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Abstract: Structure from Motion (SfM) is a pipeline that allows three-dimensional reconstruction
starting from a collection of images. A typical SfM pipeline comprises different processing steps each
of which tackles a different problem in the reconstruction pipeline. Each step can exploit different
algorithms to solve the problem at hand and thus many different SfM pipelines can be built. How to
choose the SfM pipeline best suited for a given task is an important question. In this paper we report
a comparison of different state-of-the-art SfM pipelines in terms of their ability to reconstruct different
scenes. We also propose an evaluation procedure that stresses the SfM pipelines using real dataset
acquired with high-end devices as well as realistic synthetic dataset. To this end, we created a plug-in
module for the Blender software to support the creation of synthetic datasets and the evaluation
of the SfM pipeline. The use of synthetic data allows us to easily have arbitrarily large and diverse
datasets with, in theory, infinitely precise ground truth. Our evaluation procedure considers both the
reconstruction errors as well as the estimation errors of the camera poses used in the reconstruction.

Keywords: Structure from Motion (SfM); 3D reconstruction; Blender; evaluation

1. Introduction

Three-dimensional reconstruction is the process that allows to capture the geometry and
appearance of an object or an entire scene. In the last years, interest has developed around the use of 3D
reconstruction for reality capture, gaming, virtual and augmented reality. These techniques have been
used to realize video game assets [1,2], virtual tours [3] as well as mobile 3D reconstruction apps [4–6].
Some other areas in which 3D reconstruction can be used are CAD (Computer Aided Design) software
[7], computer graphics and animation [8,9], medical imaging [10], virtual and augmented reality [11],
cultural heritage [12], etc...

Over the years, a variety of techniques and algorithms for 3D reconstruction has been developed
to meet different needs in various fields of application ranging from active methods that require
the use of special equipment to capture geometry information (i.e., laser scanners, structured lights,
microwaves, ultrasound, etc...) to passive methods that are based on optical imaging techniques only.
The latter techniques do not require special devices or equipment and thus are easily applicable in
different contexts. Among the passive techniques for 3D reconstruction there is the Structure from
Motion (SfM) pipeline [13–17]. As shown in Figure 1, given a set of images acquired from different
observation points, it recovers the pose of the camera for each input image and a three-dimensional
reconstruction of the scene in form of a sparse point cloud. After this first sparse reconstruction, it is
possible to run a dense reconstruction phase using Multi-View Stereo (MVS) [18].
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Figure 1. 3D reconstruction using Structure from Motion.

As it can be seen from Figure 2, a typical SfM pipeline comprises different processing steps each
of which tackles a different problem in the reconstruction pipeline. Each step can exploit different
algorithms to solve the problem at hand and thus many different SfM pipelines can be built. There are
many SfM pipelines available in the literature. How to choose the best among them?

Figure 2. Incremental Structure from Motion pipeline.

In this paper, we compare different state-of-the-art SfM pipelines in terms of their ability to
reconstruct different scenes. The comparison is carried out by evaluating the reconstruction error
of each pipeline on an evaluation dataset. The dataset is composed of real objects whose ground
truth has been acquired with high-end devices. Having real scenes as reference models is not trivial,
thus we have developed a plug-in for a rendering software to create an evaluation dataset starting
from synthetic 3D scenes. This allows us to rapidly and efficiently extend the existing datasets and
stress the pipelines under various conditions.

The rest of the paper is organized as follows. In Section 2, we describe the incremental SfM
pipeline building blocks and compare their implementations. In Section 3, we describe how we
evaluated the different pipelines. In Section 4 we present a plug-in that allows to generate synthetic
datasets, evaluate the SfM and MVS reconstructions. In Section 5 we present and comment the
evaluation results. Section 6 concludes the paper. In Appendix A we provide some guidelines about
how to best capture images to be used in a reconstruction pipeline.

2. Review of Structure from Motion

The SfM pipeline allows the reconstruction of three-dimensional structures starting from a
series of images acquired from different observation points. The complete flow of incremental SfM
pipeline operations is shown in Figure 2. In particular, incremental SfM is a sequential pipeline that
consists of a first phase of correspondences search between images and a second phase of iterative
incremental reconstruction. The correspondence search phase is composed of three sequential steps:
Feature Extraction, Feature Matching and Geometric Verification. This phase takes as input the image set
and generates as output the so called Scene Graph (or View Graph) that represents relations between
geometrically verified images. The iterative reconstruction phase is composed of an initialization
step followed by three reconstruction steps: Image Registration, Triangulation and Bundle Adjustment.
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Using the scene graph, it generates an estimation of the camera pose for each image and a 3D
reconstruction as a sparse point cloud.

2.1. SfM Building Blocks

In this section we describe the building blocks of a typical incremental SfM pipeline illustrating
the problem that each of them addresses and the possible solutions exploited.

Feature Extraction: For each image given in input to the pipeline, a collection of local features
is created to describe the points of interest of the image (key points). For feature extraction different
solutions can be used, the choice of the algorithm influences the robustness of the features and the
efficiency of the matching phase. Once key points and their description is obtained, correspondences
of these points in different images can be searched by the next step.

Feature Matching: The key points and features obtained through Feature Extraction are used
to determine which images portray common parts of the scene and are therefore at least partially
overlapping. If two points in different images have the same description, then those points can be
considered as being the same in the scene respect to the appearance; if two images have a set of
points in common, then it is possible to state that they portray a common part of the scene. Different
strategies can be used to efficiently compute matches between images; solutions adopted by SfM
implementations are reported in Table 1. The output of this phase is a set of images overlapping at
least in pairs and the set of correspondences between features.

