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Improving Color Constancy Using Indoor—Outdoor
Image Classification

Simone Bianco, Gianluigi Ciocca, Claudio Cusano, and Raimondo Schettini

Abstract—In this work, we investigate how illuminant estimation
techniques can be improved, taking into account automatically ex-
tracted information about the content of the images. We considered
indoor/outdoor classification because the images of these classes
present different content and are usually taken under different il-
lumination conditions. We have designed different strategies for
the selection and the tuning of the most appropriate algorithm (or
combination of algorithms) for each class. We also considered the
adoption of an uncertainty class which corresponds to the images
where the indoor/outdoor classifier is not confident enough. The il-
luminant estimation algorithms considered here are derived from
the framework recently proposed by Van de Weijer and Gevers. We
present a procedure to automatically tune the algorithms’ param-
eters. We have tested the proposed strategies on a suitable subset
of the widely used Funt and Ciurea dataset. Experimental results
clearly demonstrate that classification based strategies outperform
general purpose algorithms.

Index Terms—Color constancy, decision forests, indoor and out-
door image classification.

I. INTRODUCTION

OMPUTATIONAL color constancy aims to estimate the
C actual color in an acquired scene disregarding its illumi-
nant. The different approaches can be broadly classified into
color invariant and illuminant estimation [1]. The former ap-
proaches derive from the image data invariant color descriptors
without estimating explicitly the scene illuminant. The latter is
actually a two stage procedure: the scene illuminant is estimated
from the image data, and the image colors are then corrected on
the basis of this estimate to generate a new image of the scene
as if it were taken under a known, canonical illuminant. Many
illuminant estimation solutions have been proposed in the last
few years although it is known that the problem addressed is ac-
tually ill-posed as its solution lack uniqueness or stability. To
cope with this problem, different solutions usually exploit some
assumptions about the statistical properties of the expected illu-
minants and/or of the object reflectances in the scene. We have
recently considered some well known and widely used color
constancy algorithms that are based on color image statistics,
and we have shown that on large datasets of both synthetic and
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real images the best and the worst algorithms do not exist at
all [2].

Hordley in his review paper [1] gives an excellent review of
illuminant estimation algorithms and highlighted two research
areas that are important in the context of improving the perfor-
mance of color constancy algorithms: making additional mea-
surements at the time of image capture (i.e., use more color pixel
information), and algorithm combining (i.e., using two or more
estimations of the illuminants). In this paper we investigate a
third hypothesis: the use of high level visual information to im-
prove illuminant estimation.

The use of content-based image analysis for automatic color
correction has been originally proposed by Schréoder and
Moser [3]. They classify the images into several signal-oriented
generic classes (e.g., scene with high color complexity) and,
after the class-specific application of a set of color correction
algorithms (White Patch and Gray World), they combine the
results in such a way as to take into account the class-specific
reliabilities of each algorithm. Their proposal is based on a
hierarchical Bayesian image content analysis consisting of fea-
ture extraction and unsupervised clustering. They also suggest
that semantic classes (e.g., indoor, outdoor, vegetation scene,
mountain scene, etc.) and specific image degradation classes
(e.g., underexposure, strong color cast, etc.) could be used in
a similar way. Gasparini and Schettini [4] applied an adaptive
mixture of the white balance and gray world procedures. In
order to avoid the mistaken removal of an intrinsic color,
regions identified as probably corresponding to skin, sky, sea or
vegetation, are temporarily removed from the analyzed image.
Van de Weijer et al. [5] proposed high-level visual information
to improve illuminant estimation. They modeled the image
as a mixture of semantic classes such as grass, skin, road,
and building and exploited this information to select the best
illuminant out of a set of possible ones. They applied several
illuminant estimation approaches to compute a set of possible
illuminants. For each of them an illuminant color corrected
image is evaluated on the likelihood of its semantic content and
the illuminant resulting as the most likely semantic composition
of the image is selected as the illuminant color. They tested
their method on a small subset of the Ciurea and Funt database
[6] that is composed of a variety of both indoor and outdoor
scenes and has shown that their top-down approach on outdoor
images works better than any other tested algorithms.

Gijsenij and Gevers [7] used natural image statistics to
identify the most important characteristics of color images and
achieve selection and/or combining of color constancy algo-
rithms. To this end, they used the Weibull parameterization to
capture the image characteristics, applied a k-means algorithm
to cluster the parameters in a predefined set of clusters, and then
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associated the best-suited color constancy algorithm to each
cluster. Unseen images are assigned to the computed clusters,
and the best color constancy algorithm for that image is chosen.
Gijsenij and Gevers [7] have also suggested that for certain
scene categories, such as forest, open country and streets, a
specific color constancy algorithm can be used.

The idea investigated here is that the effectiveness of auto-
matic illuminant estimation techniques may be improved if in-
formation about the content of the images is taken into account.
To this end, we designed an illuminant estimation approach
which exploits the information provided by an image classifier.
We considered, as suggested by Szummer and Picard [8], the
indoor and outdoor classes, which correspond to categories of
images with different content, usually taken under different il-
lumination conditions. Therefore, these two classes of images
may require different color processing procedures.

In this paper, we derive and experimentally compare four dif-
ferent strategies for illuminant estimation.

e Class-Independent (CI): the same algorithm is applied
without taking into account the image class. Among the
available algorithms with the parameters optimized on a
training set, the best one is chosen on the basis of a robust
statistical test.

* Class-Dependent Parameterization (CDP): two instantia-
tions of the same algorithm are used. They differ in the
value of the parameters which are optimized for the indi-
vidual classes. The best algorithm is selected on the basis of
the statistical test of the performance on the whole training
set. Given an unseen image, it is first classified as indoor or
outdoor, and then processed with the algorithm tuned for
that class.

* Class-Dependent Algorithms (CDA): for each class a dif-
ferent algorithm is applied. The parameters of each algo-
rithm are optimized for the corresponding class. The best
algorithm for indoor and the best algorithm for outdoor
are selected on the basis of the statistical test of the per-
formance on the corresponding subsets of the training set.
Given an unseen image, it is firstly classified, and then pro-
cessed with the algorithm selected for the predicted class.

e Class-Dependent Algorithms with Uncertainty Class
(CDAUC): a rejection class is introduced to identify
images on which the classifier is not confident enough.
Therefore, the images are classified as indoor, outdoor, or
uncertain. Images classified as indoor or outdoor are pro-
cessed according to the CDA strategy. Images classified
as uncertain are processed according to the CI strategy.

