, contrast, sat-
uration, and other parameters. The ground truth used in the
MWISPNet training is obtained by manual post-processing
in PhotoShop [2]. Training high-resolution images is a chal-
lenging task, and GPU memory limitations are a significant
constraint. As such, we downsample the image, enhance
it, and perform super-resolution through Hybrid Attention
Transformer [12] before obtaining the output sSRGB image.

3.3.6 DH-AISP

Our main goal is to develop a technology for creating re-
alistic and visually pleasing photographs of night scenes.
By considering the data quality and modality, we construct
the NISP-net, outlined in Figure 6. It contains three parts,
involving the data preprocessing module, raw to RGB mod-
ule, and color enhancement module, which are elaborated
in the following parts.

Data preprocessing. This module contains of two steps:
the black and white level normalization; automatic white

rected raw data, which is a necessary step to achieve normal
and better results.

Raw to RGB. We propose an end-to-end solution for
the joint demosaicing, denoising, brightness adjustment,
and tone mapping. Specifically, since the low and high-
frequency components suffer from the heterogenous degra-
dation, we propose to individually refine them with an elab-
orated dual-branch U-Net [40], so that the brightness and
details of the image can be better processed respectively.

Brightness adjustment and color enhancement. Night
images often have multiple illuminants, and light distribu-
tion of contents varies with the locations. Consequently,
learning a unified light distribution in the existing methods
produces undesired results. In this way, we propose a con-
trollable parameter to adjust the output of raw2rgb module,
which allows us to produce the underexposed and overex-
posed candidates with different light distribution. Follow-
ing that, an exposure fusion model based on U-Net is de-
signed to adaptively learn the fusion weights, and to gener-
ate an image with satisfactory overall brightness. Finally,
the CCM algorithm is introduced to further optimize the
color distribution of the final output.

3.3.7 VGL OzU

The quality of night photography rendering mostly depends
on how to handle the multiple illuminants in the scenes
and the noise accumulated by consecutive image process-
ing operations. In our ISP pipeline, we mainly concen-
trated on more advanced white-balance (WB) correction
and post-process denoising strategies. We use recently pro-
posed style-based WB correction [27], which can model
the mixed illuminant scenarios as the style factor to re-
verse their effects back to the white-balanced version. For
post-process denoising, we include Restormer [48] to our
proposed pipeline, which is a Transformer-based efficient
restoration architecture that can operate on high-resolution
images. Also, we introduce a new auto-contrast strategy
for night photography, which dynamically adjusts the min-
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Figure 7. [lustration of our proposed ISP framework.

imum cut-off values by the outliers in the histogram of the
input image. The proposed ISP pipeline for this challenge
is presented in Figure 7.

In the scope of this challenge, we assume that given raw
images are pre-linearized by the camera pipeline since the
linearization tables for all inputs are null in the given meta-
data. Therefore, we did not apply any linearization step to
the given data. The 16-bit PNG images are given as the
data, and we normalized them to correct the black level
by the values provided in the metadata. We then applied
hot/bad pixel correction to the data to transform the possi-
ble defective pixels by their neighboring pixels. Instead of
default CFA interpolation, the pipeline follows the Direc-
tional Filtering algorithm [35], also known as Menon, for
demosaicing the corrected pixel data. We included the ran-
dom subsampling-based White Patch algorithm [4] to our
pipeline in order to initially attempt to mitigate the illumi-
nation effects in the raw-RGB domain. The next step is
to transform the image from the raw-RGB domain to the
sRGB domain. To achieve this, we employ Color Compo-
nent Transfer Function (CCTF) Encoding. Before apply-
ing the Gamma correction method given by the standard
pipeline, we applied wavelet-based denoising [10] to the
encoded data, where adaptive noise thresholding is used
for computing different thresholds for each wavelet sub-
band. To increase the quality of rendering lit areas in darker
scenes, we adapt the default auto-contrast strategy to the
one that dynamically adjusts the minimum normalization
cut-off by considering the outliers in the lower part of the
histogram. Next, we included a style-based WB correction
algorithm [27] to further mitigate the effects of different
illuminants in a scene that frequently occurs in night im-
ages. To neutralize the colors of sky, grass, or spot colors,
the memory color enhancement algorithm [5] is applied to
the WB-corrected images in our proposed pipeline. Before
post-process denoising, we fixed the orientation of the im-
ages as given in the metadata, and then rescaled the im-
ages to the expected image size for the challenge output
(i.e. 5202 x 3464). Transformer-based efficient restoration
model [48], namely Restormer, was used for removing the
noise that arose during the previous operations applied. Due
to the computational complexity of Restomer in our resolu-

Raw Input
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Figure 8. Pipeline scheme of The Majestic Mavericks.

tion space, we have to split the images into grids and apply
denoising to these grids one by one. To obtain the final
sRGB output, we applied unsharp masking to sharpen the
edges and adjusted the contrast and brightness values to en-
hance the quality of the images.

3.3.8 The Majestic Mavericks

Since night images are typically captured under low-light
conditions, they have low contrast and high noise. There-
fore, we pay special attention to enhance contrasts of colors
and to minimize noise in images.

As depicted in Figure 8, our pipeline is largely com-
posed of four modules: Pre-processing, HDR (High Dy-
namic Range) transformation, Auto-contrast, and SR (Su-
per Resolution).