Geometric Verification: This phase of analysis is necessary because the previous matching phase
only verifies that pairs of images apparently have points in common; it is not guaranteed that found
matches are real correspondences of 3D points in the scene, outliers could be included. It is necessary to
find a geometric transformation that correctly maps a sufficient number of points in common between
two images. If this happens, the two images are considered geometrically verified, thus meaning that
the points are also corresponding in the geometry of the scene. Depending on the spatial configuration
with which the images were acquired, different methods can be used to describe their geometric
relationship. An homography can be used to describe the transformation between two images of a
camera that acquires a planar scene. Instead, the epipolar geometry allows to describe the movement
of a camera through the essential matrix E if the intrinsic calibration parameters of the camera are
known; alternatively, if the parameters are unknown, it is possible to use the uncalibrated fundamental
matrix F. Algorithms used for geometric verification are reported in Table 1. Since the correspondences
obtained from the matching phase are often contaminated by outliers, it is necessary to use robust
estimation techniques such as RANSAC (RANdom SAmple Consensus) [19] during the geometry
verification process [20,21]. Instead of RANSAC, some of its optimizations can be used to reduce
execution times. Refer to Table 1 for a list of possible robust estimation methods. The output of this
phase of the pipeline is the so-called Scene Graph, a graph whose nodes represent images and edges
join the pairs of images that are considered geometrically verified.

Reconstruction Initialization: The initialization of the incremental reconstruction is an important
phase because a bad initialization leads to a bad reconstruction of the three-dimensional model.
To obtain a good reconstruction it is preferable to start from a dense region of the scene graph so
that the redundancy of the correspondences provides a solid base for the reconstruction. In case the
reconstruction starts from an area with few images, the Bundle Adjustment process does not have
sufficient information to refine the position of the reconstructed camera poses and points; this leads to
an accumulation of errors and a bad final result. For the initialization of the reconstruction a pair of
geometrically verified images is chosen in a dense area of the scene graph. If more than one pair of
images can be used as a starting point, the one with the most geometrically verified matching points is
chosen. The points in common to the two images are used as the first points of the reconstructed cloud;
they are also used to establish the pose of the first two cameras. Subsequently the Image Registration,
Triangulation and Bundle Adjustment steps add iteratively new points to the reconstruction considering
a new image at a time.
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Image Registration: Image registration is the first step of the incremental reconstruction. In this
phase a new image is added to the reconstruction and is thus identified as registered image. For the newly
registered image the pose of the camera (position and rotation) that has acquired it must be calculated;
this can be achieved using the correspondence with the known 3D points of the reconstruction.
Therefore, this step takes advantage of the 2D-3D correspondence between the key points of the newly
added image and the 3D reconstruction points that are associated with the key points of the previously
registered images. To estimate the camera pose it is necessary to define the position in terms of 3D
coordinates of the reference world coordinates system and the rotation (pitch, roll and yaw axes),
for a total of six degrees of freedom. This is possible by solving the Perspective-n-Point (PnP) problem.
Various algorithms can be used to solve the PnP problem (see Table 1). Often outliers are present in
the 2D-3D correspondences, the above mentioned algorithms are used in conjunction with RANSAC
(or its variants) to obtain a robust estimate of the camera pose. The new recorded image has not yet
contributed to the addition of new points; this will be done by the triangulation phase.

Triangulation: The previous step identifies a new image that certainly observes points in common
with the 3D point that cloud reconstructed so far. The new registered image may observe further new
points; such points can be added to the three-dimensional reconstruction if they are observed by at
least one previously registered image. A triangulation process is used to define the 3D coordinates of
the new points that can be added to the reconstruction and thus generate a more dense point cloud.
The triangulation problem takes a pair of registered images with points in common and the estimate
of the respective camera poses; then it tries to estimate the 3D coordinates of each point in common
between the two images. In order to solve the problem of triangulation, an epipolar constraint is
placed. It is necessary that the positions from which the images were acquired allow to identify the
position of acquisition of the counterpart in the image; these points are called epipoles. In the ideal
case it is possible to use the epipolar lines to define the epipolar plane on which lies the point whose
position is to be estimated. However, because of the inaccuracies in the previous phases of the pipeline
it is possible that the point does not lie in the exact intersection of the epipolar lines; this error is known
as a reprojection error. To solve this problem, special algorithms that take into account the inaccuracy
are necessary. Algorithms used by SfM pipelines are listed in Table 1.

Bundle Adjustment: Since the estimation of camera poses and the triangulation can generate
inaccuracies in the reconstruction it is necessary to adopt a method to minimize the accumulation
of such errors. The purpose of the Bundle Adjustment (BA) [22] phase is to prevent inaccuracies in
the estimation of the camera pose to propagate in the triangulation of cloud’s points and vice versa.
BA can therefore be formulated as the refinement of the reconstruction that produces optimal values
for the 3D reconstructed points and the calibration parameters of the cameras. The algorithm used
for BA is Levenberg-Marquardt (LM), also known as Damped Least-Squares; it allows the resolution
of the least squares method for the non-linear case. Various implementation can be used as shown
in Table 1. This phase has an high computational cost and must be executed for each image that is
added to the reconstruction. To reduce processing time BA can be executed only locally (i.e., only for a
small number of images/cameras, the most connected ones); BA is executed globally on all images
only when the rebuilt point cloud has grown by at least a certain percentage since the last time global
BA was made.

