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Abstract

During a Nuclear Medicine project that called for the optimal design of a coded aperture we found that low-

throughput masks do not always provide a Signal-to-Noise Ratio (SNR) advantage. In this paper, we present the
simulations of the performance of some coded aperture patterns chosen from different families and compare the results
with theoretical predictions. A general expression for the SNR and its particular form for different patterns are

provided. The choice of the optimal pattern family is discussed with reference to the characteristics of the object to be
imaged and in light of the effect of near-field artifacts. No-Two-Holes-Touching (NTHT) arrays based on Modified
Uniformly Redundant Arrays (MURAs) proved to offer the best compromise between SNR performance and practical
fabrication constraints. r 2001 Elsevier Science B.V. All rights reserved.

PACS: 42.15.�i; 42.30.Va; 42.79.Ag
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1. Introduction

The Signal-to-Noise Ratio (SNR) properties of
the Uniformly Redundant Arrays (URAs, [1])
have long been known [2]. Such apertures do not
always perform better than pinhole systems, but,
for concentrated bright objects in a high back-
ground environment, the SNR advantage of a
coded aperture can be considerable. Also, for low
background, the SNR depends on the open

fraction r of the coded aperture, larger objects
requiring lower r: Even if the maximum SNR loss
in using a suboptimal open fraction is small, it can
be significant in applications, such as Nuclear
Medicine, where dose savings are important.
Unfortunately, we do not know of any URAs
with an open fraction significantly different from
50% [3], but researchers have proposed a number
of other coded aperture families [4–13] which
extend the attainable range of open fractions while
maintaining ideal imaging properties.
In an effort to design a coded aperture system to

enhance the resolution of an existing state-of-the-
art Anger camera, we considered several of these
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families. In particular, we were attracted by some
arrays suggested for use in Nuclear Medicine
problems, such as ours, which, on the basis of
the URA result and by virtue of their low-
throughput, were expected to provide an enhanced
SNR [8]. In addition to the perfect correlation
properties and range of available sizes and open
fractions, we were also attracted by the self-
supporting design of these arrays. Our preliminary
simulations had a surprising outcome: not only did
these low-throughput arrays not outperform half-
open URAs, but they were also outperformed by
other designs.
In this paper we present this result and a

theoretical justification of these findings. We close
the paper describing the design that we eventually
chose for fabrication obtaining considerable SNR
and near-field artifact reduction advantages.

2. Preliminary considerations

The goal of our research was to explore the
potential of increasing the resolution of a pre-
existing Anger camera, a Siemens E-cam, for
planar single-photon imaging problems. Potential
applications are imaging of organs in children and
functional studies in small animals. Current
technology relies on high-resolution collimators
or pinhole apertures, but these techniques are
limited by their sensitivity. The resolution cur-
rently available is in the 4–6mm range. Just like a
pinhole, coded apertures can be used in a
magnifying geometry to improve resolution. Fo-
cusing on small animal imaging problems, we
designed the system for a Field of View (FoV) of
9� 9 cm2, and, choosing not to push the limits too
early in the project, a resolution of about 1.5mm.
Many mask properties were investigated: the

choice of the number of pixels in the mask pattern,
their size and the mask thickness are outside the
scope of this paper. Our main concern here is the
choice of the mask pattern. Due to the number of
mask sizes available, we started focusing on twin-
prime [1] and m-sequence [4] URAs, MURAs [5],
PNP [6], M–P, M–M [7] and the ‘‘new system’’
arrays of Ref. [8], a generalization of those of Refs.

