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bstract. Several algorithms were proposed in the literature to re-
over the illuminant chromaticity of the original scene. These algo-
ithms work well only when prior assumptions are satisfied, and the
est and the worst algorithms may be different for different scenes.
e investigate the idea of not relying on a single method but instead

onsider a consensus decision that takes into account the re-
ponses of several algorithms and adaptively chooses the algo-
ithms to be combined. We investigate different combining strate-
ies of state-of-the-art algorithms to improve the results in the

lluminant chromaticity estimation. Single algorithms and combined
nes are evaluated for both synthetic and real image databases
sing the angular error between the RGB triplets of the measured

lluminant and the estimated one. Being interested in comparing the
erformance of the methods over large data sets, experimental re-
ults are also evaluated using the Wilcoxon signed rank test. Our
xperiments confirm that the best and the worst algorithms do not
xist at all among the state-of-the-art ones and show that simple
ombining strategies improve the illuminant estimation. © 2008 SPIE
nd IS&T. �DOI: 10.1117/1.2921013�

Introduction
hite balance is the process of removing unrealistic color

asts from digital images, mostly due to the acquisition
onditions. From a computational perspective, automatic
hite balance is a two-stage process: the illuminant is es-

imated, and the image colors are then corrected on the
asis of this estimate. The correction generates a new im-
ge of the scene as if it were taken under a known, canoni-
al illuminant. A generic image acquired by a digital cam-
ra is mainly characterized by three physical factors: the
lluminant spectral power distribution I���, the surface
pectral reflectance S���, and the spectral sensitivities C���
f the sensor. Using this notation, the sensor responses at
he spatial point with coordinates �x ,y� can be then de-
cribed as

�x,y� = �
�

I���S�x,y,��C���d� , �1�

here � is the wavelength range of the visible spectrum, �
nd C��� are three-component vectors. Because the three

aper 07153R received Jul. 26, 2007; revised manuscript received Nov.
0, 2007; accepted for publication Dec. 19, 2007; published online May
4, 2008.
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spectral sensitivities of the sensor C��� are usually respec-
tively more sensitive to low, medium, and high wave-
lengths, the three-component vector of the sensor response
�= ��1 ,�2 ,�3� is also referred to as the sensor or camera
RGB= �R ,G ,B� triplet. Assuming that the color I of the
illuminant in the scene observed by the camera only de-
pends on the illuminant spectral power distribution I��� and
on the spectral sensitivities C��� of the sensor, automatic
white balance is equivalent to the estimation of I by

I = �
�

I���C���d� �2�

given only the sensor responses ��x ,y� across the image.
This is an underdetermined problem and therefore cannot
be solved without further assumptions and/or knowledge,
such as some information about the camera being used,
and/or assumptions about the statistical properties of the
expected illuminants and surface reflectances.

The estimation of the color of the illuminant could be
performed if an achromatic patch is present in the image.
This is because the spectral reflectance S��� of an achro-
matic surface is approximately constant over a wide range
of wavelengths, and thus the sensor response � is propor-
tional to ��I���C���d�, that is, the RGB of the achromatic
patch is proportional to that of the incident light.

To reduce the dimensionality of the problem, one com-
mon method is to not estimate the whole triplet of the illu-
minant color, but a two-dimensional �2D� projection of it in
a chromaticity space. In fact, it is more important to esti-
mate the chromatic components of the scene than its overall
intensity.

The color correction is usually based on a diagonal
model of illumination change derived from the von Kries
hypothesis. This model assumes that two acquisitions of the
same scene with the same imaging device but under differ-
ent illuminants are related by an independent gain regula-
tion of the three imaging channels.1 A diagonal model is
generally a good approximation of change in illumination,
as shown by Finlayson et al.2
Apr–Jun 2008/Vol. 17(2)1
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The colors in a scene, acquired under an unknown illu-
inant U can be transformed as they were taken under the