2.2. Incremental SfM Pipelines

In the years many different implementations of the SfM pipeline were proposed. Here we
focus our attention on the most popular ones with publicly available source code that could allow
customization of the pipeline itself. Among the available pipelines we can mention COLMAP, Theia,
OpenMVG, VisualDFM, Bundler, and MVE. Here we briefly describe each pipeline while Table 1
details their implementations with the algorithms used in each processing block.
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COLMAP [14,23]—an open-source implementation of the incremental SfM and MVS pipeline.
The main objective of its creators is to provide a general-purpose solution usable to reconstruct any
scene introducing also enhancements in robustness, accuracy and scalability. The C++ implementation
also comes with an intuitive graphical interface that also allows configuration of pipelines parameters.
It is also possible to export the sparse reconstruction for different MVS pipelines.

Theia [24]—an incremental and global SfM open-source library. Many algorithms commonly
used for feature detection, matching, pose estimation and 3D reconstruction are included. Furthermore,
it is possible to extend the library with new algorithms using its software interfaces. Implementation
is in form of a C++ library, executables can be compiled and then be used to build reconstructions.
Obtained sparse reconstruction can be exported into Bundler or VisualSFM NVM file format that can
be used by most MVS pipelines.

OpenMVG [25]—an open-source library to solve Multiple View Geometry problems.
An implementation of the Structure from Motion pipeline is provided for both the incremental and
global case. Different options are provided for feature detection, matching, pose estimation and 3D
reconstruction. It is also possible to use geographic data and GPS coordinates for the pose estimation
phase. The library is written in C++ and can be included in a bigger project or can be compiled in
multiple executables each one for a specific set of algorithms. Sample code to run SfM is also included.
Sparse reconstruction can be exported in different file formats for different MVS pipelines.

VisualSFM [16,26,27]—implementation of the incremental SfM pipeline. Compared to other
solutions, this one is less flexible because only one set of algorithms can be used to make reconstructions.
The software comes with an intuitive graphical user interface that allows SfM configuration and
execution. Reconstructions can be exported in VisualSFM’s NVM format or in Bundler format. It is
also possible to execute the dense reconstruction steps using CMVS/PMVS directly form the user
interface (UI).

Bundler [17,28]—is one of the first incremental SfM pipeline implementation of success. It also
defines a Bundler ‘out’ format that is commonly used as an exchange file between SfM and
MVS pipelines.

MVE [29] (Multi-View Environment)—an incremental SfM implementation. It is designed to
allow multi-scale scenes reconstruction, it comes with a graphical user interface and also includes an
MVS pipeline implementation.

Linear SFM [30]—is a new approach to the SfM reconstruction that decouples the linear and
nonlinear components. The proposed algorithm starts with small reconstructions based on Bundle
Adjustment that are afterwards joined in a hierarchical manner.

Table 1. Incremental SfM pipelines algorithm comparison.

Feature Extraction Feature Matching Geometric Verification Image Registration Triangulation Bundle Adjustment Robust Estimation

COLMAP

SIFT [31] Exaustive 4 Point for Homography [20] P3P [32] sampling-based DLT [14] Multicore BA [27] RANSAC [19]
Sequential 5 Point Relative Pose [33] EPnP [34] Ceres Solver [35] PROSAC [36]

Vocabulary Tree [37] 7 Point for F-matrix [20] LO-RANSAC [38]
Spatial [14] 8 Point for F-matrix [20]

Transitive [14]

OpenMVG

SIFT [31] Brute force affine transformation 6 Point DLT [20] linear (DLT) [20] Ceres Solver [35] Max-Consensus
AKAZE [39] ANN [40] 4 Point for Homography [20] P3P [32] RANSAC [19]

Cascade Hashing [41] 8 Point for F-matrix [20] EPnP [34] LMed [42]
7 Point for F-matrix [20] AC-Ransac [43]

5 Point Relative Pose [33]

Theia

SIFT [31] Brute force 4 Point for Homography [20] P3P [32] linear (DLT) [20] Ceres Solver [35] RANSAC [19]
Cascade Hashing [41] 5 Point Relative Pose [33] PNP (DLS) [44] 2-view [45] PROSAC [36]

8 Point for F-matrix [20] P4P [46] Midpoint [47] Arrsac [48]
P5P [49] N-view [20] Evsac [50]

LMed [42]

VisualSFM
SIFT [31] Exaustive n/a n/a n/a Multicore BA [27] RANSAC [19]

Sequential
Preemptive [16]

Bundler SIFT [31] ANN [51] 8 Point for F-matrix [20] DLT based [20] N-view [20] SBA [52] RANSAC [19]
Ceres Solver [35]

MVE SIFT [31] + SURF [53] Low-res + exaustive [29] 8 Point for F-matrix [20] P3P [32] linear (DLT) [20] own LM BA RANSAC [19]
Cascade Hashing

Commercial softwares also exists and these are normally full implementations that also allow
dense reconstruction. Some examples are: Agisoft PhotoScan http://www.agisoft.com/, Capturing

http://www.agisoft.com/


J. Imaging 2018, 4, 98 6 of 18

Reality RealityCapture https://www.capturingreality.com/, Autodesk ReCap https://www.autodesk.
com/products/recap/overview.

3. Evaluation Method for SfM 3D Reconstruction

Once a 3D reconstruction has been performed using the SfM and MVS pipelines, it is possible to
evaluate the quality of the results obtained by comparing them to a ground truth with the same data
representation. An evaluation method applicable both to the reconstructions obtained from real and
synthetic datasets is here defined. This method requires the ground truth geometry of the model to be
reconstructed and the ground truth camera pose for each image. Our proposed evaluation method is
composed of four phases:

1. Alignment and registration
2. Evaluation of sparse point cloud
3. Evaluation of camera pose
4. Evaluation of dense point cloud

Another approach to the evaluation of the SfM reconstructions is the one presented in [54].
The authors designed a Web application that can visualize reconstruction statistics, such as minimum,
maximum and average intersection angles, point redundancy and density. All the previous statistics
does not require a ground truth.