[6,7]. All these families (and, within each family, all
patterns) have ideal imaging properties.
Since the resolution limit is ultimately set by the

size of the mask holes, independent of magnifica-
tion, we chose to design B1mm pinholes. Small
holes, in turn, set a limit on mask thickness if
collimation effects are to be avoided. Under these
conditions the use of tungsten in place of lead to
achieve lower thickness at constant transparency
seemed to be worth the extra cost. By simulation,
we estimated that the trade-off between opaque-
ness and collimation effects was optimum for 1.5-
mm-thick tungsten. Small holes in such a material
suggested fabrication by etching. The drawback of
etched tungsten is that non-self-supporting arrays
are difficult to fabricate: we were now bound to use
self-supporting patterns. This precluded the use of
URAs, of which we know only half-open, non-
self-supporting patterns. At first, this did not seem
to be completely to our disadvantage. On the
contrary, as we shall see in the next section, the
objects of our interest are imaged with higher SNR
if low-throughput masks are used. Since these
masks also tend to be self-supporting, we were
hoping to achieve two goals at the same time.

2.1. The signal-to-noise ratio of Coded Aperture
Cameras

The most widely recognized technique to
calculate the SNR of a Coded Aperture Camera
is that of Fenimore [2]. We were interested in
imaging 99mTc. At 140 keV, 1.5mm of tungsten
still allow 1% penetration. To see if this was
enough to influence the design, we modified
Fenimore’s formula to include the effect of mask
transparency. With his methods, we obtained the
expression

SNRij ¼

ffiffiffiffiffiffiffiffiffiffiffi
NTIT

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 1� rð Þ

p
1� tð Þwijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� tÞ½rþ ð1� 2rÞwij � þ tþ x
p ð1Þ

where NT is the total number of pixels in the mask,
IT is the total number of counts due to the source,
r the open fraction of the pattern (number of total
open pixels of the mask N divided by the total
number of pixels NT), t the transparency of the
mask (in our case 1%), wij the fraction of total
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source counts due to the source present at the ijth
reconstruction position and x the ratio of the
counts at one reconstruction position due to
uncoded background to IT (background is as-
sumed constant over the detector, so there is no
need for subscripts for x). This formula differs
from Fenimore’s by the factor 2 at the denomi-
nator. Since all definitions are consistent, we
believe this difference to come from the inadver-
tent substitution, in the original derivation by
Fenimore, of a sum over all sources except the ijth
with IT; which includes all sources, causing an
overestimate of the variance not relevant for most
cases, but with visible effects for large wij : For
verification, note that for a point source with
neither transparency nor uncoded background the
SNR at the source location is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rNTIT

p
¼

ffiffiffiffiffiffiffiffiffi
NIT

p
:

In fact, all the coded aperture does is to count the
same source N times and there is no need to justify
a

ffiffiffi
2

p
reduction in SNR.

Taking the derivative of Eq. (1) with respect to r
yields the optimal open fraction ropt

Fig. 1 shows the result: for low background and
objects with a small wij ; the optimal fraction is
significantly lower than 0.5. These are the expe-
cted conditions of Nuclear Medicine measure-
ments, where images of extended objects are taken
in low-background environments. Experimentally,
we have measured values of x in the 10�4–10�5

range. To have some sense of the values for the
parameter wij ; consider a 64� 64 image with
only 1% of the pixels having some signal. The
average wij would be only about 0.02. It is true
that if a pixel were brighter than average, its
wijFand the optimal open fractionFwould be
higher, but it is also true that, since the sum
of all wij’s is normalized to one, all other points
would have an even lower wij : Second, it has
been pointed out that even in the case of a single
point source, the non-ideal response of the
detector must be taken into account: a point
source can still be spread over several detector
elements and its wij would still be lower than 1 [3].
In conclusion, wij is typically as low as 10�2,

possibly 10�5 for extended objects or even less for
weak regions of the source.
From Fig. 2 we see that the SNR loss for using a

half-open pattern instead of an optimal one is
higher the lower the background is. In our cases
the loss can be as much as 20%. While it is true
that this is not much, it still amounts to a factor of
1.5 in exposure time or dose, which can be
significant in clinical practice. This seemed to
justify some additional effort to find patterns with
the best open fraction.