First, the pre-processing module align with those in the
baseline model. It involves the use of OpenCV to imple-
ment linearization of raw images, normalization of black
and white, demosaicing, denoising, white-balancing, and
gamma correction.

Next, the HDR (High Dynamic Range) transforma-
tion module spots the luminosity of the brightest and dark-
est area in the photo. For instance, in the example shown in
Figure 8, the color difference between the yellow and green
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trash bins is emphasized, making them more distinguish-
able. Furthermore, it can expand the range of colors in areas
with large uniform colors, such as roads and snow, thereby
improving the ability to distinguish shadows in those re-
gions. Our implementation employs ExpandNet [34] for
the conversion of images to HDR. In this way we are able
to work on the contrast which is vital for the reconstruction
of images. Moreover, we are able to find the pixels which
can give great contrast to image.

Auto-contrast module calculates an image’s histogram
and then adjusts the pixel values to set the darkest pixels
to black and the brightest pixels to white, while disregard-
ing a specified percentage of the extreme pixel values. It
additionally carries out operations to resize and correct ori-
entation.

Lastly, we incorporated a deep learning-based super res-
olution technique into our approach, which boosts the res-
olution but also reduces noise and optimizes the tonal bal-
ance. We used the BSRGAN [49], which was trained on
a degraded image dataset that closely resembles real-world
image degradation.

3.3.9 JMU-CVLAB

We focused on creating an efficient rendering pipeline able
to run on the mobile devices, starting from a model-based
ISP [14, 18]. We achieve this by simple knowledge distil-
lation between a teacher network and student network. As
a teacher, we use Deep-FlexISP [31] the winner of NTIRE
2022 Challenge on Night Photography Rendering [18], a
multi-stage network that includes custom denoising, white
balance and learned ISP. For the student network we select
MicrolSP [22], which is the current state of the art for ef-
ficient end-to-end ISP networks, designed to process high-
resolution raw images on mobile devices.

Knowledge Distillation We create the ground truth
images by processing the raw images using Deep-
FlexISP [31].

We process 150 raw images, and we split the dataset us-
ing a holdout 80/20 split. Next, we pre-process the full res-
olution images into batches of size 256 x 256 for training
our student network MicroISP [22].

The student ISP network is trained to process raw im-
ages and render pleasant sSRGB night images. Note that we
used MicroISP network pre-trained of MAI Learned Smart-
phone ISP challenge [23] and fine-tuned the model using
our curated dataset. For fine-tuning the student network we
combine: MSE, SSIM, and Perceptual VGG losses. We
fine-tuned the student model for 500 epochs with a learning
rate of le-5 using a NVIDIA RTX 3090 Ti (= 4 hours of
training).

Because we train the network using patches, we real-
ized about some limitations such as vignetting effect, and an

overall dimmer image than the teacher network — this was
also pointed out by the professional photographer judge.
Finally, our student network has ~ 100x less parame-
ters than Deep-FlexISP [31], and can emulate its results
with a reconstruction of 24.36dB PSNR (on our 20% test-
set). Additional experiments for low-light image enhance-
ment [ 15, 19] did not produce pleasant results.

3.3.10 NTU607

Our solution is based on the deep learning solution Zero-
Reference Deep Curve Estimation (Zero-DCE) [19]. It is
known as the self-supervised learning framework for bright-
ness curve estimation.

First, we use the guideline from organizers to transform
the raw image to SRGB images. Resulting SRGB images
were used as inputs. We use the following quadratic equa-
tions to estimate pixel-wise brightness:

J(x) = I(z) + ol (z)(1 = I(z)), ()

where J(z) and I(z) are output and input images, while «
is the curve parameters that should be learned. To make the
model handle challenging low-light conditions, we consider
iterative curve estimation:

In(x) = Jno1 (@) +ad(@)n-1(1 — J(@)n=1) ()

where n is the number of iterations (in our solution n = 8).
To get the o, we apply a plain CNN containing seven convo-
lutional layers and Each layer consists of 32 convolutional
kernels of size 3x3 and stride 1 followed by the ReL.U acti-
vation function. The last convolutional layer is followed by
the Tanh activation function. We use spatial consistency
loss, exposure control loss, color constancy loss, and il-
lumination smoothness loss to optimize the network. The
spatial consistency loss encourages spatial coherence of the
enhanced image by preserving the difference of neighbor-
ing regions between the input image and its enhanced ver-
sion. The exposure control loss measures the distance be-
tween the average intensity value of a local region to the
well-exposedness level controls the exposure level. The
color constancy loss is designed to correct the potential
color deviations in the enhanced image and also build re-
lations among the three adjusted channels. The illumina-
tion smoothness loss preserves the monotonicity relations
between neighboring pixels.

Implementation details. Besides the dataset provided
by organizers, we also use the DARK FACE dataset [40],
and underexposed images from the SICE dataset [8]. A
batch size of 8 is applied. The filter weights of each layer
are initialized with standard zero mean and 0.02 standard
deviation normal noize. Bias is initialized as a constant.
AdamW [33] is used as an optimization algorithm with a
mini-batch size of 8. We set the initial learning rate to
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Figure 9. MicrolSP Architecture [22].

0.0001 and it is unchanged. The models are trained for 200
iterations. The overall framework is implemented with Py-
Torch on an NVIDIA V100 GPU.
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