The above strategies are independent from the illuminant
estimation algorithms. In this paper, we consider eight algo-
rithms: six derived from the framework recently proposed in
[16], and two obtained by a linear and a nonlinear algorithm
combinations.

In our experiments, we used the database presented by
Ciurea and Funt [6]. Since the images in this database were
frames extracted from video clips, and they show high correla-
tion between each other, we applied a video-based analysis to
automatically select the images to be included in our data set.
Experimental results show that the accuracy of color constancy
techniques can be significantly improved if specific algorithms
or combinations of algorithms are chosen for each image class.
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The paper is organized as follows. Section II introduces the
problem of automatic color constancy and presents our ap-
proach. Section III describes the data we used for performance
evaluation and the training processes. Finally, Section IV
reports and comments the results obtained and Section V
summarizes our work and our future plans about this topic.

II. PROPOSED APPROACH

An image acquired by a digital camera can be seen as a func-
tion p mainly dependent on three physical factors: the illuminant
spectral power distribution I(\), the surface spectral reflectance
S(\) and the sensor spectral sensitivities C(\). Using this no-
tation, the sensor responses at the pixel with coordinates (z, y)
can be thus described as

pz.y) = / (0S5, )C(N)dA )

w

where w is the wavelength range of the visible light spectrum, p
and C()\) are three-component vectors. Since the three sensor
spectral sensitivities are usually respectively more sensitive to
the low, medium and high wavelengths, the three-component
vector of sensor responses p = (p1, p2, p3) is also referred to
as the sensor or camera RGB = (R, G, B) triplet. In the fol-
lowing, we adopt the convention that RGB triplets are repre-
sented by row vectors.

Assuming that the color I of the scene illuminant as seen by
the camera only depends on the illuminant spectral power distri-
bution I(\) and on the sensor spectral sensitivities C()), then
computational color constancy is equivalent to the estimation of
I by

- / I()C()dA %)

w

given only the sensor responses p(z, y) across the image. It has
been demonstrated that this is an under-determined problem
[9] and, thus, further assumptions and/or knowledge are needed
to solve it. Typically, some information about the camera being
used are exploited, and/or assumptions about the statistical
properties of the expected illuminants and surface reflectances.

The basic idea of our illuminant estimation approach is the
following: let us suppose to have several distinct color constancy
algorithms; based on their performances on a training set that is
manually labeled into indoor and outdoor classes, it is possible
to identify the best algorithm for the two classes considered and
the best algorithm for the whole training set. On the basis of
this idea, we derived four strategies which use the output of an
image classifier to select the appropriate illuminant estimation
algorithms.

A. Image Classification

There have been several efforts to automate the classifica-
tion of digital images to date. Szummer and Picard [8] have
constructed algorithms for indoor/outdoor image classification.
Vailaya et al. [10] have considered the hierarchical classifica-
tion of vacation images: at the highest level the images are sorted
into indoor/outdoor classes, outdoor images are then assigned to
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city/landscape classes, and finally landscape images are classi-
fied in sunset, forest, and mountain categories. In Schettini et al.
[11] low-level visual features are related to semantic image cate-
gories, such as indoor, outdoor and close-up, using CART clas-
sifiers. Several classification strategies were designed and ex-
perimentally compared, producing a classifier that can provide
a reasonably good performance and robustness. In this work,
we use a similar approach to classify the images into indoor and
outdoor classes.

Each image is described by a set of low-level features related
to color, texture, and edge distribution. The extracted features,
organized in a feature vector, are fed to a decision forest trained
to distinguish between indoor and outdoor images. After a fea-
ture selection phase, which consisted in training several classi-
fiers and evaluating them on an independent validation set, we
selected four features.

Information about color distribution is captured by spatial
color moments: we transform the image into the YCbCr color
space, divide it into seven horizontal bands, and compute the
mean and the standard deviation of each of the three color
bands. Since the YCbCr color space decorrelates luminance
and chrominance components it is commonly used in image
classification tasks. The subdivision in horizontal bands ade-
quately describes some characteristics which are very useful
for indoor/outdoor classification (images with blue sky in the
upper part, or green grass in the lower part. . .). Color moments
are less useful when the bands contain heterogeneous color
regions. Therefore, a global color histogram has been selected
as a second color feature. The RGB color space has been subdi-
vided in 27 bins by a uniform quantization of each component
in three ranges.

To describe the most salient edges we used an 18 bin edge di-
rection histogram (ten degrees for each bin): the gradient of the
luminance image is computed using Gaussian derivative filters
tuned to retain only the major edges. Only the points for which
the magnitude of the gradient exceeds a set threshold contribute
to the histogram.

Texture information is extracted computing a set of features
based on a multiresolution analysis. A three level wavelet trans-
form of the luminance image is computed, yielding to ten dif-
ferent sub-bands. For each band, we then compute the average
absolute value of the coefficients and their standard deviation.
Summing up, each image is described by a feature vector of
2X3XxT+27+ 18+ 10 x 2 = 107 components.

For classification, we used decision trees built according to
the CART methodology [12]. The CART approach to classifica-
tion presents several advantages: first of all it is a nonparametric
and nonmetric method so that no a priori knowledge about the
distribution of the values of the features is needed and the issue
of feature normalization may be ignored. The hierarchical struc-
ture of the trees is rather easy to analyze making it possible to
understand which features play a major role in the classification
process. Moreover, CART trees have been previously applied
with satisfactory results to other image classification problems
[11], [13], [14].