2.2. Pattern choice

For purposes of comparison with literature and
previous results obtained by our group, we chose
as test object a noisy image of a thyroid phantom
(Fig. 3). This case is probably not the best bench-
mark for a coded aperture, because the object
takes about 45% of the FoV so that the average

value of wij is 2.6� 10
–4. x was estimated from

direct background measurements at 5.5� 10�4.
With these values we produced, from Eq. (1),
Fig. 4, where we have plotted the SNR as a
function of the open fraction. For t ¼ 0:01 the
optimum aperture is 9.42%: we set out to find a
pattern about 10% open.
From the size of the detector and its intrinsic

resolution, we realized that we needed candidate
patterns to have no more than 80� 80 pixels. For
the arrays of Ref. [8] we found a 77� 77 pattern
9.7% open. Mainly for this characteristic, this
array family is expressly indicated for Nuclear
Medicine applications [8]. For comparison we
chose a 79� 79 50% open MURA. These patterns
are shown in Fig. 5 along with the pattern that was
eventually chosen, a 62� 62 No-Two-Holes-
Touching (NTHT, [9]) pattern based on a
31� 31 MURA [5]. Further details on this last
pattern are in Section 3.1.

ropt;ij ¼
tþ xþ wijð1� 2tÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½tþ xþ wijð1� 2tÞ�

2 � ð1� tÞð2wij � 1Þ½wijð1� tÞ þ tþ x�
q

ð1� tÞð2wij � 1Þ
: ð2Þ
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2.3. Simulation results

Our computer simulations take into account
several factors: detector intrinsic resolution, dis-
crete detector pixels, near-field geometry, mask
thickness and transparency, Poisson statistics,

Fig. 1. Optimal open fraction as a function of w for different

backgrounds for (M)URAs. 1% transparency assumed. Note

that, especially at low background, the optimal open fraction

for low w (extended objects) can be significantly less than 0.5.

Due to transparency, for x ¼ 10�8; ropt ¼ 1 before r ¼ 1:

Fig. 2. SNR loss in using the half-open pattern in place of the

optimal, for different backgrounds. 1% transparency assumed.

As first reported, the loss is never more than 25%, [1]. Due to

transparency, at low background ropt ¼ 1 before c ¼ 1; both
SNRs go to zero and an asymptote deflects the curves.

Fig. 3. Test object: average wij ¼ 2:6� 10
�4: Maximum wij ¼

3:7� 10�4: This image was taken with a high-resolution

collimator and then used as simulation object. Pixel size:

0.9mm.

Fig. 4. SNR as a function of the open fraction for different

mask transparencies (0.1, 0.01 and 0.001) according to Eq. (1).

For the case of our interest, w ¼ 2:6� 10�4; x ¼ 5:5� 10�4 and
t ¼ 0:01: The result is normalized to the SNR of a pinhole with
t ¼ 0 (see Table 1) and

ffiffiffiffiffiffiffi
NT

p
: Therefore, to have a rough

estimate of the SNR advantage for the coded apertures of this

paper, one should multiply the ordinates by about 60.
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quantization noise and ambient background. They
have been validated with experimental data from
the detector that will eventually be used. We
simulated a set of 17.5-min exposures of the test
object with 40 cm object-to-detector distance. The
activity was 200 mCi of 99mTc (140 keV).
On the basis of Section 2.1, given the low

average wij of the test object, and that the open
fraction of the ‘‘new system’’ array was chosen as
close as possible to the optimum value, we
expected this coded aperture to perform better
than a half-open URA. To our surprise, the
simulations predicted a much poorer performance
for the ‘‘new system’’ array, to the point that other
patterns had to be considered. The results of the
simulations are shown in Fig. 6.
Coded apertures have ideal imaging properties

in the far-field case only, i.e. when the modulation
of the projection of the mask onto the detector due
to varying incidence angles is negligible. In near-
field applications, as is ours, this is not true, and,
as one moves the object closer to the detector to
improve geometric efficiency, incidence angles and,
thus, artifacts increase. We have developed a
means of suppressing such artifacts. Since these
are different for different masks, we present the
result before and after artifact suppression. This
technique is outside the scope of this paper, and is
worth mentioning here only as long as it is