3.1. Alignment and Registration

Since the reconstruction and the ground truth use different reference coordinate systems (RCSs),
it is necessary to find the correct alignment between the two. The translation, rotation, and scale factors
to align the two RCS can be defined using a rigid transformation matrix T. The adopted procedure
finds this matrix aligning the reconstructed sparse point cloud to the ground truth geometry using a
two step process: a first phase of coarse alignment and a second phase of fine registration, which allows
to overlap in the best possible way the reconstruction to the ground truth. Alignment and registration
steps generate two transformation matrices T1 and T2 of size 4 × 4 in homogeneous coordinates.
By multiplying the matrices to each other in the order in which they were identified, it is possible
to obtain the global alignment matrix T = T2·T1. This matrix is applied to the reconstructed clouds
(sparse and dense) and also to the estimated camera poses to obtain the reconstruction aligned and
registered with the ground truth. The ground truth can present itself as a dense points cloud or a mesh.
Alignment algorithms work only with point clouds, so in the case where the ground truth is a mesh,
a cloud of sampled points is used to bring the problem back to the alignment of two point clouds.

Alignment: In order to increase the probability of success of the Fine registration step (Section 3.1)
and to reduce the processing time, it is necessary to find a good alignment of the reconstructed point
cloud with the ground truth. This operation can be performed manually by defining the parameters
of rotation, translation and scale or more conveniently by specifying pairs of corresponding points
that are aligned by a specific algorithm defined by Horn in [55]. This algorithm uses three or more
points of correspondence between the reconstructed cloud and the ground truth to estimate the
transformation necessary to align the specified matching points. The method proposed by Horn
estimates the translation vector by defining and aligning the barycenters of the two point clouds.
The scaling factors are defined by looking for the scale transformation that minimizes the positioning
error between the specified matching points. Finally, the rotation that allows the best alignment is
estimated using unit quaternions from which the rotation matrix can be extracted. The algorithm then
returns the transformation matrix T1 that is the composition of translation, rotation and scaling.

For the alignment operation, CloudCompare [56] can be used which implements the Horn
algorithm and has a user interface that simplifies the process of selecting matching points.

Fine registration: Once the reconstruction has been aligned to the ground truth, it is possible to
refine the alignment obtained from the previous step (Section 3.1) using a process of fine registration.

https://www.capturingreality.com/
https://www.autodesk.com/products/recap/overview
https://www.autodesk.com/products/recap/overview
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The algorithm used for this phase is Iterative Closest Point (ICP) [57–59]; it uses as input the two
point clouds and a criterion for stopping the iterations. The output generated is a rigid transformation
matrix T2 that allows better alignment. The algorithm’s steps are:

1. For each point of the cloud to be aligned, look for the nearest point in the reference cloud.
2. Search for a transformation (rotation and translation) that globally minimizes the distance

(measured by RMSE) between the pairs of points identified in the previous step; it can include
the removal of statistical outliers and pairs of points whose distance exceeds a given maximum
allowed limit.

3. Align the point clouds using the results from previous step.
4. If the stop criterion has been verified, terminate and return the identified optimal transformation;

otherwise re-iterate all phases.

The stopping criterion is usually a threshold to be reached in the decrease of the RMSE measure.
For very large point clouds it is also useful to limit the number of iterations allowed to the algorithm.
The modified version defined by CloudCompare [56] can be used for this phase: it allows to estimate
the transformation that registers the point clouds also considering scale adjustment in addition to
those of rotation and translation. ICP does not work well if the point cloud to be registered and the
reference cloud are very different, for example when one cloud includes portions that are not present
in the other. In this case it is first necessary to clean the clouds so that both represent the same portion
of a scene or object.

3.2. Evaluation of Sparse Point Cloud

The sparse point cloud generated by SfM can be evaluated in comparison to the ground truth
of the object of the reconstruction. The evaluation considers the distance between the reconstructed
points and the geometry of the ground truth. Once the reconstruction is aligned to the ground truth it
is possible to proceed with the evaluation of the reconstructed point cloud, calculating the distance
between the reconstructed points and the ground truth.

If the ground truth is available as a dense point cloud, the distance can be evaluated by calculating
the Euclidean distance. For each 3D point of the cloud to be compared, the nearest point is searched
in the reference cloud calculating the Euclidean distance. Octree [60] data structures can be used to
partition the three-dimensional space and speed up the calculation. Once the distance values are
obtained for all points in the cloud, the mean value and standard deviation are calculated.

If the ground truth is available as a mesh, the distance is calculated between a reconstructed point
and the nearest point on the triangles of the mesh. This can be done using the algorithm defined by
David Eberly in [61]. Given a point of the reconstructed point cloud, for each triangle of the mesh the
algorithm searches the point with the smallest square distance. Among all the selected points (one for
each triangle) the one with the smallest square distance is chosen and the square root of this value is
returned. This calculation is repeated for each point of the reconstructed cloud. Even in this case octree
data structures can be used to partition the three-dimensional space and speed up the computation.
Once distance values are obtained for all points in the cloud, the mean value and standard deviation
are calculated.

