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Abstract: This paper puts forward a 1-D convolutional neural network (CNN) that exploits a novel
analysis of the correlation between the two leads of the noisy electrocardiogram (ECG) to classify
heartbeats. The proposed method is one-dimensional, enabling complex structures while maintaining
a reasonable computational complexity. It is based on the combination of elementary handcrafted
time domain features, frequency domain features through spectrograms and the use of autoregressive
modeling. On the MIT-BIH database, a 95.52% overall accuracy is obtained by classifying 15 types,
whereas a 95.70% overall accuracy is reached when classifying 7 types from the INCART database.

Keywords: heartbeat classification; convolutional neural network (CNN); canonical correlation
analysis (CCA)

1. Introduction and Related Work

Cardiovascular diseases are the first cause of death in the world, with an estimated
17.9 million deaths each year. Among them, heart arrhythmia qualifies as an abnormal
heart rhythm that can result in serious complications such as stroke or cardiac deaths. Early
detection of arrhythmia is a major challenge for our society.

With electrocardiograms (ECGs), heartbeats can be visually labelled according to
several classes such as Normal beat, Supraventricular escape beat, etc. An ECG is a graph
of voltage versus time of the electrical activity of the heart using electrodes placed on the
skin. To assess the condition of the heart from different angles, an ECG has several leads,
each of them being the signal generated by a pair of electrodes.

In the last decades, researchers employed machine learning methods for the automatic
classification of heartbeats contained in long-duration recordings of human ECGs [1,2]. A
traditional heartbeat classification pipeline includes data preprocessing, data segmentation,
feature extraction, feature selection, and classification [3].

Data preprocessing is used to remove noise from the ECG raw signal. The most used
techniques are median filters [4], discrete wavelet transform (DWT) [5,6], adaptive filters [4,7],
and frequency selective filters [8–10].

Data segmentation is used to isolate heartbeats from the whole ECG recording. Once
a time segment including the heartbeat is available, time domain [11–16] or frequency do-
main [13,16–18] or morphological [11–13,15,16] or statistical [13,19] or neural features [20]
are extracted.

Feature selection is used to reduce the number of features used by the classifier thus
reducing the complexity and time required for computation. Several approaches have been
adopted: principal and independent component analysis [5,6,21,22], linear discriminant
analysis [6], and genetic algorithm [23].

Random forest [24,25], support vector machines (SVMs) [13–16,18,19], neural networks
(NNs) [5,6] or deep neural networks (DNNs) [2,26–32] are employed to classify extracted
features in one of the heartbeat classes.
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As discussed above, ECGs can be recorded in different locations of the body thus
obtaining the so-called multilead ECGs. Up to 12 leads can be recorded and each lead
represents a specific characteristic of the heart. Multilead ECGs better reflect the state of
the heart compared with single lead ECGs. Taking into account multi leads may bring
performance improvement. Existing literature is mainly focused on the processing of single
lead ECGs [20].

In this paper, we focus on two-lead ECGs: we use lead V1, that is a chest lead, and
lead II, that is a limb lead. We propose the combination of hand-crafted features with
a canonical correlation analysis network (CCANet) and SVMs for two-lead heartbeats
classification. The analysis of the correlation between two leads of the ECG is exploited
to increase heartbeat classification performance [20]. Proposed CCANet is a 1-D variant
of the original 2-D CCANet proposed by Yang et al. [20] that allows to explore a deeper
CCANet while maintaining a reasonable computational complexity and providing better
results. CCANet has been originally proposed by Yang et al. [33] for the processing of
two-view images in 2017. Compared to one-view image-based PCANet and RandNet,
CCANet demonstrated to perform better [33]. CCANet has also been employed in other
computer vision tasks such as remote sensing scene classification [34] as well as ECG
interpretation [20].

There are two types of CNNs that are commonly used for ECG classification: the 1-D
CNN and 2-D CNN [35]. 2-D CNNs usually operate on transformed ECG data, such as
spectrograms, gray-level co-occurrence matrices, combined features and others. 1-D CNNs
operate directly on the raw ECG signal. Our one-dimensional variant takes as input a
combination of elementary hand crafted time domain features, frequency domain features
through spectrograms, and the use of autoregressive modeling.