Briefly, decision trees are produced by recursively parti-
tioning a training set of feature vectors labeled with the correct
class. Each split consists of a comparison between the value
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of a single feature and a threshold. Once a tree has been con-
structed, a class is assigned to each of the terminal nodes, and
when a new case is processed by the tree, its predicted class
is the class associated with the terminal node into which the
case finally moves on the basis of the values of the features.
The construction process is based on a training set of cases
of known class. A function of impurity of the nodes, i(t), is
introduced, and the decrease in its value produced by a split is
taken as a measure of the goodness of the split itself. For each
node, all the possible splits on all the features are considered
and the split which minimizes the average impurity of the two
sub-nodes is selected. The function of node impurity we have
used is the Gini diversity index

C

it)y=1-"Yplclt)’ 3)

c=1

where p(c|t) is the resubstitution estimate of the conditional
probability of class ¢ (in this case C' = 2) in node ¢, that is,
the probability that a case found in node ¢ is a case of class c.
When the difference in impurity between a node and best subn-
odes is below a threshold, the node is considered as terminal.
The class assigned to a terminal node ¢ is the class ¢* for which

o, plelt). @

p(c*|t) = max
ce{l, -,
In CART methodology, the size of a tree is treated as a tuning
parameter, and the optimal size is adaptively chosen from the
data. A very large tree is grown and then pruned, using a cost-
complexity criterion which governs the tradeoff between size
and accuracy. Although the pruning process prevents overfit-
ting, pruned trees still present instability (a small change in data
may result in a very different tree). Decision forests can be used
to overcome this problem improving, at the same time, general-
ization accuracy [15]. The trees of a decision forest are gener-
ated by running the training process on bootstrap replicates of
the training set. The classification results produced by the single
trees are combined by majority vote. The number of concordant
votes may also be used as a measure of confidence of the com-
bined classifier on the classification result.

B. Color Constancy Algorithms

Several computational color constancy algorithms exist in the
literature, each based on different assumptions. In this paper,
we chose eight algorithms (six algorithms and two combining
strategies), but a different set of algorithms could be used.

Recently Van de Weijer et al. [16] have proposed a framework
which unifies a variety of algorithms. These algorithms corre-
spond to instantiations of the following equation:

< / / V", (. m)I” dxdy); -y )

where n is the order of the derivative, p is the Minkowski norm,
p,(z,y) = p(x,y) ® G,(x,y) is the convolution of the image
with a Gaussian filter G, (z, y) with scale parameter o, and k is
a constant to be chosen so that the illuminant color I has unit
length. In this paper, by varying the three variables (n, p, o) we
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have generated six algorithm instantiations that correspond to
well known and widely used color constancy algorithms.

1) Grey World (GW) algorithm [17], which is based on
the assumption that the average reflectance in a scene is
achromatic. It can be generated setting (n,p, o) = (0, 1,0)
into (5).

2) White Point (WP) algorithm [18], also known as Maximum
RGB, which is based on the assumption that the maximum
reflectance in a scene is achromatic. It can be generated
setting (n,p, o) = (0,00, 0) into (5).

3) Shades of Gray (SG) algorithm [19], which is based on
the assumption that the pth Minkowski norm of a scene is
achromatic. It can be generated setting (n, p, o) = (0, p,0)
into (5).

4) General Grey World (gGW) algorthm [16], [20], which is
based on the assumption that the pth Minkowski norm of a
scene after local smoothing is achromatic. It can be gener-
ated setting (n,p, o) = (0,p, o) into (5).

5) Gray Edge (GE1) algorithm [16], which is based on the
assumption that the pth Minkowski norm of the first order
derivative in a scene is achromatic. It can be generated
setting (n,p, o) = (1,p, o) into (5).

6) Second Order Gray Edge (GE2) algorithm [16], which is
based on the assumption that the pth Minkowski norm of
the second order derivative in a scene is achromatic. It can
be generated setting (n,p, o) = (2, p, o) into (5).

As can be noticed, the instantiations of GW and WP have all
three parameters (n, p, o) fixed; SG instead, has the parameter
p that can be opportunely tuned for a particular image; while
gGW, GE1 and GE2 have two parameters (p and o) which must
be tuned.

With the aim of improving the illuminant color estimation of
the single algorithms, we have also implemented a linear and a
nonlinear combining algorithm. The first one is the Least Mean
Squares Committee (LMS) proposed by Cardei and Funt [21].
The response of this combining algorithm is given by multi-
plying the responses of all the six single algorithms considered
for a fixed 18 x 3 weight matrix W. Formally

RGB/ s = [RGB, - -- RGB¢|W. (6)

The second one is an instantiation of the No-N-Max (NNM)
algorithm, which has been recently proposed by the authors and
showed to perform well on synthetic and real images [2]. The
underlying idea is that algorithms that give similar illuminant
color estimations have to be trusted more than algorithms that
give estimates that are far from the others, and, thus, the latter
ones have to be automatically discarded.

Let rgb, = RGB;||RGB;||7',i = 1,---,6 be the
normalized versions of the illuminant color estimates
given by the six single algorithms considered, and let
D; = Zf:l,’i;éj d(rgb,,rgb;), j = 1,---,6 be the sum
of the Euclidean distances of the illuminant color estimate
of the algorithm from all the other estimates. We reorder the
six algorithm estimates rgby,---,rgbg as rgb, ,---,rgb, ,
where D,,, < D,, < --- < D,. In other words, we reorder
the estimates from the one with the smallest distance from all
the others to the one with the highest distance from all the
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others. This combining method takes the mean value of the
estimates of the single algorithms automatically discarding the
N estimates with the highest distance from all the others (i.e.,
the last IV in the reordered sequence). Formally

Zi:pl;"'vl’G—N rgbi
6—-N

which is finally normalized as defined before.

RGBynu =

)

C. Algorithm Selection Approaches

We propose two algorithm selection approaches. In the first
one, we used the output of the classifier to decide which color
constancy algorithm (and/or which set of parameters) to apply
to the specific image under consideration as shown in Fig. 1(a).
This approach is used in the CDP and CDA strategies. In the
second selection approach, we take into account the confidence
measure provided by the classifier as shown in Fig. 1(b). The
difference with respect to the first one is the introduction of an
uncertainty class constituted by the images for which the clas-
sifier is not sure about their membership to indoor or outdoor
class (i.e., CDAUC strategy).

Let P be the confidence measure, that is, the fraction of con-
cordant votes in the trees in the forest w.r.t. the output class.
Given an input image, we consider the image to be indoor if
the predicted class is indoor and P > Tinpoor; the image is
considered outdoor if the predicted class is outdoor and P >
TouTpoor; we consider the image to be in the uncertainty class
otherwise. We chose to use two different thresholds because the
classifier adopted does not guarantee a uniform confidence mea-
sure for both classes. The two thresholds are tuned by analyzing
the final performance of the illuminant estimation algorithms.