anonical illuminant C by

R�

G�

B�
� = �RC/RU 0 0

0 GC/GU 0

0 0 BC/BU ��
R

G

B
� , �3�

here RGB= �R ,G ,B� is a color in the image acquired un-
er the unknown illuminant, RGB�= �R� ,G� ,B�� is the
olor in the corrected image, RGBU= �RU ,GU ,BU� are the
ensor responses of a camera to a reference white under the
nknown illuminant, and RGBC= �RC ,GC ,BC� are the cor-
esponding responses under the canonical illuminant. Sup-
osing RGBC is known, to obtain the color correction ma-
rix, we have to estimate the illuminant color RGBU. To this
im several algorithms exist in literature, each with differ-
nt assumptions.2–11 To improve the illuminant estimation,
chaefer et al.12 introduced a combined physical and statis-

ical color constancy algorithm that integrates the statistics-
ased color by correlation method with a physics-based
echnique, based on the dichromatic reflectance model, us-
ng a weighted combination of their likelihoods for a given
llumination set and taking the maximum likelihood entry.
ardei and Funt13 obtained good illuminant estimation by
ombining the results of gray world, white patch, and neu-
al net methods, considering both linear and nonlinear com-
ittee methods. Taking these results as points of departure,
e investigate the idea of not relying on a single white

stimation method but instead considering a consensus de-
ision that takes into account the compendium of the re-
ponses of several algorithms. In this work, we consider not
nly fixed weight linear combinations of algorithms �e.g.,
efs. 12 and 13�, but also methods that adaptively choose

he algorithms to combine. The white balance algorithms
onsidered are briefly described in Sec. 2. In Sec. 3, the
uggested combining methods are reported and exempli-
ed. In Sec. 4, the combining methods proposed are experi-
entally evaluated on two databases of synthetic and RGB

mages. The results are evaluated using the Wilcoxon
igned rank test14 on the angular error in the illuminant
hite point estimations.15 Finally, conclusions and future
orks are reported in Sec. 5.

Algorithms
e have implemented five white estimation algorithms.

hey are gray world,16 white point,6,17 edge-based,7 color
y correlation,9,10 and color in perspective.8 These are very
ifferent algorithms based on very different assumptions:
he gray world and white point algorithms belong to a sepa-
ate class of methods that rely on simple statistics, and the
dge-based, the color by correlation, and the color in per-
pective algorithms rely on more advanced statistics. With
espect to our previous works,18,19 we have replaced the
terative white balance20 with the edge-based automatic
hite balance7 algorithms because the former was never

he best estimate of the color of the illuminant in the pre-
iminary experiments18,19 and thus it was never selected in
he combining methods. We have also excluded our self-
unable color balancing algorithm5,21 in this study because
t can be considered a high-level algorithm as it is based on
ournal of Electronic Imaging 023013-
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a semantic analysis of the content of the image. We have
also decided to exclude it from this study to make the re-
sults easily repeatable. We have chosen these five white
estimation algorithms, but our combining methods can be
applied without modifications to a different number and
kind of algorithms.

The gray world algorithm assumes that given an image
of sufficiently varied colors under a canonical illuminant,
the average surface color in the image is gray.16 The shift
from gray of the measured averages on the three channels
corresponds to the color of the illuminant, that is, RGBU

= �mean�R� ,mean�G� ,mean�B��.
Assuming that there is always some white in the scene,

the white point algorithm looks for it in the image; its color
will then be the color of the illuminant. The white point
algorithm determines this white as the maximum R, maxi-
mum G, and maximum B found in the image6,17 that is,
RGBU= �max�R� ,max�G� ,max�B��.

The edge-based automatic white balancing with linear
illuminant constraint has been introduced by Chen et al.7 to
reduce the effect of large regions of uniform colors on the
illuminant estimate. Their algorithm is based on the gray
world assumptions and employs both the edge detection
and the illuminant constraint in the estimation. It consists of
three steps. First, it looks for the edge points in the image.
Second, it determines the average and standard deviation
values of chromaticity of the edge points. Then, it uses such
statistical values to find achromatic pixels in the image.
Finally, the average chromaticity of the achromatic pixels is
assumed to be the illuminant chromaticity.