For the sake of comparison, we evaluate a suitable implemented 1-D convolutional
neural network (CNN) solution based on residual networks (ResNet) [36]. ResNet demon-
strated to be one of the most performing CNN for visual recognition [37]. The proposed
method outperforms the state of the art on both the MIT-BIH and INCART arrhyth-
mia databases.

Our Contribution

The main novel contributions of this paper are summarized as follows:

• We have designed a novel one-dimensional canonical correlation analysis network
(1-D CCANet) to exploit two-lead ECGs for automatic classification of heartbeats that
outperforms the state of the art;

• We have explored the use of handcrafted features in combination with a 1-D CCANet
for ECG classification;

• Our proposal outperforms a solution based on a suitable one-dimensional ResNet
that we have implemented for the sake of comparison.

2. Materials
2.1. MIT-BIH Database

The MIT-BIH database contains 48 sets of two-lead ECG signals (lead II and mostly
V1). Each signal is approximately 30 min long, has been collected at a 360 Hz sampling
frequency, and has been independently annotated by at least two cardiologists. Annotations
include the 15 types listed in Table 1. In our study, we use the signals for which both II and
V1 leads are available (see PhysioBank for further details).

2.2. INCART Database

The St. Petersburg Institute of Cardiological Techniques 12-lead arrhythmia database
(INCART) contains 75 sets of 12-lead ECG signals (leads I, II, III, aVR, aVL, aVF, V1, V2, V3,
V4, V5, V6). Each signal is approximately 30 min long and has been collected at a 257 Hz
sampling frequency. We only consider leads II and V1 of each record. Annotations include
the 7 types listed in Table 2.
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Table 1. Details of the categories for MIT-BIH database.

Type Name Quantity

r Rhythm change 200
N Normal beat 1000
A Atrial premature beat 200
V Premature ventricular 200
P Paced beat 200
x Non-conducted P-wave 100
F Fusion of ventricular contraction 200
j Nodal (junction) escape beat 200
L Left bundle branch block beat 200
a Aberrated atrial premature beat 100
J Nodal (junction) premature beat 50
R Left bundle branch block beat 200
! Ventricular flutter 200
E Ventricular escape beat 100
f Fusion of paced and normal beat 200

Tot 3350

Table 2. Details of the categories for INCART database.

Type Name Quantity

N Normal beat 500
A Atrial premature beat 200
V Premature ventricular 500
n Supraventricular escape beat 30
F Fusion of ventricular contraction 200
j Nodal (junction) escape beat 90
R Left bundle branch block beat 200

Tot 1720

3. Proposed Method

The input of the proposed method is a two-channel ECG segment obtained after a
preliminary segmentation that consists in the isolation of heartbeats in each record. Given
the R-peak positions, any heartbeat is isolated by retaining T1 and T2 samples to the left
and to the right of the R-peak, respectively. For each of the two leads, a vector denoted as
xh (h = 1, 2) is built with the values of the ECG (in Volts), of size (T2 + T1). The values of
T1 and T2 are 160–200 and 120–136 for MIT-BIH and INCART, respectively. These values
are given in Table 3, and are similar to the one used in [20].

Table 3. Sampling rates, values of T1 and T2 for both MIT-BIH and INCART databases.

Database Sampling Rate (Hz) T1 T2

MIT-BIH 360 160 200
INCART 257 120 136

The architecture of the whole process is shown Figure 1a,b. The first stage is feature
extraction. The input of the process is, for each lead, a vector xh (with h = 1, 2) containing
raw values of the segmented heartbeat. Each lead xh (h = 1, 2) is normalized (see the
“Normalization” module in Figure 1a by using a rescaling procedure so that the resulting
vector xh,norm has an intensity that ranges from 0 to 1, as per equation:

xh,norm =
xh −min(xh)