If the input image is classified as indoor or outdoor and satis-
fies the constraints above, the image is processed with the best
color balancing algorithm for that class. Otherwise, since the
membership of the image to either class cannot be reliably in-
ferred, applying a specific algorithm tuned for indoor or outdoor
images may significantly worsen the appearance of the image
processed. In these cases, a more conservative, general-purpose
algorithm is instead applied.

III. EXPERIMENTAL SETUP

In our approach, the classifier needs to be trained, using a set
of images manually labeled as indoor or outdoor, and the pa-
rameters of some color constancy algorithms need to be tuned.
The last point requires a dataset of images labeled with ground
truth illuminants, and the definition of a suitable error measure
which can quantify the accuracy of the algorithms in the esti-
mation of the illuminant. In the following sections we introduce
the datasets and the setup procedures.

A. Illuminant Dataset Selection

In [6], Ciurea and Funt presented an image database to be
used as a common data set in the evaluation of colour con-
stancy algorithms. In this database, 15 digital video clips were
recorded (at 15 frames per second) in different settings such as
indoor, outdoor, desert, markets, cityscape, etc. .. for a total of
two hours of videos. From each clip, a set of images was ex-
tracted resulting in a database of more than 11,000 images. In
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Outdoor Best Outdoor Algorithm
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Best Global Algorithm
Best Outdoor Algorithm
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Fig. 1. Scheme of proposed approaches for the selection of the algorithms. In the first approach, the image is classified by the decision forest and the output class
is used to select the color constancy algorithm. This approach is used in the CDP and CDA strategies. In the second approach, the appropriate color constancy
algorithm is selected according to the output class and the confidence measure. This approach is used in the CDAUC strategy.

each image, a grey sphere appears in the bottom right corner of
the images. This sphere was used to estimate the colour of the
scene illuminant. The database is, thus, composed by images
taken at different locations each one coupled with the measured
illuminant.

Since the database sources were video clips, the images ex-
tracted show high correlation. To remove this correlation only
a subset of images should be used from each set. Taking into
account that the image sets came from video clips, we applied
a video-based analysis to select the image to be included in the
final illuminant dataset. The frames which show redundancy in
terms of visual content are removed and only the most represen-
tative are retained (see [22] and [23]). Applying this procedure,
we reduced the original dataset to 1,135 images.

Note that the aim of our procedure is to decorrelate the pic-
torial content of the images. Decorrelation of the illuminant is
not guranteed. This fact, in our opinion, does not invalidate our
evaluation strategy since we think that the performance of illu-
minant estimation algorithms depends more on the content of
the image than on the illuminant itself.

More details about this procedure can be found in Appendix I.

B. Decision Forest Training

In order to obtain a classifier with good generalization capa-
bilities, a rather large dataset of images is needed. For this pur-
pose, we collected 6,785 images, downloaded from the web, or
acquired by a scanner or digital cameras. All the material varied
in size, resolution, and quality. The images were resized to 256
pixels on the largest dimension, and proportionally on the other
dimension in such a way that the aspect ratio was maintained.
The images have been manually annotated yielding to 2,105 in-
door images and 4,680 outdoor images. No enhancement proce-
dure (such as white balancing) has been applied to the images.

In order to select the features and to determine the size of
the forest we partitioned the images into a training set of 2,000
images (1,000 indoor and 1,000 outdoor), and a validation set
containing the remaining 4,785 images. As a result, we selected

TABLE I
CONFUSION MATRIX OBTAINED ON THE TEST SET BY THE DECISION
FOREST. THE NUMBER OF MISCLASSIFICATIONS WAS 169
(86 INDOOR AND 83 OUTDOOR IMAGES)

Predicted outdoor

17.9%
87.3%

Predicted indoor

82.1%
12.7%

True indoor
True outdoor

the four features described in Section II-A, and we set the size
of the decision forest to 50 trees.

Within this framework we obtained a classification accuracy
of about 93.1% on the validation set. On the images of the il-
Iuminant dataset (Section III-A) we obtained the results sum-
marized in Table I. Note that the test images have been manu-
ally annotated as indoor (481 images) or outdoor images (654
images).

The overall classification accuracy obtained on the test set is
85.1%. The difference with respect to the performance obtained
on the validation set can be explained considering that the test
setincludes several images with little information about the con-
text in which they were taken. For instance, the test set includes
several close-ups of various objects, which cannot be classi-
fied as indoor or outdoor without exploiting high level knowl-
edge and reasoning. Fig. 2 shows a sample of the misclassified
images.

C. Error Measurement Definition

In order to evaluate the performance of the algorithms con-
sidered, we have used an intensity independent error measure.
This choice is because it is more important in estimating the
scene illuminant to estimate its color than its overall intensity.
As suggested by Hordley and Finlayson [24], we use the angle
between the RGB triplets of the illuminant color (p,,) and the
algorithm’s estimate of it (p,,) as error measure
PPy >

—_— 8
olloul ®

EANG = arccos <
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It has been shown also [24] that the median error is a good de-
scriptor of the angular error distribution.

D. Automatic Parameters Tuning

Four of the color constancy algorithms considered (SG, gGW,
GEl1, GE2), needed a training phase to opportunely tune the pa-
rameters (n,p, o). We use the median error as the main index
in the evaluation of the different algorithm performances. Being
the median error a nonlinear statistic, we needed a multidimen-
sional nonlinear optimization algorithm: our choice was to use a
Pattern Search Method (PSM). PSMs are a class of direct search
methods for nonlinear optimization [25], [26]. Their popularity
is given by simplicity and by the fact that they work very well
in practice on a variety of problems. Furthermore, global con-
vergence can be established under certain regularity assump-
tions of the function to minimize [27]. PSMs are also extremely
simple to implement and do not require any explicit estimate of
derivatives.

We need a training set on which to perform the tuning of the
parameters. To this end, 300 images (150 indoor and 150 out-
door) were randomly extracted from the 1,135 images of the
illuminant dataset and used as training set. Since we expect dif-
ferent behavior of the algorithms on the different classes con-
sidered, the parameters were tuned independently for the indoor
class, for the outdoor class and for the whole training set.