The color by correlation algorithm has been introduced
by Finlayson et al.9,10 The basic idea is to precompute a
correlation matrix that describes the extent to which the
proposed illuminants are compatible with the occurrence of
image chromaticities. Each row in the matrix corresponds
to a different training illuminant. The matrix columns cor-
respond to possible chromaticity ranges resulting from a
discretization of the rg-chromaticity space �r ,g�, ordered in
any convenient manner. The rg-chromaticity space is the
2D projection of the three-dimensional �3D� red, green,
blue �RGB� space of the sensor responses RGB= �R ,G ,B�
defined as

	r =
R

�R + G + B�

g =
G

�R + G + B�

. �4�

In a further refinement, the correlation matrix has been
set up to compute the probability that the observed chroma-
ticities are due to each of the training illuminants. The best
illuminant can then be chosen, using a maximum likelihood
estimate, for example, or other methods described in the
literature.3,4 There are different versions of the color by
correlation algorithm; in this paper, we have implemented
the one described by Finlayson et al.10

The color in perspective algorithm, developed by
Finlayson8 is based on Forsyth’s gamut-mapping
approach.11 The gamut-mapping algorithm considers the set
of all possible �R ,G ,B� due to surfaces in the world under
the known, canonical illuminant. This set is convex and is
Apr–Jun 2008/Vol. 17(2)2
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epresented by its convex hull. The set of all possible
R ,G ,B� under the unknown illuminant is similarly repre-
ented by its convex hull. Under the diagonal assumption of
llumination change, these two hulls are a unique diagonal
apping �a simple 3D stretch� of each other. Because the

bserved set is normally a proper subset, the mapping to
he canonical illuminant is not unique, and Forsyth11 pro-
ides a method for effectively computing the set of possible
iagonal maps, which is a convex set in the space of map-
ing coefficients. Finlayson’s color in perspective algo-
ithm adds two additional ideas.8 First, the gamut-mapping
ethod can be used in the rg-chromaticity space �r ,g�.
econd, the diagonal maps can be further constrained by
estricting them to ones corresponding to expected illumi-
ants.

There is a substantial difference between the last two
lgorithms and the previous ones: the last two cannot be
pplied to any image coming from any digital camera; this
s because they respectively need a precomputation of the
orrelation matrix and of the color gamut under the canoni-
al illuminant, and these are different for different capture
evices. To build such a matrix, for the synthetic image
ata set, we have used a database of spectral reflectances22

nd computed their RGB values using the sensor spectral
ensitivities of a camera available on the Web.23 A different
ethod has been used for the real image data set: because

he data set was acquired by a camera whose intrinsic color
haracteristics are unknown. This data set, which is com-
osed of more than 11 000 images, has been divided into
lluminant sets based on the illuminant chromaticity mea-
urements. Then for each illuminant set, 20% of the images
i.e., more than 2200 images� were used for training the
olor by correlation and the color in perspective algorithms
nd the remaining 80% for testing. The choice of using
nly 20% of the images for the training has been made to
eave more data available �i.e., more than 8800 images� for
esting the single algorithms and the combining methods.

Combining Methods
n this paper, we analyze different combining methods of
he white estimation algorithms to improve the results in
he illuminant chromaticity estimation. In this work, we
ropose different ways to achieve a consensus estimation.
he underlying idea is that algorithms that give similar il-

uminant chromaticity estimations have to be trusted more
han algorithms that give an estimate that is far from the
thers.

Let us suppose we have n different algorithms. For the
ake of comparison, all the n estimations of the illuminant
olor given by the considered algorithms are projected into
he rg-chromaticity space. Let then rg1 , . . . ,rgn be the
g-chromaticity estimations of the n algorithms considered.
or a better understanding, it is worthwhile to emphasize

hat an rg-chromaticity estimation is a two-vector, that is,
g= �r ,g�, and that all the operations in the following are
one independently on the two components. The combining
ethods investigated are listed in the following with a brief

escription.