max(xh)−min(xh)
. (1)
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At the same time, hand-crafted features are extracted from each lead xh (h = 1, 2):
frequency-domain features xh,spec, and autoregression features xh,ar. A single time-domain
features vector xtime is also computed for both leads. Frequency-domain features, autore-
gression features and the normalized segmented heartbeat xh,norm are concatenated to
obtain the vector xh,cat = [xh,ar xh,spec xh,norm] (see Figure 1a). The xh,cat (h = 1, 2) vector is
processed by the neural module to produce a single output vector fneur for the two leads
(see Figure 1b). The vector fneur is then reduced in dimensions by using Principal Compo-
nent Analysis (PCA) thus obtaining the vector fpca. The concatenation of the time-domain
features xtime and fpca is the input of a Support Vector Machine classifier. The output of the
classifier is the predicted heartbeat class. In the following subsections the feature extraction
and neural module are discussed more in detail.

(a)

(b)

Figure 1. Classification processing pipeline of our method. (a) Feature extraction: for each of the two leads xh (h = 1, 2),
hand-crafted features are extracted to build xh,cat (h = 1, 2) while xtime, a vector of time-domain features, is built for both
leads. (b) Part of these features, xh,cat (h = 1, 2), feeds the 1-D CCANet-SVD module, which first outputs the neural features
fneur and then a reduced version of the neural features fpca. The concatenation of xtime and fpca feeds the classification
module. The output is the predicted heartbeat class.

3.1. Hand-Crafted Feature Extraction

Given an isolated heartbeat xh (h = 1, 2), hand-crafted features are extracted with
three different methods: frequency-domain, time-domain, autoregressive modeling.

3.1.1. One-Dimensional Spectrogram

For the frequency domain, we use a one-dimensional spectrogram, which is a repre-
sentation of the spectrum of frequencies of a signal as it varies with time. It is built through
a short-time Fourier transform (STFT) of each of the two non-normalized leads xh (h = 1, 2).
A window slides through the signal (with potential overlapping) and computes at each step
the squared magnitudes of the STFT of the portion of the signal belonging to the window.
The Hamming windowing is used for this process. The spectrogram is then obtained by
concatenating, along the time axis, the squared magnitudes acquired for each window. The
squared magnitudes obtained for each frequency (up to half of the sampling rate) at each
time step can be reported in a matrix where axis 0 and 1 are the frequency and time axis,
respectively. Since the range of the squared magnitudes varies significantly, the resulting
matrix is rescaled to [0, 1] to yield Xh,spec (h = 1, 2).
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A weighted average along the frequency axis is performed thus turning the Xh,spec
matrix into a one-dimensional vector, xh,spec. The equation used is the following (2):

xh,spec =
1

S(n) ∑
k

1
kn Xh,spec[k], (2)

where S(n) = ∑
k

1
kn .

This feature extraction method requires three parameters: the number of samples
in the window of the STFT (Nwind = 64 and 46 for MIT-BIH and INCART respectively),
the number of samples in the overlap between two consecutive steps (Noverlap= 32 and 23
for MIT-BIH and INCART respectively) and n (0.25 for both MIT-BIH and INCART), the
weight parameter in Equation (2). Suitable parameters are found with a greedy search. The
feature vector xh,spec is of size 10.

3.1.2. Autoregressive Modeling

Autoregressive (AR) modeling specifies that a time series value depends linearly on
its own previous values and a stochastic term, as per Equation (3):

Xt =
p+1

∑
i=2

ϕiXt−i+1 + ε(t), (3)

where Xt is the time series, ϕi are the AR coefficients computed with Yule-Walker’s method
and p is the order of the AR model. Since the choice of the order p depends highly on the
sampling rate, non-normalized ECGs from both databases are resampled to 360 Hz [38]. The
order was then chosen by performing best parameter search on the training data for both
the MIT-BIH and INCART databases. We chose the order that maximized the average of our
performance metrics (accuracy, specificity, sensitivity, ppv) on a validation set. Figure 2 shows
that for the INCART data, the best order is 2 while the best order is 3 for the MIT-BIH data.
Since the performance for MIT-BIH is quite comparable for orders 2 and 3, we chose an order
equal to 2 for both datasets. We preferred a lower order to reduce the computational cost. The
vector of AR coefficients obtained for each lead of one heartbeat, xh (h = 1, 2), is denoted as
xh,ar and is of size 2.