necessary to a fair comparison of the images.
Artifact suppression is achieved by adding two
images, one taken with a mask and one with its
anti-mask (the mask obtained by replacing open
with closed holes and vice versa). Since suppres-
sion seems equally good in the three cases, the
difference must be attributed to the SNR proper-
ties of the arrays. Best results are achieved for the
half-open MURA pattern, closely followed by the
NTHT pattern, while the performance of the ‘‘new
system’’ array is clearly worst, despite the lower
open fraction. It must be said that the anti-mask
picture taken to correct the artifacts present in the
‘‘new array’’ image was very noisy, making the
SNR of the corrected image even worse. However,
it is clear that our considerations also apply for the
uncorrected images, so that the poor performance
cannot be blamed exclusively on the correction
procedure.
A theoretical investigation of the SNR of the

‘‘new system’’ arrays was needed to confirm these
results. Before moving to its exposition, we close
this section noting that the symmetry of the
pattern is of special interest in artifact reduction
and influenced the choice of the pattern as much as
SNR considerations. In fact, if an anti-symmetric
mask is used, one can rotate the mask, instead of
using a different one, to take the anti-mask picture,
with cost and space savings. A related technique

Fig. 5. Coded apertures used for the simulations of Section 2.3. Left: 79� 79 MURA. Open fraction: 50%. Mask pixel size: 0.9mm.
Design resolution: 1.1mm. Center: 77� 77 array derived from a 7 and an 11 1-D URA, following the method of Ref. [8]. Open

fraction: 9.7%. Mask pixel size: 0.9mm. Design resolution: 1.2mm. Right: 62� 62 No-Two-Holes-Touching pattern based on a
31� 31 MURA, with e ¼ 2: Open fraction: 12.5%. Mask pixel size: 1.1mm. Design resolution: 1.5mm. For all masks the field of view
is 9� 9 cm and the base period of a mosaicked pattern is shown. As the thickness was 1.5mm for all masks, more collimation effects
were expected for the masks with smaller pixels and can potentially affect a visual comparison of performance. However, this effect is

also compensated for by near-field artifact correction and all images can be fairly compared directly.
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has been used in the past for the reduction of non-
uniform background [14–16]), but we believe this
to be the first time that it was ever applied to near-
field artifact correction. We did not choose the
largest NTHT pattern available (74� 74, design
resolution 1.2mm) because it is not anti-symmetric
and we would have had to fabricate two masks.

3. General formulation of the SNR for coded

aperture cameras

The results above do not mean that the SNR is
an unreliable figure of merit nor that Eq. (1) is
wrong. Rather, it should be recalled that Eq. (1)
was derived for URAs only and, thus, it should
have not been applied to other patterns. Indeed the
SNR of PNP arrays, a family strictly related to the
‘‘new system’’ arrays, was found, under particular

conditions (no mask transparency and zero back-
ground), to compare unfavorably with URAs [6].
We needed to generalize Eq. (1) so that it would be
applicable to other array families. At the same
time, we wanted to investigate the effect of
different decoding strategies and of mask trans-
parency. As for the former, several decoding
arrays have been proposed in the past. In
particular the discussion has focused on matched
and balanced decoding [1]. These two strategies
can be shown to lead to a linear rescaling of the
image. From a practical point of view, this does
not affect image quality, because it is equivalent to
a contrast and brightness adjustment usually
overrun by display equipment. From a theoretical
point of view, this is important because any linear
transformation of the decoding array is a valid
decoding array, which makes two constants
available for optimization. Skinner and Ponman

Fig. 6. Simulation results with and without near-field artifacts suppression. All corrected images enjoy a double exposure time, but the

comparison is consistent across the three mask patterns. The ‘‘new system’’ corrected image is particularly noisy. This is mainly due to

the second picture taken (not shown). However, the SNR advantage of the other two images is also evident from single exposures.
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[17] have compiled a list of desirable image
properties (vanishing background, vanishing side-
lobe level, total-count conservation, peak value
equal to peak height above its own pedestal,
statistical independence of pixels) and derived the
conditions for the constants to satisfy one or more
of these constraints. We point out that in SNR
calculations it is convenient to set two such
constants so that