The form of a general pattern search algorithm can be de-
scribed in the following way. At each step k, we have the cur-
rent iterate Xy, a set Dy, of vectors which identify the search di-
rections, and a step-length parameter Aj. Usually, the set Dy,
is the same for all iterations. For each direction d;, € Dy,
we set xT = x; + Apd; (the “pattern”) and we examine
f(x*) where f is the function to be minimized. If 3d;, € Dy, :
f(x"") < f(Xk), we set X411 = xt and Ak+1 = ap A, with
ap > 1; otherwise, we set X1 = Xi and Agy1 = Bk
with B < 1. The algorithm stops when the step Ay is smaller
than a fixed threshold or when the maximum number of iter-
ations has been reached. In this paper, we have chosen to fix

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 12, DECEMBER 2008

)]

e
)

Fig. 2. Example of indoor images misclassified as outdoor images (a—1) and some outdoor images misclassified as indoor images (m—x).

TABLE 1T
PARAMETERS FOUND BY THE PATTERN SEARCH ALGORITHM. ONLY THE
VALUES REPORTED IN BOLD HAVE BEEN COMPUTED, THE OTHERS HAVE BEEN
SET ACCORDING TO THE DEFINITION OF THE ALGORITHMS

Indoor Outdoor General purpose

n P o n D o n P o

GW 0 1 0 0 1 0 0 1 0
WP 0 00 0 0 oo 0 0 o) 0
SG 0 127 0 0 oo* 0 0 1.06 0
¢GW 0 132 100 0 oo 000 0 1.08 0.83
GEl 1 060 172 1 110 083 1 110 1.08
GE2 2 106 296 2 191 004 2 155 1.83

* Values which diverge towards infinity.
the maximum number of iterations n = 50, ap = a = 2,

Br=06=05 D, ={NW N NE E SE,S, SW, W}, and
Ag = 0.1. The same starting point has been chosen for the
four algorithms that needed a training phase (SG, gGW, GEl1
and GE2): xg = (po,00) = (1,0). If during the minimization
process the parameter p exceeded a given threshold (in our case
we set it at 200), we considered it to be infinity.

The parameters found by the pattern search algorithm are re-
ported in Table II. It can be seen that the optimal values found
for the parameter p for the indoor class are lower than the ones
for the outdoor class. The optimal values found for the param-
eter o instead, are higher for the indoor class than the ones for
the outdoor class. While for the indoor class the pattern search
optimization found different values for the parameters of the dif-
ferent color constancy algorithms, we can see that in the choice
of the parameters for the outdoor class of the gGW and SG al-
gorithms tended to be asymptotically convergent to the WP’s
ones. Regarding the general-purpose class, we can see instead
that the optimal choice for the parameters of the SG algorithm
is very similar to the GW’s ones.

Two combining algorithms are also considered, the
No-2-Max (N2M) [2] and the Least Mean Squares Com-
mittee (LMS) [21]. The first does not require any training
process, while the weight matrices for the LMS need to be
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computed on the training set using a least squares regression.
Thus, for each of the classes considered, we have a different
weight matrix for the LMS Committee which multiplies the re-
sponses of the six algorithms with the tuned parameters for that
class. The LMS weight matrices are reported in Appendix II.

We underline that the fact of having three identical algorithms
for the outdoor class (WP, SG, and gGW) does not pose any
problems for the LMS: it is possible to obtain the same illumi-
nant estimations if we sum the coefficients found for the three
algorithms and use for example only the WP algorithm with the
summed coefficient in the LMS committee. A different consid-
eration has to be made for the N2M: as it discards image by
image the two algorithms that have given an illuminant estima-
tion that is farthest from the others, then for every image, the
three algorithms that give the identical estimation (WP, SG, and
gGW) are always retained together with the algorithm that gives
the estimation that is closest to theirs. Furthermore, as the output
of the N2M is the mean of the estimations of the algorithms re-
tained, the estimation of the WP, SG, and gGW has more influ-
ence on the final estimation. In order to maintain the symmetry
with the other class and to maintain a greater generality of the
methods, we decided to still consider WP, SG, and gGW as dis-
tinct algorithms for both the instantiations of the N2M and LMS
for the outdoor class.

IV. EXPERIMENTAL RESULTS

The focus of our experimentation is to establish which of the
following color constancy strategies is preferable (at least on the
dataset considered).

* Class-Independent (CI): the parameters of the algorithms

are tuned without considering the class of input images (see
the “general purpose” column in Table II).

¢ Class-Dependent Parameterization (CDP): for a given al-
gorithm the parameters to use are selected on the basis of
the class predicted by the decision forest (see the “indoor”
and “outdoor” columns in Table II).

e Class-Dependent Algorithms (CDA): for each class the
best algorithm (and its corresponding parameters) is
selected.

* Class-Dependent Algorithms with Uncertainty Class
(CDAUCQC): the same as above, but with the introduction
of the uncertainty class. Images falling in the uncertainty
class are processed by the algorithm that has proved to be
the best class-independent algorithm.

In order to perform such a comparison Hordley and Finlayson
[24] showed that together with the summary statistics of the an-
gular errors a test able to compare the whole error distribution
between different algorithms is needed. Since standard proba-
bility models cannot well represent the underlying errors, we
need a test that does not make any a priori assumptions about
the underlying error distributions. In this work, to compare the
performance of two color constancy algorithms we have used
the Wilcoxon Sign Test (WST) [28]. Let X and Y be random
variables representing the angular errors between the illumi-
nant estimations of the two algorithms and the real illuminants;
let px and py be the medians of such random variables. The
Wilcoxon signed-rank test can be used to test the null hypoth-
esis Hy : ux = py. To test Hy, we consider the difference
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TABLE III
MEDIAN ANGULAR ERROR OBTAINED BY THE COLOR CONSTANCY
ALGORITHMS ON THE TRAINING SET. THE BEST RESULTS
FOR EACH COLUMN ARE REPORTED IN BOLD

