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bstract. We present different computational strategies for colori-
etric characterization of scanners using multidimensional polyno-
ials. The designed strategies allow us to determine the coefficients
f an a priori fixed polynomial, taking into account different color
rror statistics. Moreover, since there is no clear relationship be-

ween the polynomial chosen for the characterization and the intrin-
ic characteristics of the scanner, we show how genetic program-
ing could be used to generate the best polynomial. Experimental

esults on different devices are reported to confirm the effectiveness
f our methods with respect to others in the state of the art. © 2008
PIE and IS&T. �DOI: 10.1117/1.2982004�

Introduction
canners have their own reference systems for the specifi-
ation of color �device-dependent spaces�. Since the de-
cription of a color in these spaces is based on the charac-
eristics of the device concerned, it does not constitute an
bjective definition of that color. To facilitate the reproduc-
ion of colors on various devices and supports, we must
mploy a system of description that allows us to define the
olor in an unequivocal fashion, i.e., in a device-
ndependent space, separating the way colors are defined
rom the way the various devices represent them. A point in
GB space indicates how a color stimulus is produced by a
iven device, while a point in a colorimetric space, such as
IELAB space, indicates how the color is perceived in

tandard viewing conditions. Let us consider the function
hat associates at every point in the device-dependent space
he colorimetric value of the corresponding color. The colo-
imetric characterization of a scanner device consists in
endering this function explicitly. It must take into account
he peculiar characteristics of the device; consequently, ev-
ry device calls for specific conversion functions.

A simple transformation can be used to relate RGB val-
es of a scanner to CIE tristimulus values XYZ if and only
f the digitizer channel sensitivities satisfy the Luther con-
itions by which they are a linear transformation of the
olor matching functions that define the CIE colorimetric
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observer. Relatively few of the scanners and cameras that
can be found on the current market have been designed to
meet this constraint. This circumstance motivates several
different approaches to the problem from spectral and
colorimetric1 points of view. Spectral characterization ap-
proaches try to recover reflectance information from the
scanner responses and compute the colorimetric values
from the recovered reflectance information.2,3 These ap-
proaches assume that the spectral scanner sensitivity can be
accurately measured or recovered mathematically. The ad-
vantage of these techniques over colorimetric ones for tra-
ditional RGB scanners using a single illuminant is not
evident.4 Among various colorimetric approaches, neural
networks, 3-D interpolation, and polynomial regression
have been widely investigated.5 Kang and Anderson,6

Schettini, Barolo, and Boldrin,7 Vrhel and Trussel,8 and
Cheung et al.9 applied artificial neural networks to scanner
calibration and characterization. The results are promising,
but the fact that neural networks would need large training
sets that are often not available should be taken into ac-
count. The characterization function found can be rather
complicated and computationally expensive. For this rea-
son, in the design of the colorimetric profile of the device,
this characterization function is usually applied to produce
a finely sampled lookup table �LUT� to be used together
with an interpolation scheme.5 The main advantage of us-
ing polynomial regression with respect to other character-
ization methods is that they require smaller training sets not
necessarily uniformly distributed. Since there is no clear
relationship between polynomials adopted and imaging de-
vice characteristics, they must be empirically determined
and defined for each device and for a specific device each
time a change is made in any component of the system.10

Usually, the accuracy of the characterization increases as
the number of terms in the polynomial increases; however,
there is not a simple way to avoid data overfitting. More-
over, polynomial regression usually minimizes only the av-
erage color error, and therefore it does not guarantee a uni-
form accuracy across the entire color gamut. Using an
average color error as the objective to be minimized, the
polynomial coefficients can be found by using the least
square method �LS� or the total least squares method
Oct–Dec 2008/Vol. 17(4)1
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TLS�.11 More powerful methods, such as total color differ-
nce minimization �TCDM� and CIELAB least squares
inimization �LAB-LS�, have been recently proposed12 to
inimize nonlinear functions that take into account the av-

rage CIELAB colorimetric error.
Taking these methods and results as our point of depar-

ure, we try to solve the colorimetric characterization prob-
em defining a set of novel functions that take into account
ot only the mean perceptual colorimetric error but also
ther error statistics. We adopt genetic algorithms
GAs�13,14 to minimize these functions and to find the cor-
esponding coefficients from the given polynomial terms.