A#G ¼ Nd ð3Þ

where A is the mask, G the decoding array and#
the periodic correlation operator. With this
definition one can define the SNR as

SNRij ¼ ffiffiffiffiffi
IT

p
1� tð ÞNwijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� tÞ
P

k;l wkl
P

u;v AklG
2
ij þ tþ xð Þ

P
u;vG

2
ij

q
ð4Þ

where u and v are the variables of all functions and
the pairs (k; l) and (i; j) indicate, respectively, the
shift of the mask pattern associated with the
source reconstructed at (k; l) and the decoding
position.
It is important that G meets condition (3) so as

not to introduce the variance of perfectly flat
pedestals (which do not involve any noise) at the
denominator of Eq. (4). With this caveat, the SNR
expression is independent, as it should, of linear
rescalings of the decoding array. From Eq. (4), we
see that, once a pattern A and its decoding array G
are given, all we need to calculate its SNR areP

u;v AklG
2
ij and

P
u;vG

2
ij : Except for the considera-

tions on linear transformations and mask trans-
parency, the same formula was reached by
Gottesman and Schneid with a heuristic derivation
[6].
In Table 1 are summarized the data relative to

the patterns discussed in this paper. We will not
report the details of the calculations for all arrays.
As an example, we will present the simple but
important case of the pinhole and that of the
NTHT because it is non-trivial, it was the pattern
we eventually chose to fabricate and we are not
aware of a similar result in the literature.

3.1. The SNR of the pinhole

A pinhole aperture can be considered as the
limiting case of a coded aperture. In fact, since A is
a d-function, the choice G ¼ A is readily seen to
satisfy Eq. (3) where, obviously, N ¼ 1: In this
case, thenX
u;v

G2ij ¼ 1 and
X
u;v

AklG
2
ij ¼ dði � k; j � lÞ ð5Þ

which leads to

SNRij ¼

ffiffiffiffiffi
IT

p
1� tð Þwijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� tÞwij þ tþ x
p ð6Þ

in complete agreement with a direct calculation
and Refs. [2,6] providing an additional validation
of Eqs. (3) and (4).

3.2. NTHT (M)URAs

Following the rules of Refs. [1,5] only about
half-open (M)URAs can be generated. This
limitation can be overcome by inserting a number
e� 1 of opaque columns (rows) between all
columns (rows) of a (M)URA, to form NTHT
(M)URAs [9]. The mask pattern now looks like a
square grid of zeros in which we placed the
elements of the original array (see also Fig. 5).
This is the same as substituting each hole with a
smaller one surrounded by mask material. r can
only be smaller than that of the originating array.
Since what matters to self-correlation properties is
mainly the spacing of the holes of a URA and not
their shape [18], one can think of using a non-
integer e as well, but for simplicity we assumed e
integer, greater than 1. The maximum non-trivial r
is then obtained for e ¼ 2 and is about 0.125. Lines
of zeros have to be inserted accordingly in the
decoding array. In decoding, when G is shifted so
that its blank lines cover the non-blank lines of A;
the result of the multiplication is zero. For all
other shifts, the result is the same as a normal
(M)URA case, and one will have a peak and a
sidelobe value which depend on the type of
decoding adopted. So, if care is not taken that
the sidelobe value be zero as well, A#G may
well not be a d function. The coefficients used
in balanced decoding [1] are then forced in the

R. Accorsi et al. / Nuclear Instruments and Methods in Physics Research A 474 (2001) 273–284 279



Table 1

Expressions needed for the calculation of the SNR via Eq. (4) for the arrays discussed in this paper. For NTHT (M)URAs N0T is the total number of positions of the

original array and NT ¼ e2 N0T is still the total number of positions in the pattern. See text for e