Figure 2. Mean performance for different AR orders on validation sets for MIT-BIH signals (red) and
INCART signals (blue).

3.1.3. Time-Domain Features

For each of the two leads xh (h = 1, 2) of one segmented heartbeat, we compute the
following time-domain features: the median value of xh, its fourth order and fifth order
central moments and the kurtosis of xh. Finally, for both leads, we build a single vector of
time-domain features including the previous features for each lead and the heartbeat rate
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of the patient to whom the heartbeat belongs. The resulting vector is denoted as xtime and
is of size 9.

3.2. Neural Feature Extraction

To exploit the correlation between two ECG leads, we use a one-dimensional variant
of the canonical correlation analysis network (CCANet). First introduced in the field of
image recognition by Yang et al. [33], CCANet has been employed in two-view image
recognition tasks. Recently, CCANets, which are intrinsically two-dimensional, have
been successfully employed in the signal processing field for the classification of two and
three lead heartbeats [20]. A CCANet is usually composed of two cascaded convolutional
layers and an output layer: (1) in the convolutional layers, the CCA technique is used to
extract dual-lead filter banks; (2) in the output layer, the features extracted from the second
convolutional layer are mapped into the final feature vector [20].

In this paper, with the aim of increasing performance, we design a new 1-D canonical
correlation analysis network that is composed of four 1-D convolutional layers and an
output layer. Contrary to CCANet, the filters are found by combining a CCA with a
singular value decomposition (SVD), and features are extracted after each layer. The use
of 1-D convolutions instead of 2-D permits to limit computational cost, thus allowing to
increase the number of layers from two to four and, consequently, to increase performance.

The processing pipeline is shown in Figure 3. The input of the proposed 1-D CCANet-
SVD is the concatenation of autoregressive features, spectrogram features, and the original
normalized heartbeat, resulting in the following vector xh,cat = [xh,ar xh,spec xh,norm] ∈ Rm,
h = 1, 2. The 1-D CCANet-SVD is trained with N two-lead heartbeats and then used as
neural feature extractor in combination with a linear SVM for heartbeat classification. The
network is trained separately for the MIT-BIH and INCART databases.

Figure 3. Proposed 1-D CCANet-SVD.

3.2.1. First Convolutional Layer

We denote x(i)h,cat the i-th element (i ∈ {1, . . . , m}) of an input vector xh,cat. We selected

a series of segments of size k centered on each value x(i)h,cat, to obtain the m following
segments, bh,1, . . . , bh,m ∈ Rk. The latter are then zero-centered and concatenated to build
a matrix of the segments [bh,1, . . . , bh,m] ∈ Rk×m. This procedure is performed on each of
the N training heartbeats and the resulting matrices of segments are finally concatenated
to obtain Xh ∈ Rk×Nm, h = 1, 2. Note that our network is simultaneously fed with all the
training heartbeats in order to build the two matrices X1 and X2.

Let us address the filter extraction stage. In [20], the filters are found with a CCA, thus
by maximizing the correlation between pairs of projected variables. The first projection
direction can be obtained by optimizing Equation (4):

max ρ(a1, b1) = aT
1 S12b1 (4)
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with the constraints aT
1 S11a1 = 1, bT

1 S22b1 = 1, where Shh′ = (Xh)(Xh′)
T , and a1 and b1 are

the first canonical vectors for each of the two leads. The Lagrange multiplier technique
shows that a1 and b1 are eigenvectors of M1 = S−1

11 S12S−1
22 S21 and M2 = S−1

22 S21S−1
11 S12,

respectively. Given the first l − 1 directions, the l-th projection direction can be calculated
by solving problem (4) with the additional constraints aT

i S11al = bT
i S22bl = 0, (i < l). In

the end, the L1 filters for the first lead are built by taking the L1 primary eigenvectors of
M1 (i.e., associated with the L1 biggest eigenvalues), whereas the L1 filters for the second
lead are built by considering the L1 primary eigenvectors of M2.