Indoor Images’ Outdoor Imagest ~ Whole Training Set

Median WSTs Median WSTs  Median WSTs
GW* 491 3 7.86 0 5.62 1
wp* 11.83 0 2.81 2 7.76 0
SG 4.31 6 2.81 2 5.56 1
oaGW 432 6 2.81 2 5.57 1
GEl 5.40 1 3.72 1 5.45 1
GE2 5.57 1 2.48 7 5.47 1
N2M 5.13 3 2.83 2 5.02 6
LMS 4.58 5 2.71 2 4.50 7

* Algorithms with fixed, class independent, parameters.
f Test with algorithms tuned specifically for the class.

of independent error pairs (X; — Y1), -+, (Xny — Yy) for N
different images. We rank these error pairs according to their ab-
solute differences. If Hy is correct, the sum of the ranks W will
approximate zero. If W is much larger or smaller than zero, the
alternative hypothesis H; : px # py is true. We can test H
against H at a given significance level «. We reject and accept
if the probability of observing the error differences we obtained
is less than or equal to «. In this work, we have used the al-
ternative hypothesis H; : pux < py with a significance level
a = 0.01. Comparing every color constancy algorithm with all
the others, we generated a score representative of the number of
times that the null hypothesis Hy has been rejected for the given
algorithm, i.e., the number of times that the performance of the
given algorithm has been considered to be better than the others.

In order to select the best algorithms for each class, we evalu-
ated the algorithms on the training set introduced in Section III.
The results are reported in Table III. More in detail, the first
column of the table reports the results obtained on the indoor
images of the training set by the algorithms whose parameters
have been tuned for that specific class (that is, the class-depen-
dent parameterization strategy). Similarly, the second column
summarizes the results obtained on outdoor images. The third
column details the results of the general purpose version of the
algorithms (that is, the class-independent strategy) when applied
to the whole training set.

The results with the general purpose algorithms show that
combinatorial algorithms, and in particular LMS, performed
better than the others. The Wilcoxon test confirms that the
difference in performance is significant (even the difference of
0.43 degrees between N2M and GE1). However, if we consider
class-specific algorithms, SG and GE2 outperform the com-
bining methods for indoor and outdoor images, respectively.

On the basis of the results obtained we can select the best al-
gorithm for each class. For indoor images both SG and gGW
may be chosen in fact, the WST index shows that they exhibit
an indistinguishable behavior. We selected the SG because its
angular error is slightly better, and is computationally less ex-
pensive than the gGW. For outdoor images the GE2 algorithm
is clearly superior to the others.

We can see that the errors on the two classes are very different.
In particular, with the exception of the GW algorithm, all the er-
rors obtained on the outdoor class are significantly lower than
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TABLE IV
MEDIAN ANGULAR ERROR OBTAINED BY THE COLOR CONSTANCY
ALGORITHMS ON THE TEST SET USING THE CI AND CDP STRATEGIES.
THE BEST RESULTS FOR EACH COLUMN ARE REPORTED IN BOLD

CI Strategy CDP Strategy

Median WSTs  Median WSTs
GW* 5.95 0 5.95 0
WPpP* 5.48 3 5.48 1
SG 5.80 0 4.08 4
gGW 5.80 0 5.39 1
GEl 4.47 5 4.32 3
GE2 4.65 5 3.94 4
N2M 4.79 4 4.01 4
LMS 4.18 7 4.05 4

* Algorithms with fixed, class independent, parameters.

those obtained on the indoor class. This can be explained by ana-
lyzing the dataset. The majority of the outdoor images were shot
under a near ideal illumination condition (clear sky without any
color cast). Moreover, the outdoor illuminants do not present
the same variability of the indoor illuminants. Looking at the
parameters and results of the WP, SG, and gGW algorithms on
the outdoor images, it can be seen that they behave identically
as a WP algorithm. This can be explained considering that real
outdoor images tend to exhibit color channel clipping in the high
intensity range. These very bright pixels are taken as reference
white by the three WP-like algorithms and this reference is often
very close to the real scene illuminant.

Table IV summarizes the results on the 835 images (331 in-
door and 504 outdoor) in the test set. The first column reports the
results obtained by the algorithms using the class-independent
strategy while the second reports those using the class-depen-
dent parameterization strategy. For the sake of brevity, we omit
the results obtained on the two classes. The errors of the GW
and WP algorithms are the same for both strategies because their
parameters are actually class independent. The results of the CI
strategy are lower than those obtained on the training set. This
is due to the fact that in the test set the outdoor class is more rep-
resented than the indoor class (504 versus 331 images). The in-
troduction of a class-dependent parameterization, improved the
results of all the algorithms (with the obvious exception of GW
and WP). Four different algorithms (SG, GE2, N2M, and LMS)
obtained a median error of about four degrees, which is better
than the error obtained by the best class-independent algorithm.

In the last two experiments, we considered the application
of different algorithms, on the basis of the classification out-
come (namely the CDA and CDAUC strategies). According to
the results obtained on the training set, the CDA strategy con-
sists in applying the SG algorithm to the images classified as in-
door, and the GE2 algorithm to those classified as outdoor. The
CDAUC strategy consists in applying the same algorithms as the
CDA but adding the uncertainty class for which we used the gen-
eral purpose version of the LMS algorithm. The two thresholds
of the CDAUC strategy were chosen using a five-fold cross val-
idation approach on the 300 images of the training set. The final
thresholds (Iinpoor = 0.82, Toutpoor = 0.67) are the av-
erage of the best thresholds found by each cross validation iter-
ation. Using these values about 19.75% of the images in test set
were classified as “uncertain.” The results obtained on the test
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TABLE V
SUMMARY OF THE RESULTS OBTAINED ON THE TEST
SET BY THE FOUR STRATEGIES PROPOSED

Strategy ~ Underlying algorithms Median  WSTs
CI LMS, general purpose parameters 4.18 0
CDP GE2, indoor and outdoor parameters 3.94 1
CDA SG for indoor and GE2 for outdoor 3.78 1
CDAUC  SG ind., GE2 out., LMS gen. purpose 3.54 3

set are reported in Table V. They are compared with the perfor-
mance of the best algorithms in the CI and CDP strategies (LMS
and GE2, respectively). It can be noted that the median error
decreases as more complex strategies are applied. However, ac-
cording to the Wilcoxon Sign Test, it is not possible to claim that
class dependent strategy is superior to class-dependent param-
eterization. Our results demonstrate that, at least on the dataset
we considered, a classification based strategy which uses an un-
certainty class outperforms a general purpose algorithm.