A. Mean: mean value of the results given by the n
algorithms13; in formula
ournal of Electronic Imaging 023013-
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rgMean =

i=1

n
rgi

n
. �5�

B. Nearest2: mean value of the two closest results of the
n algorithms according to the Euclidean distance d in
the chromaticity space; in formula

rgNearest2 = � rgm + rgn

2
:d�rgm,rgn�

= min
i,j;i�j

d�rgi,rgj�� . �6�

C. Nearest-N%: mean value of the results of the algo-
rithms with relative distances below the �100+N�%
of the distance of the two closest results of the n
algorithms. N is an arbitrary parameter �in this work,
we have chosen N=10,30�. In formula

rgNearest-N% =�
i�I
rgi

#I
:i � I ⇔ ∃ j:d�rgi,rgj�

�
100 + N

100
dNearest2� , �7�

where #I denotes the cardinality of the set I.
D. No-N-max: let Dj =
i=1,. . .,n;i�jd�rgj ,rgi�, that is, Dj

represents the sum of the distances of the estimate of
the algorithm j from all the other estimates; we reor-
der the n algorithm responses rg1 , . . . ,rgn as
rgp1 , . . . ,rgpn where Dp1�Dp2� ¯ �Dpn, that is,
we reorder the estimates form the one with the small-
est distance from all the other estimates to the one
with the greatest distance from all the others. This
combining method takes the mean value of the results
of the uncombined methods excluding the N esti-
mates with the highest distance from the others �i.e.,
the last N estimates in the reordered sequence�; in
formula

rgNo-N-Max =

i=Dp1

,. . .,Dpn−N

rgi

n − N
. �8�

E. Median: extraction of the result with the lowest dis-
tance from all the others, that is, the first element of
the reordered sequence introduced in the no-N-max
estimation; in formula

rgMedian = rgj:Dj = min
i=1,. . .,n

�Di�� = rgDp1
� . �9�

The combining methods apply equally well to a different
number n of algorithms. The only thing to take into account
is that no-N-max is equivalent to nearest2 if N=n−2.

These combining methods can be better understood with
the aid of Fig. 1, where five points �numbered from 1 to 5�
simulate the possible different estimations of the illuminant
chromaticity obtained from the five independent algo-
Apr–Jun 2008/Vol. 17(2)3
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ithms, and the investigated combining methods give the
hromaticity estimations, named, respectively, A, B, C10,
30, D1, D2, E.

Experimental Results

.1 Error Measurement
o evaluate the performances of the algorithms and com-
ined methods considered, we need to specify an error
easure. Because in estimating the scene illuminant it is
ore important to estimate its color than its overall inten-

ity, we have to use an intensity-independent error measure.
s suggested by Hordley and Finlayson,15 for error mea-

urement, we use the angle between the RGB triplets of the

lluminant color ��w� and the algorithm’s estimate of it ��ŵ�

Ang = arccos� �w
t �ŵ

��w� ��ŵ�
� . �10�

n Sec. 3, we explained that we have projected all the illu-
inant color estimates for homogeneity in the

g-chromaticity space to apply the combining methods.
ext, we have to recover their RGB triplets given their

g-chromaticities �r ,g�. This can be easily done, up to a
cale factor �, depending on its intensity, by Eq. �11�

R =
�r

g

G = �

B = −
��r + g − 1�

g

. �11�

ecause eAng is intensity-independent, it can be shown that
t is blind to �; consequently, the angular error will be the

Fig. 1 A typical distribution of illuminant cromat
rithms considered �points from 1 to 5� and the
The combined algorithms use, respectively, th
�1-2-3-4-5�; B: nearest2 �4-5�; C10: nearest-10%
4-5�; D2: no-2-max �2-4-5�; E: median �4�.
ournal of Electronic Imaging 023013-
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same whatever the choice for � is. In this work, �=1 was
chosen.