In this paper, we use a slightly different approach, referred to as the CCA-SVD filter
extraction technique. We perform an SVD of both M1, and M2, as per M1 = U1D1VT

1 and
M2 = U2D2VT

2 , where the U and V matrices are unitary, and the D matrices are diagonal
with singular values on the diagonals. Using an SVD allows to retrieve the directions,
which explain the most the variance of M1 and M2. Since these two matrices derive
from the CCA, they capture the correlations between the two leads. Therefore, we use
the directions found by performing an SVD on them to have the best explanation of the
correlation between the two leads. Consequently, the L1 filters for the first lead are built
by taking the columns of U1 that are associated with the L1 biggest singular values of D1,
whereas the L1 filters for the second lead are built by considering the columns of U2 that
are associated with the L1 biggest singular values of D2. Such an approach yields better
results than the traditional CCA filter extraction technique (see Experiments). We denote
as W1,l and W2,l , l = 1, . . . , L1, the L1 filters of size k corresponding to the first and second
lead, respectively.

As for the convolutions, for each lead h, each input signal xh,cat yields L1 outputs
xh,cat,l = xh,cat ∗Wh,l , l = 1, . . . , L1. The length of the input and output signal were kept
identical, thanks to a zero-padding of the input.

3.2.2. First Extraction Stage

The extraction stage follows the same steps as in [20]. First, for each heartbeat, the
output of the first convolution is converted to a decimal one-dimensional signal as per
T = ∑L1

l=1 2l−1H([x1,cat,l , x2,cat,l ]) ∈ R2m, where H is the Heaviside step function. Therefore,
the range of each component of T is [0, 2L1 − 1]. T is then divided in B blocks of size
u1. Each block can overlap with its neighbor, according to R1 ∈ [0, 1], an overlapping
proportion parameter. For each of these blocks, a histogram with 2L1 bins is built. The
values of the resulting histogram for each block is embedded in a 2L1-long vector and the
vectors provided by each block are then concatenated to obtain Bhist(T) ∈ R2L1 B. The first
feature vector, for the heartbeat, is f 1 = Bhist(T).

3.2.3. Second Convolution Layer and Extraction Stage

The second layer is identical to the previous one, except for the fact that the input is
different. Indeed, before the first convolution, each lead of a heartbeat was represented by
a single vector of length m. After the first convolution, each lead is now represented by L1
vectors of length m. Let’s walk through the second layer with the notations used so far.

The xh,cat,l = xh,cat ∗Wh,l , l = 1, . . . , L1 produced after the first convolutional layer are
the input of the second layer. Since we initially considered N training heartbeats, it means
that this layer has a total number of N × L1 input vectors corresponding to lead 1 and
N × L1 input vectors corresponding to lead 2. The same segmentation and zero-centering
process as in the first layer gives Yh ∈ Rk×mNL1 (h = 1, 2), the matrices of the concatenated
segments for all the input vectors, for each lead.

Applying the CCA-SVD filter extraction technique with S̃hh′ = (Yh)(Yh′)
T leads us to

perform the SVD of M̃1 = S̃−1
11 S̃12S̃−1

22 S̃21 and M̃2 = S̃−1
22 S̃21S̃−1

11 S̃12, for the first and second
lead, respectively. The filters are then found exactly as in the first convolutional layer and
we denote as W̃1,` and W̃2,`, ` = 1, . . . , L2, the L2 filters of size k extracted for the first and
second lead, respectively.
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As for the convolutions, for each initial lead h = 1, 2 and channel l ∈ {1, . . . , L1}, the
signal xh,cat,l yields L2 outputs xh,cat,l,` = xh,cat,l ∗ W̃h,`, ` = 1, . . . , L2. At this stage, each
initial lead of a heartbeat is now represented by L1 × L2 vectors of size m.

The second extraction step is the same as after the first convolutional layer ex-
cept for a few points. First, for each heartbeat, the output of the second convolutional
layer is converted to a decimal signal as per T̃l = ∑L2

`=1 2`−1H([x1,cat,l,`, x2,cat,l,`]) ∈ R2m,
l ∈ {1, . . . , L1}. The second feature vector for the heartbeat is obtained as per f 2 =
[Bhist(T̃1), Bhist(T̃2), . . . , Bhist(T̃L1)]. The Bhist are built with a block size and an overlap-
ping parameter equal to u2 and R2, respectively.