In both cases it is necessary that the reconstructed cloud contains only points relative to objects
that are included in the ground truth model used for comparison. Usually the ground truth includes
only the main object of the reconstruction, ignoring the other elements visible in the dataset’s images.
If the reconstruction includes parts of the scene that do not belong to the ground truth, the distance
calculation will be distorted. To overcome this problem, it is possible to cut out the cloud of points of
the reconstruction, manually eliminating the parts in excess before evaluating the distance. If this is
not possible (mainly because the separation between the objects of interest and those not relevant is not
simply identifiable), then the same result can be achieved by specifying a maximum distance allowed
for the evaluation of the reconstruction. If a reconstruction point is evaluated with a greater distance
from the ground truth than allowed, it is discarded so that it does not affect the overall assessment.
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3.3. Evaluation of Camera Pose

In addition to the sparse points cloud, the SfM pipeline also generates information about
the camera poses. The pose of each camera can be compared to the corresponding ground truth.
In particular, the method defined here provides information on the distance between the positions and
the difference in orientation between each pair of ground truth and estimated camera pose. Ideally,
if a camera is reconstructed in the same position as its ground truth, then it can be assumed that it
observes the same points and that consequently its orientation is the same as that of the ground truth;
in the real case it is however possible to observe slight differences between the orientations and for
this reason an evaluation is provided.

Position evaluation: The position of a reconstructed camera is evaluated by calculating the
Euclidean distance between the reconstructed position and the corresponding ground truth camera’s
position. Such values can also be used to calculate average distance and standard deviation.

Orientation evaluation: The differences in orientation of the cameras are evaluated using the
angle of the rotation necessary for the relative transformation that, applied to the reconstructed camera,
brings it to the same orientation of the corresponding ground truth camera. The camera orientation can
be defined using a unit quaternion. Therefore, it is possible to define qGT as the camera ground truth
orientation and qE as the reconstructed camera orientation. The relative transformation that aligns the
reconstructed camera at the same orientation of the ground truth is defined by the quaternion qR that
is calculated as follows:

qR = qE
−1 · qGT (1)

where qE
−1 is the inverse quaternion of qE calculated by Equation (2) where qE

∗ is the conjugate of
qE and ||qE|| is the norm.

qE
−1 =

qE
∗

||qE||2
(2)

By substituting in Equation (1) the term qE
−1 with his definition, the equation becomes:

qR =
qE
∗

||qE||2
· qGT (3)

Being rotations expressed with unit quaternions, the norm of qE is always 1 accordingly the
equation can be simplified obtaining:

qR = qE
∗ · qGT (4)

Quaternion qR represents the rotation transformation necessary to change the orientation of the
reconstructed camera so that it is the same as the ground truth. This can be expressed by defining a
rotation axis and the angle for which the camera must be rotated around that axis.

This rotation angle can be used as a quality measure of the reconstructed camera rotation. If the
orientation of the reconstructed camera is the same as the ground truth camera, the rotation angle of
the defined transformation is 0; when the orientation of the reconstructed camera is different from
that of the ground truth, the value of the rotation angle necessary to align the orientation of the
camera also increases.

The representation of qR in terms of axes a (vector of components x, y, z) and rotation angle α is
defined as follows:

qR = cos
(α

2

)
+ i ax sin

(α

2

)
+ j ay sin

(α

2

)
+ k az sin

(α

2

)
(5)

Angle α expressed in radians and the rotation axis can be extracted from the quaternion using
Equations (6) and (7). The identified angle is always positive.

α = 2 · arccos (qRw) (6)
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ax =
qRx√

1− qRw2
ay =

qRy√
1− qRw2

az =
qRz√

1− qRw2 (7)

Using this representation particular attention should be paid when the rotation angle is 0◦. When
this happens the rotation axis is arbitrary and the result is the same whichever is chosen; the quaternion
is in the form q = 1 + i0 + j0 + k0 and consequently division by 0 must be avoided when applying
Equation (7). To solve the problem an arbitrary axis with unitary norm can be chosen (e.g., vector
x = 1, y = 0, z = 0): in this way there is no need to compute a rotation axis and the length
is still unitary.

Angle α from Equation (6) can be converted form radians to αdeg expressed in degrees. This angle
can vary form 0◦ to 360◦; it also must be taken into account that αdeg is a rotation around the axis
of direction a or a rotation of −αdeg around the opposite direction axis. Moreover, a rotation greater
then 180◦ around the a axis can also be expressed as a rotation of −(360− αdeg) degrees around the
same axis. To correctly compute the difference of orientations the smallest angle must be considered,
independently of its direction; therefore in the αdeg > 180 case the difference between camera’s
orientations is computed as 360− αdeg.

The differences in orientations measured trough angle α can also be used to calculate the average
distance value and the standard deviation.

3.4. Evaluation of Dense Point Cloud

The MVS pipeline reconstructs the dense points cloud of the scene observed by the set of images.
This cloud of points can be evaluated in comparison to the ground truth of the object to be rebuilt.
The evaluation takes place in terms of the distance between the reconstructed points and the geometry
of the ground truth. Once the dense reconstruction is registered in the best possible way with
the ground truth, it is possible to proceed with the evaluation of the reconstructed cloud by calculating
the distance between the reconstructed points and the ground truth. This evaluation can be done in
the same way used for the sparse point cloud, as illustrated in Section 3.2.

4. Synthetic Datasets Creation and Pipeline Evaluation: Blender Plug-In

As stated in previous Sections, the evaluation of 3D reconstruction pipelines requires some
datasets of source images and associated ground truth. Over the years, various datasets of real objects
have been created [62–64]; they usually contain the ground truth of the object to be reconstructed in
form of dense point cloud, acquired through high accuracy laser scanners. In some cases the ground
truth is instead made available in the form of a three-dimensional mesh generated starting from a
scanner acquisition or an high quality reconstruction obtained directly from the images that compose
the dataset. In any case, the accuracy of the ground truth depends on the quality of the instrumentation
used and the process with which it was acquired. The assumption that must be made in order to use
the ground truth so generated is that it is however more precise than the reconstruction generated
by the pipelines. Otherwise, having a low quality ground truth, it would not be possible to evaluate
the accuracy of the reconstructed model. Usually these datasets do not report the ground truth of the
camera poses and this does not allow to evaluate the pose of reconstructed cameras. The generation of
these datasets encounter limitations due to the equipment or the scene to be captured itself, making it
difficult to generate a set of images that fully comply with the guidelines. Moreover, it is difficult to
find available datasets that include model ground truth and even when it is present the quality is low
and occluded surfaces are missing. In the Appendix, we report some guidelines to create high quality
datasets of images to be used in the reconstruction.