Hordley and Finlayson15 showed that the underlying dis-
tribution of the angular error cannot be well modeled by a
standard distribution and thus the mean error is not repre-
sentative. Instead they suggest also using a test together
with single summary statistics, which is able to compare
the whole error distributions. An appropriate test for com-
paring angular error distributions is the Wilcoxon signed
rank test, as it does not make any assumption about the
underlying distribution.14 Here is a brief description of the
test already made by Hordley and Finlayson:15 let X and Y
be random variables representing the angular error of the
illuminant chromaticity estimation of algorithms X and Y.
The Wilcoxon test is used to test the hypothesis that the
random variables X and Y are such that p= P�X�Y�=0.5.
That is, we hypothesize that algorithms X and Y have the
same performance. To test the hypothesis H0 : p=0.5, we
consider independent pairs �X1 ,Y1� , . . . , �Xn ,Yn� of errors
for N different images. We denote by W the number of
images for which Xi�Yi. When H0 is true, W is binomially
distributed �b�N ,0.5�� and the Wilcoxon test is based on
this statistic. We can define an alternative hypothesis
H1 : p�0.5, which if true implies that errors for algorithm X
are lower than those for algorithm Y. We accept or reject
the null hypothesis at a given significance level � if the
probability of observing the results we observe is less than
or equal to �. The value of � we choose defines the error
rate we accept when we reject the null hypothesis. For the
experiments reported in this paper, we choose �=0.01, that
is, we accept an error rate of 1% �we erroneously reject the
null hypothesis in 1% of the cases�.

timations obtained using the uncombined algo-
ed methods �points A, B, C10, C30, D1, D2, E�.
aticity points listed in the following: A: mean

; C30: nearest-30% �2-4-5�; D1: no-1-max �1-2-
icity es
combin
e chrom

�4-5�
Apr–Jun 2008/Vol. 17(2)4
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.2 Experiments

e have analyzed the performance of the five uncombined
lgorithms and of seven combined method �mean �M�,
earest2 �N2�, nearest-10% �N10p�, nearest-30% �N30p�,
o-1-max �N1M�, no-2-max �N2M�, and median �Med�� on
wo different sets of synthetic and real images. Although
eal image data sets are the most widely used, we have also
ncluded synthetic images in our experiments because they
an be carefully controlled easily. Synthetic image data sets
ave already been used by Barnard et al.3 and by Finlayson
t al.9,15

The algorithms tested are gray world �GW�, white point
WP�, edge-based �EB�, color by correlation �CbC�, and
olor in perspective �CiP�. For comparison, we have also
dded the do nothing �DN�, which is not included to gen-
rate the responses of the combining methods.

.2.1 Synthetic image experiments

e have computed the performance of the algorithms and
f the combining methods on a test set of 6000 synthetic
mages, composed of six collections of 1000 scenes, each
f them composed, respectively, of 2, 4, 8, 16, 32, and 64
urfaces.15

The reflectances of these surfaces have been randomly
elected from a database of more than 40 000 measured
eflectances representative of the world.22 For each image
hat we have generated, the illuminant has also been ran-
omly chosen from a set of 287 measured illuminants.23 To
enerate synthetic sensor responses, we have adopted the
pectral sensitivities of the Sony DXC-930 �Sony Corpora-
ion, New York, New York� digital video camera �depicted
n Fig. 2�, which are also available on the Web.23

The tristimulus values corresponding to each surface can
hus be evaluated using Eqs. �12�

= 

�=400 nm

700 nm

S1���I���R��� ,

ig. 2 Sony DXC-930 sensor spectral sensitivities. �Color online
nly.�
ournal of Electronic Imaging 023013-

m: http://electronicimaging.spiedigitallibrary.org/ on 04/05/2013 Terms of U
G = 

�=400 nm

700 nm

S2���I���R��� ,

�12�

B = 

�=400 nm

700 nm

S3���I���R��� ,

where I��� is the spectral power distribution of the illumi-
nant considered, R��� the reflectance considered, and S1���,
S2���, S3��� the spectral sensitivities of the sensor device.
For the 6000 scenes, the angular error in the estimated il-
luminant chromaticity is evaluated for each of the 13 meth-
ods considered: 5 uncombined algorithms, 7 combined
methods, and the do nothing method. The Wilcoxon signed
rank test applied to the 13 angular error distributions gives
a 13-by-13 matrix, whose entries are +, −, or = �see Tables
1 and 2�. A plus sign in the i’th row and j’th column of the
matrix means that algorithm i is statistically better than
algorithm j when judged according to the Wilcoxon test. A
minus implies that it is worse, and an equal sign implies
that the two algorithms are statistically equivalent.