The third and fourth convolutional layers are built similarly. f 3 and f 4 refer to the third
and fourth feature vectors extracted for a heartbeat after each layer. We denote as L3 and
L4, the number of filters for the third and fourth layers, respectively. u3 and u4 are the block
sizes for the construction of Bhist after the third and fourth convolutional layers, respectively.
Finally, we denote as R3 and R4, the overlapping parameters for the last two layers.

3.2.4. Final Output and PCA

For a given heartbeat, the final output of the network is obtained by concatenating
the four feature vectors, as per fneur = [ f 1, f 2, f 3, f 4]. Given the significant size of the final
feature vector, a PCA is carried out to reduce dimensionality. The number of components
is chosen such that the explained variance is over 99.99% thus obtaining fpca. The final
feature vector F is obtained by concatenating this vector to the vector of time-domain
features corresponding to the heartbeat. F = [ fpca, xtime] is a vector of size 1382 or 3020,
for INCART or MIT-BIH heartbeats, respectively.

The classification step is performed by a linear SVM, with a regularization parameter
C = 1.

4. Experiments
4.1. Experimental Setup

To assess the performance of our method, we classified 15 and 7 different types of
heartbeats from the MIT-BIH and INCART databases, respectively. One major obstacle
of our databases is that they are not well balanced. For instance, the normal types are
over-represented while the supraventricular escape beats from INCART have few samples
in comparison. To address this issue, we randomly sampled (without repetition), as in [20],
3350 heartbeats from the MIT-BIH database and 1720 heartbeats from INCART, in the
proportions given by Tables 1 and 2 respectively.

We used k-fold cross validation on the resampled heartbeats to fit the parameters of
1-D CCANet-SVD. The parameters are shown in Table 4.

Table 4. Parameters for 1-D CCANet-SVD.

Layer 1 Layer 2 Layer 3 Layer 4

k = 7

L1 = 2 L2 = 3 L3 = 3 L4 = 5

u1 = 35 u2 = 35 u3 = 35 u4 = 50

R1 = 0.5 R2 = 0.4 R3 = 0.4 R4 = 0.3

The results provided in the Results and discussion subsection derive from an overall
confusion matrix obtained after summing the k confusion matrices given after each fold.
As in [20], we performed 10 and 5-cross validation for the data from the MIT-BIH and
INCART databases, respectively.

The code is written in Python 3.7 and we ran all the experiments on a personal
computer equipped with Ubuntu 18.04. The hardware specifications of the computer are
the following: 16 GB RAM, and i7-7700 CPU with a clock speed of 3.60 GHz.
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1-D ResNet

To further validate our approach, we added a one-dimensional residual network (1-D
ResNet) to our experiments. The input is the same as for 1-D CCANet-SVD. The 1-D
ResNet has been implemented as follows:

• Initial layer: the input of the network undergoes an initial convolution with 2 input
channels (one for each lead) and 16 output channels. This convolution is followed by
a max-pooling step. This initial layer is followed by 4 identical residual blocks.

• Residual blocks: each of them contains two convolutional layers and, for each block,
the output of the second convolutional layer is finally added to the block’s input. For
each block, the first convolution doubles the number of channels, while the second
convolution has the same number of input and output channels. Consequently, the
last convolution has 256 output channels. The output of the last block then undergoes
average-pooling to obtain the feature vector.

• Classification layer: the feature vector, of size 256 serves as the input of a fully connected
neural network. The classification is then performed thanks to the Softmax function.
The loss used is the cross-entropy.

During the feature extraction process, Batch-Normalization is performed after each
convolution and the Rectified Linear Unit (ReLU) is used as the activation function. Table 5
shows the architecture of the network and the various parameters fitted for each layer.
All the parameters, including the number of layers, residual blocks and the number of
channels for the convolutions were found through cross-validation.

Table 5. Architecture of 1-D ResNet with the parameters for the initial layer and the convolutions of
each residual block.