To overcome the problems in creating real datasets for evaluation, it is possible to use virtual 3D
models to generate synthetic datasets with good image quality, intrinsic parameters for each image
and optimal 3D model ground truth. With respect to real datasets usually acquired with physical
imaging devices, the synthetic datasets make it possible to have accurate, and infinitely precise ground
truths. We can generate synthetic datasets by acquiring images of virtual 3D models by means of
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rendering software. For our purposes we employ Blender [65]. First of all the subject of the dataset
needs to be chosen; for optimal results the 3D model must have an highly detailed geometry and
texture. It is also important that the model does not make use of rendering techniques like bump-map
or normal-map; such features can simulate complex geometries in rendered images that are not defined
in the model geometry, thus cannot be included when exporting the ground truth. The model must
then be placed in a scene where lights and other objects can be included. A camera is then added
and all its intrinsic calibration parameters must be set. Such camera is then animated to observe the
scene from different view points; each frame of the animation will be used as an image of the dataset.
Once everything is set the images can be rendered using Cycles, the Blender’s path-tracing render
engine, that simulates light interactions and allows to generate photo-realistic images. Some EXIF
metadata like focal length and sensor size can be added to the images so reconstruction pipelines can
gather them automatically. Finally, along with the images, ground truth of model geometry and camera
poses are needed. The ground truth geometry is the model itself, therefore it can be exported directly.
Camera poses (position and orientation) can be obtained for each frame of the camera animation.
Blender dose not have a direct way to export such information but it is easy to do that using its internal
Python scripting framework. The entire flow of dataset generation is shown in Figure 3.

(a) (b) (c)

(d) (e)

Figure 3. Example of synthetic dataset generation steps: (a) 3D model. (b) Scene setup. (c) Camera
motion around the object. (d) Images rendering. (e) 3D model geometry and camera pose ground
truth export.

Synthetic dataset creation, pipeline execution and results evaluation involve many steps and
various algorithms. To help the user in the process we created a plug-in for Blender that allows
synthetic datasets generation and SfM reconstructions evaluation [66]. Such tool adds a simple panel
in Blender’s user interface that makes possible to:

• import the main object of the reconstruction and setup a scene with lights for illumination and
uniform background walls. Also, the parameters for the path tracing rendering engine are set.

• add a camera and setup its intrinsic calibration parameters. Animate the camera using circular
rotations around the object to observe the scene from different view points.

• render the set of images and add EXIF metadata of intrinsic camera parameters used by
SfM pipelines.

• eventually, geometry ground truth can be exported. This is not necessary if next steps are
processed using this plug-in as the current scene will be used as ground truth.

• run the SfM pipelines listed in Section 2.2.
• import the reconstructed point cloud form SfM output and allow the user to manually eliminate

parts that do not belong to the main object of the reconstruction.
• align the reconstructed point cloud to the ground truth using the Iterative Closest Point

algorithm (ICP).
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• evaluate the reconstructed cloud by computing the distance between the cloud and the ground
truth and generating statistical information like min, max and average distance values and also
reconstructed point count.

The dataset generation process could be used to create set of images of scene with various scale
and likely include many objects, for those reason the plug-in divides the process in different steps,
in this way it is possible for the user to adapt the result obtained after each step to specific needs.
For example, it is possible to change the default camera intrinsic parameters, the scene illumination,
animate the camera with different paths than the defaults and so on.

5. Experimental Results

Five synthetic datasets of different 3D models (Figure 4) have been generated using the method
described in Section 4:

• Statue [67]—set of images about a statue of height 10.01 m, composed of 121 images
• Empire Vase [68]—set of images about an ancient vase of height 0.92 m, composed of 86 images
• Bicycle [69]—set of images about a bicycle of height 2.66 m, composed of 86 images
• Hydrant [70]—set of images about an hydrant of height 1.00 m, composed of 66 images
• Jeep [71]—set of images about a miniature jeep of height 2.48 m, composed of 141 images

All the images of each dataset have been acquired at resolution 1920 × 1080 px using a virtual
camera with a 35 mm focal length and 32 × 18 mm sensor. For every dataset is also generated the
ground truth of object geometry and camera poses; in this way it is possible to run the reconstruction
pipelines and evaluate the obtained results. In addition to our synthetic datasets the real dataset
Ignatius (Figure 4f) from the “Tanks and Temples” collection [62] is also used, whose 263 images
have been acquired at a resolution of 1920 × 1080 px. The physical height of the statue is 2.51 m.
The datasets can be downloaded from [72].

(a) (b) (c) (d) (e) (f)

Figure 4. 3D models used for synthetic dataset generation and Ignatius ground truth: (a) Statue [67].
(b) Empire Vase [68]. (c) Hydrant [70]. (d) Bicycle [69]. (e) Jeep [71]. (f) Ignatius [62].

Among all the SfM pipelines listed in Section 2.2 we compare the reconstructions results
of COLMAP, Theia, OpenMVG and VisualSFM because each one is a reference implementation.
In particular VisualSFM and COLMAP represent two remarkable developments of the incremental
SfM pipeline with improvements in accuracy and performance compared to previous state-of-the-art
implementations. Theia and OpenMVG are instead two ready to use SfM and multi-view geometry
libraries that implement reconstruction algorithms and allow to build SfM pipelines that meet
specific needs.