Counting the number of plus signs for each row of the
matrix gives us a score; this is representative of the number
of the algorithms with respect to which the algorithm con-
sidered results to be statistically better.

4.2.2 Real image experiments
We have analyzed the performance of the illuminant esti-
mation algorithms and of the combining methods on a data
set of carefully controlled real scene images acquired by
Ciurea and Funt24 with a Sony VX-2000 camera. The im-
age data set consists of approximately 11 000 images in
which the RGB color of the ambient illuminant in each
scene is measured. The data set is built using a digital video
camera with a neutral gray sphere attached to the camera so
that the sphere always appeared in the field of view. Ex-
amples of images within this data set are reported in Fig. 3.
To avoid the use of the gray ball as the reference to esti-
mate the illuminant, we have properly cropped all the im-
ages of the database as shown in Fig. 4.

4.3 Results
In Tables 1 and 2, we, respectively, report the Wilcoxon
signed rank test results on the synthetic and real image data
sets. Wilcoxon scores and other single summary statistics
for the algorithms on the test sets of synthetic and real
images are reported, respectively, in Tables 3 and 4. The
columns denoted with AVG, MAX, and STD report, re-
spectively, the average, the maximum, and the standard de-
viation of the algorithm angular errors. The column %DN
reports the percentual improvement on the angular error
with respect to the do nothing method, and the %best re-
ports the improvement with respect to the best uncombined
algorithm. The last two columns, named best count and
worst count, report the percention of images on which the
algorithm has been considered the best �i.e., the algorithm
whose illuminant chromaticity estimation is closest to the
actual one� and the worst one �i.e., the algorithm whose
illuminant chromaticity estimation is furthest from the ac-
tual one�. A 0% in the last column does not mean that the
corresponding algorithm has estimated the correct illumi-
Apr–Jun 2008/Vol. 17(2)5
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ant chromaticity, but rather that its illuminant chromaticity
stimation was never the furthest from the correct one.

The last two columns of Tables 3 and 4 sum to a value
reater than 100%. This is due mainly to two aspects. First,

Table 1 Wilcoxon signed rank test

DN GW WP EB CbC CiP

DN − − − − −

GW + − + − +

WP + + + − +

EB + − − − +

CbC + + + + +

CiP + − − − −

M + + + + − +

N2 + + 	 + − +

N10% + + + + − +

N30% + + + + − +

N1M + + + + − +

N2M + + + + + +

Med + + + + + +

Table 2 Wilcoxon signed rank te

DN GW WP EB CbC CiP

DN − − − − −

GW + + − + +

WP + − − − −

EB + + + + +

CbC + − + − −

CiP + − + − +

M + + + − + +

N2 + − + − + +

N10% + − + − + +

N30% + − + − + +

N1M + + + + + +

N2M + − + − + +

Med + + + − + +
ournal of Electronic Imaging 023013-
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the median combining method does not generate a new
chromaticity estimate but takes one already given by a
white estimation algorithm; consequently, if this algorithm
is considered the best one or the worst one for the image in

on the synthetic images data set.

N2 N10p N30p N1M N2M Med

− − − − − −

− − − − − −

	 − − − − −

− − − − − −

+ + + + − −

− − − − − −

+ + + 	 − −

− − − − −

+ 	 − − −

+ 	 − − −

+ + + − −

+ + + + +

+ + + + −

lts on the real images data set.
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consideration, the median combining method will also be
considered in the same way. Second, two different strate-
gies may give the same chromaticity estimate.