Output Size Layers

MIT-BIH INCART Initial Layer

Conv (kernel size = 7, stride = 1, padding = 3)
BatchNorm
ReLU

184× 16 132× 16 MaxPool (kernel size = 5, stride = 2, padding = 0)

184× 32 132× 32 ResBlock (kernel size = 5, stride = 1, padding = 2)

184× 64 132× 64 ResBlock (kernel size = 5, stride = 1, padding = 2)

184× 128 132× 128 ResBlock (kernel size = 5, stride = 1, padding = 2)

184× 256 132× 256 ResBlock (kernel size = 5, stride = 1, padding = 2)

1× 256 1× 256 AvgPool

15 7 Fully Connected Network

4.2. Evaluation Metrics

Several measures have been employed for the evaluation of the goodness of the pro-
posed approach: (1) Overall Accuracy (OACC) defined as (TP + TN)/(TP + TN + FP + FN);
(2) Mean Accuracy (MACC) defined as the average of the class accuracies; (3) Specificity
(SPE) defined as TN/(TN + FP); (4) Sensitivity (SENS) defined as TP/(TP + FN); (5) Posi-
tive Predictive Values (PPV) defined as TP/(TP + FP). TP, TN, FP, FN are the number of
True Positive, True Negative, False Positive and False Negative, respectively. Note that in
Table 6, the values of SPE, SENS, and PPV are averaged across the classes.

4.3. Results and Discussion

Table 6 shows the results obtained for various classification methods. It includes
the previously described model, variations of it (e.g., without adding the time-domain
features), the 1-D ResNet and the best dual-leads method in the state of the art [20].
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Table 6. Results for various methods (%). For each method, first line reports results for the MIT-BIH
database while the second line reports for the INCART database. OACC stands for Overall Accuracy;
MACC for Mean Accuracy; SPE for Specificity; SENS for Sensitivity; PPV for Positive Predictive
Values; AVG is the Average of the first 5 columns of the table. Best results are highlighted in boldface.

Method OACC MACC SPE SENS PPV AVG

DL-CCANet [20] 95.25 99.40 99.60 94.60 96.30 97.03
94.01 98.31 98.85 90.89 94.11 95.23

1-D ResNet 91.88 98.92 99.36 90.11 90.14 94.08
86.25 96.07 97.55 85.05 80.66 89.12

1-D CCANet-SVD 94.75 99.30 99.57 93.77 95.81 96.64
(w/o SVD) 93.60 98.17 98.80 90.63 93.33 94.91

1-D CCANet-SVD 95.40 99.39 99.62 94.43 96.54 97.08
(w/o time-domain feat.) 95.35 98.67 99.11 93.26 96.22 96.52

1-D CCANet-SVD 95.22 99.36 99.6 94.03 96.61 96.96
(w/o 1D-spec) 94.77 98.50 99.02 92.66 94.59 95.91

1-D CCANet-SVD 95.43 99.39 99.62 94.53 96.73 97.14
(w/o ar) 95.12 98.60 99.09 93.68 95.13 96.32

1-D CCANet-SVD 94.99 99.33 99.59 93.85 96.21 96.79
(w/o stack) 94.83 98.52 99.03 92.43 94.95 95.95

1-D CCANet-SVD 95.52 99.40 99.63 94.60 96.65 97.16
(proposed) 95.70 98.77 99.19 93.78 95.89 96.67

Our method and [20] demonstrated comparable performances on the MIT-BIH database,
though our overall accuracy and mean ppv were better by around 0.3%. As for the INCART
database, our results proved to be better, especially the overall accuracy (+1.69%), mean
sensitivity (+2.89%), and mean ppv (+1.78%). Contrary to [20], our approach is purely one-
dimensional, allowing to explore a more complex version of CCANet while maintaining a
reasonable computational complexity and providing better results: we opted for 4 layers
and stacking features extracted after each convolution gave better results than without doing
so (see seventh method of Table 6), especially increasing the sensitivity. Using frequency
features with the one-dimensional spectrogram helped obtain a better classification by notably
increasing the sensitivity (+1.12% for INCART) and the ppv (+1.3% for INCART). The addition
of the AR coefficients and the time-domain features contributed to slightly increase the
performance of our model. The performances were significantly better when using our
CCA-SVD filter extraction technique instead of the CCA technique described in [20], with
a sensitivity gaining more than 3% for INCART (see the third method of Table 6). Finally,
our method provided significantly better results than the 1-D ResNet approach (+3.64% for
overall ACC for MIT-BIH, +9.45% for INCART). Our analysis of the correlations of the two
leads, using SVD, proved to be a good way of recognizing the various types of heartbeats.