Array family
P
AklG

2
ij

P
G2ij SNR

(M)URA
rNT
1� r

rþ di�k;j�l 1� 2rð Þ
� � rNT

1� r

ffiffiffiffiffiffiffiffiffiffiffi
NTIT

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 1� rð Þ

p
1� tð Þwijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� tÞ rþ 1� 2rð Þwij
h i

þ tþ x
r

Product arrays

(PNP, MP, MM,

new system)

N NT ffiffiffiffiffiffiffiffiffiffiffi
NTIT

p
r 1� tð Þwijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� tÞrþ tþ x
p

Negative product

arrays NT
r

1� rð Þ2
r2 �

1

N2T
þ
2

N2T
Nd

� �
NT

1� rð Þ2
r2 þ

1� 2r
N2T

� �
r 1� rð Þ

ffiffiffiffiffiffiffiffiffiffiffi
NTIT

p
1� tð Þwijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� tÞ r3 � r=N2T þ 2rð1� rÞ=NTwij

 �

þ tþ xð Þ r2 þ ð1� 2rÞ=N2T
� �r

NTHT (M)URA
0 for N0T e

2 � 1
� �

shifts

N for N0T shifts

( N0T ffiffiffiffiffiffiffiffiffiffiffi
NTIT

p ffiffiffiffiffiffiffiffi
r=2

p
1� tð Þwijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� tÞrþ tþ x
p

Pinhole di�k;j�l 1 ffiffiffiffiffi
IT

p
1� tð Þwijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� tÞwij þ tþ x
p
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non-zero positions of G: For a MURA these are
�1 and +1 [5].
Of course, this structure influences the quantities

of Table 1, which now depend on the shift of G
relative to A; in particular on whether or not the
blank lines of G overlap with the non-blank lines
of A: The second term of the variance in Eq. (4) is
easily calculated from the decoding coefficientsX
u;v

G2ij ¼ N0T ð7Þ

where N0T is the total number of positions of the
original (M)URA array. The first term is more
complicated

X
k;l

wkl

X
u;v

AklG
2
ij ¼ N

XN0T
k;l

wkl ð8Þ

where the summation on the right-hand side
indicates a sum over pixels of the image recon-
structed for shifts of G which superimpose its
blank lines to those of A: If the source has no
particular structure,

PN0
T

k;l wkl is simply the normal-
ized activity of a 1=e2 fraction of it. One can
substitute this sum over a partial number of
elements with a sum over all elements

X
k;l

wkl

X
u;v

AklG
2
ij ¼

N

e2

XNT
k;l

wkl : ð9Þ

To avoid confusion between the density of the
(M)URA and of the NTHT pattern we carried out
the calculation only for the case of 50% open
original arrays, which, anyway, are the only ones
we know. The open fraction of the NTHT array
now depends on e only: r ¼ ð2e2Þ�1: With a little
work, the result of Table 1 is reached.
One potential disadvantage of NTHT patterns is

that of all patterns for which the square of the
decoding coefficients is not constant over the
positions. Gottesman and Schneid [6] pointed out
that this leads to a dependence of the SNR on the
different points of the reconstruction. To quantify
it, we performed the test they proposed: given an
object made of two point sources, we keep one
fixed and measure the variation of the SNR at this
source as we move the other continuously from
one pixel to a first neighbor. Let the shift be
denoted by R:Measured in pixels, it ranges from 0,

for no shift, to 1. In Fig. 7 the dependence of the
SNR is evident, but is not as dramatic as for
geometric arrays [13,6]. It should be stressed that
this test is performed with point sources and no
background, conditions that maximize the effect.
Moreover, we have already pointed out that in
real cases even point sources spread over a few
pixels, depending on how the detector samples the
mask shadow. For NTHT arrays, if a source
covers an e� e square of pixels, no dependence is
found at all. Our simulations and experimental
results showed no structures due to this SNR
dependence.