To determine the influence of the performance of the classifier
on the final color contancy performance, we analyzed the results
obtained with the CDA strategy considering correctly classified
and misclassified images separately. On correctly classified in-
door images the median angular error is 4.85; on indoor images
misclassified as outdoor we obtained an error of 9.79. For out-
door images, the median errors on correctly classified and mis-
classified images are 2.31 and 5.07, respectively. So, image mis-
classification approximately doubles median angular errors. To
avoid this decrease in performance an accurate classifier is cru-
cial so that misclassifications occur rarely. To assess how much
angular error may be improved using a better classifier, we com-
pared our results with those of an “optimal” classifier (i.e., a
classifier which correctly classifies all test images). By running
the CDA strategy with the optimal classifier we obtained a me-
dian angular error of 3.48. We also considered a “random” clas-
sifier (i.e., a classifier which randomly misclassifies the images
with a probability of 0.5) obtaining an error of 5.63. We can
note that the results obtained using our classifier (3.78 of me-
dian angular error) are much closer to the results of the optimal
classifier than to the random classifier ones. The results of this
experiment give us the upper bound of 0.3 degrees of angular
error to the improvement that could be achieved by adopting a
more powerful classification methodology (Support Vector Ma-
chines [29], boosting [30], etc.).

We can summarize the results of our experimentation as
follows.

* If no knowledge of the image content is exploited (CI
strategy), combining methods perform better than the
single ones.

* The algorithms that can be tuned on the basis of image
contents benefit by the classification process.

* For the indoor class the SG (or equivalently the gGW)
shows better results than the other methods. For outdoor
class the best performance is obtained by the GE2 algo-
rithm. For the specific classes, combining methods do not
seem to be the best choice.

* When the same algorithm is used on both classes but with
different parameters settings (Class-Dependent Parameter-
ization strategy), there is not a single best algorithm. Four
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Fig. 3. The 40 key frames extracted from the “Camelback” video clip by the key frame extraction algorithm.

algorithms performed equally well obtaining the best re-
sult. Among these, being the less computational expensive,
SG seems to be the best choice.

» Using different algorithms for indoor and outdoor images
(Class-Dependent Algorithm strategy), improves the re-
sults with respect to the Class-Independent strategy. From
our experiments, the best combination of algorithms con-
sisted in the selection of the SG algorithm for the indoor
images and GE2 for the outdoor images. We also observed
a small improvement with respect to the Class-Dependent
Parameterization strategy.

e The introduction of a third image class containing the
images on which the classifier is not confident enough
(CDAUC strategy), further improves the results. The
algorithms selected in the CDAUC strategy are the SG
for indoor images, GE2 for outdoor images and LMS
(with the general purpose parameterization) for the other
images. The improvement is statistically significant with
respect to the other strategies considered.

V. CONCLUSION

We presented four strategies for automatic illuminant esti-
mation using single algorithms or combination of algorithms.
The strategies proposed can be used with any set of color con-
stancy algorithms. In this work we used a set of algorithms de-
rived from the framework recently proposed by Van de Weijer
and Gevers for which a novel procedure is proposed to auto-
matically tune the algorithms’ parameters. We also used two

combining frameworks proposed by Ciurea and Funt [6], and
Bianco et al. [2].

In this paper, to improve illuminant estimation accuracy, an
image classifier is trained to classify the images as indoor and
outdoor, and different experimental framework are proposed to
exploit this information in order to select the best performing
algorithm on each class. The solutions investigated here in-
cluded: an indoor/outdoor parameterization strategy according
to which, given a color constancy algorithm, its parameters
are set on the basis of the class predicted by the classifier;
an indoor/outdoor algorithm selection strategy according to
which the best algorithm (and its corresponding parameters)
are set on the basis of the class predicted by the classifier; an
indoor/uncertain/outdoor algorithm selection strategy which
differs from the previous for the introduction of an uncertainty
class. Images falling in the uncertainty class are processed by
the algorithm that has proved to be the best class-independent
algorithm.

We tested the strategies on a suitable subset of the widely used
Funt and Ciurea dataset. To this end a method for extracting un-
correlated images from the dataset is used. Our results demon-
strate that a classification based strategy which also uses an un-
certainty class outperforms all the other strategies considered.

Future works will include the collection of a large dataset with
high content and illuminant variability. Such a dataset would
allow us to investigate if the introduction of additional classes
may further improve the results. We also plan to experiment our
strategies with other color constancy algorithms. For instance,
having additional knowledge about the imaging device color
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Fig. 4. “Camelback” images included in the final data set. Among the hierarchy of visual summaries generated by the visual summary post processing

algorithm, the one containing exactly 28 key frames is selected.

TABLE VI
COMPOSITION OF THE IMAGES IN THE ORIGINAL 15 VIDEO CLIPS,
NUMBER OF EXTRACTED KEY FRAMES AND NUMBER OF
IMAGES WE INCLUDED IN OUR DATA SET

Clip # Frames # Key frames  # Required frames

1 Apache 1,273 181 127
2 Burnabay 953 136 95
3 Camelback 276 40 28
4 CICl1 985 156 99
5 CICc2 406 75 41
6 CIC3 499 72 50
7  Deerlake 956 167 96
8  Fallcreek 708 114 71
9  Marine 513 82 51
10 Marketl 555 86 56
11 Market2 1,098 144 110
12 Metrotown 1,313 206 131
13 Scottsdale 541 80 54
14 SFU 1,198 184 120
15  WhiteCliff 81 6 8 (6)
TOTAL 11,355 1,729 1,135

gamut, it would be worth to investigate gamut-based color con-
stancy [31], [32].