Tables 7 and 8 show the comparison between the best of our proposals and similar
works in the state of the art for MIT-BIH and INCART databases respectively. In the
case of MIT-BIH, Table 7 confirms that the use of dual-leads-based approaches brings
improvements in performance (more than 1%). Also in the case of INCART we see an
improvement with respect to single-lead-based method (more than 3%). Here, the proposed
approach is slightly better than a variant of the work by Yang et al. [20] that uses three leads.
Although our approach explores more complex structures with respect to Yang et al. [20], it
remains comparable, in terms of computational cost, with it. The inference time for each
heart beat classification is about 0.05 s while in the case of Yang et al. [20], it is about 0.02 s.
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Table 7. Results for various methods on the MIT-BIH database.

Authors Year Method Type #Samples Ov. ACC

Plawiak et al. [13] 2018 Evol.Neural (1 lead) 15 1000 91.00%
Lee et al. [39] 2018 PCANet (1 lead) 15 3350 94.59%
Yang et al. [20] 2019 RandNet (1 lead) 15 3350 94.39%
Yang et al. [20] 2019 DL-CCANet (2 lead) 15 3350 95.25%
Proposed method 2021 1-D CCANet-SVD (2 lead) 15 3350 95.52%

Table 8. Results for various methods on the INCART database.

Authors Year Method Type #Samples Ov. ACC

Lee et al. [39] 2018 PCANet (1 lead) 7 1720 93.72%
Yang et al. [20] 2019 RandNet (1 lead) 7 1720 92.91%
Yang et al. [20] 2019 DL-CCANet (2 lead) 7 1720 94.01%
Yang et al. [20] 2019 TL-CCANet (3 lead) 7 1720 95.52%
Proposed method 2021 1-D CCANet-SVD (2 lead) 7 1720 95.70%

Our method presents a few limitations. First, the CCANet technique requires the
network to be fed simultaneously with all the training data, in order to determine the filters
and this may cause a growth in the computational cost as the size of the training data
increases. This limitation is common to all the CCANet-based architectures. In our study,
we only considered 2-lead signals as input, it could be interesting to include more leads
with the hope of increasing the performance, especially for classes with fewer samples.
Following the work by Yang et al. [20], our approach can be quite naturally extended to
3-lead signals. The number of layers might need to be reduced to compensate for the
additional cost added by the addition of a third lead. Another interesting perspective
would be to include some of the techniques we have used in our study in the original two-
dimensional CCANet developed by Yang et al. [20]. Indeed, Table 6 shows that the use of
the SVD significantly increases the performance, without adding additional computational
cost compared to the original method. Therefore, we could also expect promising results
when using SVD in the original 2-D CCANet. Likewise, it could be interesting to analyze
how the spectrogram features influence the performance of the 2-D CCANet and allow to
make significant improvement in the field of abnormal heartbeat recognition.

5. Conclusions

In this paper, we propose a novel heartbeat classification method based mainly on
a new approach to the study of the correlation between the two ECG leads, to extract
complex features. Our method also employ elementary hand-crafted time domain fea-
tures, frequency domain features with a one-dimensional approach to spectrograms, and
autoregressive coefficients. Our method is one-dimensional, allowing to explore a more
complex neural architecture while maintaining a reasonable computational complexity,
and providing better results. Our final model has an optimal structure and performs
the classification of 15 and 7 heartbeat types for the MIT-BIH and INCART databases,
respectively. Finally, our method outperforms [20] with a slightly better overall accuracy
and mean ppv on the MIT-BIH database and a notably higher overall accuracy (+1.69%),
mean sensitivity (+2.89%), and mean ppv (+1.78%) on the INCART database.
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