3.3. Comparing the performance of different arrays

From the formulae of Table 1 we produced the
graphs of Fig. 8. Here, as well as analytically, it
can be recognized that there is no optimum r for
‘‘new system’’ and NTHT arrays for any combina-
tion of x and wij : For both families, higher the r;
the better. Also, for ro0:5; a half-open (and even
more an optimally open) URA will always per-
form best. However, this is not so for r > 0:5;
where ‘‘new system’’ arrays have an SNR higher
than that of all other arrays. Starting from the
encouraging observation that the negative (i.e. an
array where open and closed elements are
swapped) of a good arrayFdecoding array pair
(A; G) is again a good pair, we tried using the
negative of a ‘‘new system’’ array. This is indeed
an array of very high open fraction (90.3%) and its

Fig. 7. Dependence of the SNR on the position of sources. IT ¼
104 and x ¼ 0 as in Ref. [6]. For high backgrounds and non-
point-like sources the dependence is not as strong.
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study is also relevant to our near-field artifact
correction method. Unfortunately, the SNR for-
mula applicable to negative patterns is not the
same as that of the original family (see Table 1). It
turns out that in this case, the SNR for the
negative array is about 2 times worse than that of
the original.
It is also important to note that the curves of

Fig. 8 are not concerned with the actual existence
of patterns. If one sketched the same curves of
Fig. 8 for existing arrays only, the situation would
be that of Fig. 9, which gives an explanation of our
choice of the pattern. Note that for NTHT
patterns a valid negative pattern is obtained by
inverting the elements of the original (M)URA
pattern only. For existing 50% open patterns, this
does not change the open fraction, so that the
SNR is the same of the positive NTHT pattern.

3.4. When does a coded aperture pay off?

Given the number of parameters involved, a
number of comparisons can be made. In general
the result is that, as already commonly accepted,
coded apertures are favored for high background
and concentrated sources. We were interested in a
quantitative comparison between the pinhole and

the NTHT mask we built. For simplicity, in
the following we assume t ¼ 0: From Table 1,
the coded aperture has an SNR higher than the

Fig. 8. Comparison of the SNR of different masks for t ¼ 0:01: The top row is drawn for w ¼ 2:6� 10�4: The bottom row is drawn for
x ¼ 5:56� 10�4: The continuous line refers to (M)URAs, the dotted to NTHT arrays and the dashed to the ‘‘new system’’ arrays of
Ref. [8]. The SNR is normalized as in Fig. 4: the advantage over the pinhole increases with x and w:

Fig. 9. SNR as a function of r for existing arrays. The SNR is
normalized as in Fig. 4. For this graph t ¼ 0:01; w ¼ 2:6� 10�4

and x ¼ 5:56� 10�4; as applies to the case study. The negative
of a NTHT array has the same SNR as its positive. For the

NTHT mask of Fig. 5 the advantage over the pinhole is about

1.2 in SNR terms (1.4 in time or activity) for this ‘‘average’’

image pixel. The PNP and negative PNP array singled out are

those simulated in Section 2.
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pinhole if

2�NTrð ÞxpNTrc� 2r: ð10Þ

Since the smallest URA is a 5� 3 array with 8
open positions, the smallest open fraction is rmin ¼
8=NT; so

xX
rNT

2� rNT
wij �

2r
2� rNT

: ð11Þ

This inequality can be interpreted as the
separation of the (c; x) plane in two regions. The
right-hand side is the family of straight lines
passing through the point (2=NT; 0). To each r
corresponds a different line, identified by its
intercept 2r=ðrNT � 2Þ: Since r must be greater
than rmin but less than rMAX ¼ 0:5 (URA case),
not all the lines of the family have a physical
meaning. In Fig. 10 the solid lines represent these
limiting cases. The line for r ¼ ropt ¼ 0:125 is the
one for which an actual NTHT array gives best
performance. An NTHT coded aperture will have
an SNR higher than the pinhole depending on its
parameters (NT and r) and those of the image(c;
and x). The coded aperture is favored for all points
of the image lying above this line. First, the coded
aperture offers an advantage for all points such
that wiX2=NT; for all x: Second, the higher the
background, the better the performance of the
coded aperture, for all wij : Third, for increasing r;
the intercept drops expanding the region of coded
aperture better performance, in agreement with the
results of Fig. 8.