The best strategy on the synthetic image data set is the
no-2-max, which improves the average error of the best
uncombined algorithm by 14.93%, and improvements in
the maximum error and in the standard deviation are, re-
spectively, 8.39% and 40.37%. The best strategy on the real
image data set is the no-1-max, which improves the average
error of the best uncombined algorithm by 1.28%, and im-
provements in the maximum error and in the standard de-
viation are, respectively, 33.81% and 11.70%. Looking at
the last two columns of Tables 3 and 4, we may note that
the best and the worst white estimation algorithms depend
on the image content. This further supports our idea of not
considering fixed weight combinations of the responses of

synthetic images data set.

%DN % best best count worst count

* * 3.46% 55.46

66.60% * 7.80% 1.22%

69.39% * 12.72% 1.20%

48.06% * 5.02% 14.54%

67.81% * 28.62% 6.18%

36.65% * 5.26% 21.40%

72.65% 10.65% 12.96% 0.00%

70.19% 2.60% 3.58% 0.00%

70.46% 3.48% 3.50% 0.00%

70.87% 4.81% 3.30% 0.00%

71.61% 7.23% 9.74% 0.00%

73.96% 14.93% 8.94% 0.00%

73.28% 12.71% 9.20% 0.06%

the data set of real images.
Table 3 Summary statistics on the

Method WST score AVG MAX STD

DN 0 15.87 39.86 9.81

GW 3 5.30 39.43 3.83

WP 4 4.86 48.97 4.84

EB 2 8.25 51.90 7.82

CbC 10 5.11 44.08 6.86

CiP 1 10.06 25.03 5.04

Mean 8 4.34 26.10 3.25

Nearest2 4 4.73 48.99 4.65

Nearest-10% 6 4.69 48.99 4.62

Nearest-30% 6 4.62 48.99 4.57

No-1-Max 8 4.51 29.42 3.87

No-2-Max 12 4.13 40.38 4.09

Median 11 4.24 39.43 3.84
Fig. 3 Examples of images within
ig. 4 Example of the cropping used to avoid the use of the gray
all in the illuminant estimation.
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Downloaded Fro
he algorithms but rather adaptive ones. Note that some of
he combined methods instead are never considered the
orst. This is due to the way they are obtained by combin-

ng the original algorithms.

Conclusions
utomatic estimation of illuminant chromaticity from digi-

al images is an underdetermined problem and thus impos-
ible to solve in the most general case.17 Several algorithms
ave been proposed in the literature, each one based on
ifferent assumptions. We have considered here some well-
nown and widely used algorithms that are based on color
mage statistics, and we have shown that on both synthetic
nd real images, the best and the worst algorithms do not
xist at all. We have thus studied different consensus-based
trategies for illuminant chromaticity estimation. According
o our approach, different algorithms are adaptively chosen
nd combined simply on the basis of their proximity in the
hromaticity space. The proposed combining strategies can
e applied without modifications to different numbers and
inds of algorithms.

Experimental results on large databases of both synthetic
mages and real RGB images have shown that combined

ethods are never considered the worst, and that they im-
rove the accuracy of the illuminant estimation. Among the
nvestigated combining strategies the most affordable one
s the no-N-max, that takes the mean value of the results of
he uncombined methods excluding the N estimates with
he highest distance from the others.

Gijsenij and Gevers25 have investigated how high-order
mage statistics can be used to select proper color con-
tancy algorithms, and they have shown that for certain
cene categories, one specific color constancy algorithm

Table 4 Summary statist

Method WST score AVG MAX

DN 0 11.10 27.41

GW 8 7.68 44.03

WP 1 10.14 27.41

EB 11 7.40 38.83

CbC 2 9.34 24.85

CiP 3 8.45 22.78

Mean 9 7.47 26.09

Nearest2 4 7.99 34.35

Nearest-10% 4 7.97 34.35

Nearest-30% 6 7.91 24.15

No-1-Max 12 7.30 25.70

No-2-Max 6 7.93 24.35

Median 9 7.46 26.92
ournal of Electronic Imaging 023013-

m: http://electronicimaging.spiedigitallibrary.org/ on 04/05/2013 Terms of U
can be used. We have also observed in our experimental
results that the best and the worst white estimation algo-
rithms strongly depend on the image content. In future
work, we thus plan to integrate combining strategies to-
gether with content-based image analysis and image
classification.21,26
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