In order to evaluate dense 3D reconstructions, we paired the chosen SfM pipeline with
CMVS/PMVS [73,74] as our MSV reference algorithm because it is widely used state-of-the-art
implementation and is also natively supported by all the SfM pipelines used. The use of a single MVS
pipeline with the same configuration parameters for all the reconstructions allows to evaluate and
compare the dense results based on the quality os the sparse SfM reconstruction. In such way no other
variables affect the reconstruction process. Here, we reported the results of evaluations done using
method described in Section 3. Results are reported in Tables 2–5 and some examples of reconstructed
dense point cloud are visible in Table 6.
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Table 2. SfM cloud evaluation results. x is the average distance of the point cloud from the ground
truth and s its standard deviation. Np is the number of reconstructed points.

Model
COLMAP OpenMVG Theia VisualSFM

x [m] s [m] Np x [m] s [m] Np x [m] s [m] Np x [m] s [m] Np

Statue 0.034 0.223 9k 0.057 0.267 4k 0.020 0.039 8k 0.185 0.236 6k
Empire Vase 0.005 0.152 8k 0.013 0.191 2k 0.002 0.005 8k 0.007 0.013 5k

Bicycle 0.042 0.365 5k 0.156 1.705 7k 0.027 0.086 2k 0.056 0.796 4k
Hydrant 0.206 0.300 2k – – 28 0.045 0.123 89 0.029 0.032 1k

Jeep 0.053 1.058 6k 0.057 0.686 4k 0.012 0.016 8k 0.055 0.124 5k
Ignatius 0.009 0.021 23k 0.013 0.032 12k 0.023 0.022 10k 0.054 0.124 14k

Table 3. SfM camera pose evaluation results. Nc is the percentage of used cameras. x is the mean
distance from ground truth of reconstructed camera positions and sx its standard deviation. r is
the mean rotation difference from ground truth of reconstructed camera orientations and sr its
standard deviation. n.a. means measure not available.

Model
COLMAP OpenMVG Theia VisualSFM

Nc x [m] sx [m] r [◦] sr [m] Nc x [m] sx [m] r [◦] sr [m] Nc x [m] sx [m] r [◦] sr [m] Nc x [m] sx [m] r [◦] sr [m]

Statue 100 0.08 0.01 0.04 0.05 100 0.27 0.03 0.47 0.22 100 1.86 0.09 0.45 0.22 100 1.45 0.91 3.55 2.88
E. Vase 100 0.01 0.01 0.51 0.05 83 0.78 1.62 32.19 64.89 100 0.13 0.07 0.91 0.35 94 0.15 0.14 4.91 5.07
Bicycle 88 0.04 0.02 0.25 0.19 94 0.60 1.09 7.00 12.53 37 0.60 0.03 1.10 0.31 47 0.27 0.14 1.32 1.03

Hydrant 82 2.63 2.09 72.28 64.98 3 – – – – 6 3.49 0.29 174.27 0.51 80 2.43 1.76 66.29 58.90
Jeep 63 0.04 0.02 0.26 0.11 92 0.24 1.32 4.80 26.33 95 0.43 0.42 1.33 5.67 83 1.02 2.79 9.68 22.84

Ignatius 100 n.a. n.a. n.a. n.a. 100 n.a. n.a. n.a. n.a. 100 n.a. n.a. n.a. n.a. 100 n.a. n.a. n.a. n.a.

Table 4. MVS cloud evaluation results. x is the average distance of the point cloud from the ground
truth and s its standard deviation. Np is the number of reconstructed points.

Model
COLMAP OpenMVG Theia VisualSFM

x [m] s [m] Np x [m] s [m] Np x [m] s [m] Np x [m] s [m] Np

Statue 0.009 0.023 75k 0.008 0.027 86k 0.010 0.011 84k 0.065 0.049 76k
Empire Vase 0.001 0.001 390k 0.001 0.004 246k 0.002 0.002 356k 0.005 0.007 240k

Bicycle 0.013 0.012 74k 0.062 0.146 69k 0.018 0.020 46k 0.021 0.025 44k
Hydrant 0.008 0.017 42k – – – 0.080 0.147 11k 0.008 0.014 40k

Jeep 0.010 0.016 236k 0.008 0.016 471k 0.014 0.019 448k 0.048 0.056 281k
Ignatius 0.004 0.004 155k 0.003 0.004 161k 0.018 0.019 109k 0.017 0.031 76k

Table 5. Pipelines execution times in seconds and memory usage in MB.

Model

COLMAP OpenMVG Theia VisualSFM

SfM MVS SfM MVS SfM MVS SfM MVS

t [s] RAM t [s] RAM t [s] RAM t [s] RAM t [s] RAM t [s] RAM t [s] RAM t [s] RAM

Statue 59 897 86 1062 43 1359 115 1300 196 1984 98 1249 86 1406 144 1452
Empire Vase 53 897 154 2101 28 628 130 1734 129 1988 134 1926 62 1226 159 2095

Bicycle 98 896 117 1356 57 1467 146 1720 63 1722 58 548 64 1226 68 641
Hydrant 19 894 55 793 16 1547 – – 17 2048 3 1249 36 997 56 1452

Jeep 38 897 121 1812 69 1550 275 3209 213 2083 280 3293 109 1406 254 3078
Ignatius 1225 1825 430 5082 401 1555 494 5926 992 2588 484 5626 1639 2381 345 4742

SfM pipelines have generated sufficient information to allow dense reconstruction on all datasets
except for the Hydrant one. That dataset has a low geometric complexity, an high level of symmetry and
an almost uniform texture; for these reasons SfM pipelines were not able to find enough correspondence
between images and thus cannot generate a good reconstruction. The worst result was obtained with
the OpenMVG pipeline and was not possible to run the MVS pipeline. COLMAP is the pipeline that
achieves better results on average; even when it does not generate the best reconstruction it achieves
good results.