The elementary sources wij of which an object is
made can be located on the same graph. Since x is
constant for all points, any object is represented by
a horizontal line going from the minimum (usually
0) to the maximum wij : In Fig. 11 the case of the
thyroid case study is shown. The background is
high enough to suggest a small advantage for all
points. These numbers are consistent with the
small advantage seen in practice and in past
applications [19,20].
In a more general case, objects that take the

whole FoV have an average wij of /cS ¼ 1=NT:
since this is less than 2=NT; whether or not there is
an advantage over the pinhole is a matter of
background. However, if the object fills only a
fraction f 2 of the area of the FoV (so that f is the
1D reduction in the FoV), /cS ¼ 1=f 2NT: For
fo1=

ffiffiffi
2

p
the advantage is present, independent of

background. The smaller f ; the higher the advan-
tage: if the object takes about 5% of the FoV (e.g.
a 2� 2 cm2 area in a 9� 9 cm2 FoV), then the SNR
advantage would be a factor of almost 3.2, which
is a 10-fold reduction in time or dose at constant
image quality.

4. Conclusions and future work

Our study was concerned with finding an
optimal coded aperture pattern for Nuclear
Medicine applications. In this field, typical condi-
tions, low background and sparse objects, are

Fig. 10. c� x plane indicating the cases for which a coded
aperture offers a SNR higher than the pinhole.

Fig. 11. Application to the thyroid case study. Even if the

advantage is small, all image points are imaged with better SNR

than they would have been with a pinhole.
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those for which the benefits of using an optimal
open fraction are the greatest, up to a factor of 1.5
in exposure time or activity. In theory the best
SNR is provided by 10–30% open URAs. We
know a few 1D URA sequences with low open
fraction: these can be folded in 2D arrays, but they
are either too sparse, too short or do not provide
acceptable pattern sizes [21]. Other low-through-
put families have been suggested in literature for
specific use in Nuclear Medicine, but both simula-
tion and theory have shown that the theoretical
result derived for URAs only does not apply to
these new patterns, whose SNR actually decreases
with the open fraction. This is also true for NTHT
patterns based on (M)URAs, but the reduction in
SNR is not as dramatic. We do not know of any
pattern that can achieve the SNR predicted for
less-than-half-open URAs. The best artifact-free
array we know, as far as SNR is concerned, is still
a half-open URA. These patterns, however, are
not self-supporting and, in cases like ours, cannot
be used. Self-supporting NTHT patterns present
the opportunity of having almost the same SNR
offered by half-open URAs.
From the normalized SNR one can calculate

that the SNR advantage over the pinhole for the
thyroid case study is never large for patterns of size
o60. However, the advantage would increase for
objects with a higher w: This opens two opportu-
nities. First, one can target the application of
coded apertures to pathologies that are typically
detected by small hot spots on a dark background.
A good example of this would be whole body
FDG uptake imaging of tumors. Second, if only a
small part of the FoV were used, /cS would
increase. This can be achieved by shielding part of
the FoV. For instance, in small animal imaging a
case of great interest is that of the activity
distribution, e.g. in a mouse’s head. The animal
could be shielded with a lead foil in which is cut an
aperture of the size of the head. In this way we are
trading a part of the FoV (and, thus, of the
detector) for increased SNR, an opportunity not
offered by pinholes. For this case, preliminary
experiments have showed that it is indeed possible
to image with a resolutiono1.5mm (FWHM) and
preliminary theoretical investigation suggests a
potential advantage of 10 in exposure time. The

resolution limit has not been pushed yet: at
present, more aggressive designs expected to reach
sub-millimeter resolution seem to be achievable.
In the near future we intend to carry out

experimental trials to confirm the opportunities
predicted by theory.
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