APPENDIX I
DETAILS ABOUT DATASET SELECTION

A video clip is reconstructed from each set of images re-
moving the right part of the images containing the gray sphere.
This video clip is then fed to a key frame extraction algorithm
[22] which selects a set of candidate images. These images are
dynamically selected within the video clip by analyzing the pic-
torial differences between consecutive images. The algorithm
first identifies the shots present in the clip, i.e., uninterrupted
sequences of images recorded with a single camera and usually
taken in a single location. From each shot, a variable number
of images (key frames) are extracted. The number of key
frames depends on the visual contents of the shot. That is,

shots showing high variability in their pictorial contents will
have a high number of images extracted. Shots showing little
or none variability will have only a single image extracted.
The algorithm, by analyzing each shot independently, is able
to remove most of the correlated images while preserving the
overall structure and contents of the video clip. The set of key
frames extracted corresponds to the visual summary of the clip.
An example of key frames extracted from the “Camelback”
clip is shown in Fig. 3.

The dataset to be used for testing the algorithms should be
of significant size and without correlated images. As a trade-off
between the number of images and the correlation problem, we
decided to extract a number of images from each video clip cor-
responding to 10% of the size of the clip. To do this, we set the
parameters of the key frames extraction algorithm so that the
generated visual summary will contain at least that number of
key frames. The same parameters were used for all the video
clips. To select the exact number of required key frames for
each clip, we processed the visual summary further with a visual
summary postprocessing algorithm [23]. The algorithm is com-
posed of three processing steps: key frame removal, key frame
grouping and selection of the default visual summary. For this
work, we exploited only the second processing step. All the key
frames selected by the previous algorithm were processed and
the final visual summary was selected according to the number
of key frames required for that video clip. An example is shown
in Fig. 4.

This algorithm is able to iteratively build a hierarchy of visual
summaries. The set of initial key frames is processed using a hi-
erarchical clustering algorithm that, at each step, merges consec-
utive key frames that are visually similar. Thus, the clustering
algorithm further removes redundancies within the set of key
frames. At each step a new visual summary is generated which
contains one image less than the previous one until only a single
key frame remains in the summary. The hierarchy can be used to
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TABLE VII

LMS WEIGHT MATRIX FOR INDOOR IMAGES
Algorithm  Channel  weight R weight G weight B
GW R 0.0141 0.0120 -0.0261
G -0.4729 0.1118 0.3611
B 0.0000 0.0000 0.0000
WP R 0.5074 -0.1092 -0.3857
G 0.5066 -0.1094 -0.3848
B 0.5138 -0.1102 -0.3911
SG R -1.3991 0.7291 0.6700
G 0.0000 0.0000 0.0000
B -1.5044 0.7540 0.7504
eGW R -0.0075 0.0023 0.0051
G -0.0671 0.0053 0.0618
B 0.0000 0.0000 0.0000
GEl R 0.0000 0.0000 0.0000
G 0.0336 0.0025 -0.0361
B -0.0055 0.0019 0.0037
GE2 R 0.8928 -0.6321 -0.2607
G 0.0000 0.0000 0.0000
B 1.0000 -0.6455 -0.3545

browse the clip contents at different levels of details, and we se-
lected the one which contains the required number of key frames
for the given sequence.

Table VI shows the statistics of each video clip: video name,
number of images contained in each video clip, the number of
key frames automatically extracted by the key frame extraction
algorithm and the number of images required in our data set
(corresponding to 10% of the images in each clip). It can be
noted that the number of key frames extracted is very low com-
pared to the number of images in the clip, even with the algo-
rithm parameters set to deliberately extract a large number of
key frames. This is an indication that the images within the video
clip are truly highly correlated. For similar clips (e.g., CIC2 and
CIC3) a similar number of key frames were extracted. Note also
that for the “WhiteCliff” video, the key frames extracted are less
than the required number of images. In this case, we kept all six
images.

APPENDIX II
LMS WEIGHT MATRICES

We report the weight matrices corresponding to the indoor
(Table VII), outdoor (Table VII), and the general purpose
(Table IX) instantiations of the LMS combining strategy, ob-
tained as described in Section III-D.

Each row corresponds to the weights associated to one color
channel of the illuminant estimated by a single input algorithm.
Each column corresponds to one channel of the LMS output.
The weights are scaled so that the maximum value is unitary for
each matrix.

Note that, since the sum of each input and output illuminant
estimation is unitary, the characteristic matrix of the linear re-
gression system is singular. This fact explains the rows of zeroes
in the three matrices.

ACKNOWLEDGMENT

The authors would like to thank Prof. B. Funt for making
the data available for our experiments. Researchers interested in
testing their methods on the same selection of the dataset used

2391

TABLE VIII
LMS WEIGHT MATRIX FOR OUTDOOR IMAGES
Algorithm  Channel — weight R weight G weight B
GW R 1.0000 0.1234 -1.0763
G 0.2328 0.0535 -0.2393
B 0.9344 0.1038 -0.9912
WP R 0.0000 0.0000 0.0000
G 0.0652 0.0163 -0.0815
B -0.0495 -0.0083 0.0578
SG R 0.0000 0.0000 0.0000
G -0.0268 -0.0101 0.0369
B 0.0660 0.0044 -0.0704
eGW R 0.0969 0.0180 -0.1149
G 0.0000 0.0000 0.0000
B 0.0644 0.0198 -0.0842
GEl R -0.4179 -0.0604 0.4784
G 0.0000 0.0000 0.0000
B -0.3464 -0.0683 0.4146
GE2 R -0.8044 -0.0813 0.8858
G 0.0000 0.0000 0.0000
B -0.7718 -0.0640 0.8358
TABLE IX

LMS WEIGHT MATRIX FOR THE GENERAL PURPOSE CASE
Algorithm  Channel — weight R weight G weight B
GW R 0.8051 0.2636 -0.8313
G 1.0000 0.5148 -1.2774
B 0.1353 0.3456 -0.2435
WP R 0.0000 0.0000 0.0000
G 0.0054 0.0271 -0.0325
B 0.0818 0.0035 -0.0853
SG R 0.0000 0.0000 0.0000
G -0.5722 -0.3932 0.9655
B 0.8567 -0.1032 -0.7535
oeGW R -0.3006 -0.0307 0.3313
G -0.3124 0.0157 0.2967
B 0.0000 0.0000 0.0000
GEl R 0.0000 0.0000 0.0000
G -0.0433 -0.0418 0.0852
B -0.5214 -0.0696 0.5909
GE2 R -0.3006 -0.1612 0.4618
G 0.0000 0.0000 0.0000
B -0.6057 -0.1300 0.7358

in this paper may contact the authors who will gladly provide
the list of images used.
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