Results for dataset Ignatius do not include camera pose evaluation because no information about
camera pose ground truth is included in the dataset. This real dataset includes many elements besides
the main object of the reconstruction; for this reason the reconstructed clouds have an high number of
points that do not belong to the statue and thus must be removed. An evaluation of system resources



J. Imaging 2018, 4, 98 13 of 18

usage was also done and COLMAP is efficient also in this aspect; using as much resources as possible
it can complete the reconstruction in less time than the other pipelines.

Table 6. Example of dense point clouds using CMVS/PMVS on different SfM reconstructions.

COLMAP OpenMVG Theia VisualSFM

Statue

Empire Vase

Bicycle

Hydrant

n.a.

Jeep

Ignatius

The SfM reconstruction generated by pipeline Theia and dataset Statue shows that the obtained
sparse point cloud is the best for that dataset but the camera poses are not accurate. These imprecisions
are relative to camera positioning and not the camera rotation estimation that is instead always
accurate. Further analysis shows that all the cameras are estimated positioned further away from
the ground truth but on the correct viewing direction and for this reason the camera orientation is
correct. Because the error in position is constant and applies to all the cameras this allows anyway the
reconstruction of an accurate point cloud.

6. Conclusions

In this paper we analyzed the state-of-the-art incremental SfM pipelines showing that different
algorithms and approaches can be used for each step of the reconstruction process. We proposed



J. Imaging 2018, 4, 98 14 of 18

a complete method that starting from synthetic dataset generation allows to overcome real dataset
limitations, evaluates and compares the reconstructions from different SfM implementations testing
theirs limits under different conditions. The proposed method also allows to compare results after the
MVS dense point cloud reconstruction. Our experiments results show that it is possible to generate
synthetic datasets from which SfM reconstruction can successfully run obtaining satisfactory results.
This also allows to take the pipelines to their limits showing that critical conditions can negatively affect
the reconstruction process. To this end we have developed a plug-in for the Blender rendering software
that allows us to generate synthetic datasets for the pipeline’s evaluation. Moreover, it simplifies the
execution of the different steps of the evaluation procedure itself. With respect to real datasets usually
acquired with physical imaging devices, the synthetic datasets make it possible to have accurate,
and infinitely precise ground truths. According to our experiments, among the tested incremental
SfM implementations, COLMAP showed the best average results. We also created a software tool that
allows (in a single solution) to run the whole process, from the dataset generation to the reconstruction
evaluation. Further work can be done to evaluate other aspects of the pipeline such as reconstructed
object coverage to identify missing parts. The evaluation method can also be extended to include the
subsequent mesh reconstruction and texture extraction phases.

Author Contributions: Investigation, S.B., G.C. and D.M.; Supervision, S.B. and G.C.; Writing—original draft,
D.M.; Writing—review & editing, S.B. and G.C.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Real Datasets Creation: Guidelines

In order to make a reconstruction, a set of images of the object or scene to rebuild is needed.
For an optimal reconstruction the dataset should respect the following guidelines:

• The object to be reconstructed must not have a too uniform geometry and must have a varied
texture. If the object has a uniform geometry and a repeated or monochromatic texture it becomes
difficult for the SfM pipeline to correctly estimate the pose of the cameras that have acquired the
images.

• The set must be composed of a number of images sufficient to cover the entire surface of the object
to be rebuilt. Parts of the object not included in the dataset cannot be reconstructed; thus resulting
in a geometry with missing parts or not accurately reconstructed.

• The images must portray, at least in pairs, common parts of the object to be rebuilt. If an area of
the object is included only in a single image, it is not possible to correctly estimate 3D points for
the reconstruction. Depending on the implementation of the pipeline, the reconstruction could
improve with the increase of images that portray the same portion of the object from different
view points; this because the 3D points can be estimated and confirmed through multiple images.

• The quality of the reconstruction also depends on the quality of the images. Sets of images with a
good resolution and level of detail should lead to a good reconstruction. The use of poor quality
or wide-angle optics requires that the reconstruction pipelines take into account the presence of
radial distortions.

• The intrinsic parameters of the camera must be known for each image. In particular, the pipelines
makes use of focal length, sensor size and image size to estimate the distance of the observed
points and to generate the sparse point cloud. If the sensor size is unknown, the focal length in
35 mm format can be used.
The accuracy of the intrinsic calibration parameters is of particular importance when the images
composing the dataset have been acquired with different cameras; the imprecision of these
parameters introduces imprecisions in camera pose estimation and points triangulation. It should
also be taken into consideration that if the images have been cropped, the original intrinsic
calibration parameters are no longer valid and must be recalculated.
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• Along with the images, ground truth must also be available. This is not necessary for the
reconstruction but is used to evaluate the quality of the obtained results.
In order to be able to globally evaluate the SfM+MVS pipeline, it is sufficient to have the ground
truth of the model to be reconstructed in the form of a mesh or a dense points cloud; this allows
to compare the geometries.
To make a better evaluation of the SfM pipeline, it is also necessary to know the actual camera pose
of each image of the dataset. In this way, by comparing the ground truth with the reconstruction,
it is possible to provide a measure of the accuracy of the estimated camera poses.
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