In a second phase of our work, we try to further improve
he accuracy of the characterization by generating new
olynomials. For this task, we use genetic programming
GP�,15,16 a domain-independent evolutionary method that
utomatically breeds a population of expressions, functions,
r more generally, computer programs to solve a problem.
o the best of our knowledge, this work represents the first
ttempt to use GP for this task.

This work is structured as follows. In Sec. 2 we intro-
uce the problem of colorimetric/characterization of scan-
ers. Section 3 contains a description of the three novel
unctions defined and of the corresponding optimization
ethods adopted in this work. Section 4 describes how to
odel new polynomials using GP �a more detailed descrip-

ion of evolutionary algorithms and of GP in particular is
ontained in Appendix A�. In Sec. 5 we present the experi-
ental results that we have obtained both using a priori
xed polynomial and the polynomials that we have found
sing GP. Finally, Sec. 6 concludes the work and offers
ome hints for future research.

Scanner Characterization

he basic model that describes the response �= �R ,G ,B� of
three-channel color scanner can be formulated as:

= �
�

I���R���S���d� + n , �1�

here I��� is the scanner-illuminant spectral power distri-
ution, R��� is the reflectance of the surface being scanned,
��� represents the three scanner sensor spectral sensitivi-

ies stacked row-wise, n is the three-channel additive noise,
nd � is the integration variable representing the wave-
engths within the visible spectrum �. Equation �1� repre-
ents a good model if the scanner response is linear. In a
ore general situation, the scanner response may be subject

o an input-output nonlinearity that can be represented by
n optoelectronic conversion function F. Equation �1� then
ecomes:

= F��
�

I���R���S���d� + n� , �2�

here F models the three-channel nonlinearity functions.
Using vector space notation, and sampling the visible

pectrum in N equally sampled wavelengths, Eq. �2� can be
ewritten as:
ournal of Electronic Imaging 043002-
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� = F�SIR + n� , �3�

where � is a 3�1 vector, S is the 3�N matrix formed by
stacking the scanner spectral sensitivities row-wise, I is the
N�N diagonal matrix whose elements are the samples of
the scanner-illuminant spectral power distribution, R is the
N�1 vector of the reflectance of the surface being
scanned, and n is the 3�1 noise vector.

Similarly, the CIEXYZ tristimulus values, denoted by a
3�1 vector s, are defined as:

s = CLR , �4�

where C is the 3�N matrix of the CIEXYZ color matching
functions and L is the N�N diagonal matrix whose ele-
ments are the samples of the viewing-illuminant spectral
power distribution.

The characterization problem is to find the mapping M
that transforms the recorded values � to their corresponding
CIEXYZ values s:

s = M��� . �5�

We address this problem using a two-step procedure: first
the optoelectronic conversion function F is estimated and
F−1 is applied to the � data to linearize them; then an
m’th-order polynomial mapping M is applied to the linear-
ized data F−1��� to obtain s. The general m’th-order poly-
nomial P�R ,G ,B� with three variables can be given as fol-
lows:

P�R,G,B� = �
i=0

m

�
j=0

m

�
k=0

m

RiGjBk with i + j + k � m . �6�

Given the scanner response �, their linearized values
F−1��� and the polynomial model P to use, we can calcu-
late the polynomial expansion r of F−1��� as r
= P�F−1����. Using the polynomial modeling, Eq. �5� then
becomes:

s = MP�F−1���� = Mr . �7�

The first step to find the matrix M is to select a collec-
tion of color patches that spans the device gamut. The re-
flectance spectra of these Nc color patches is denoted by Rk
for k� 	1, . . . ,Nc
. These patches are measured using a
spectrophotometer or a colorimeter, which provides the
device-independent values:

sk = CLRk for k � 	1, . . . ,Nc
 . �8�

Without loss of generality, sk can be transformed into any
colorimetric or device-independent values. The same Nc
patches are also acquired with the scanner to be character-
ized, providing �k=F�SIRk+n� with calculated polyno-
mial expansions rk, for k� 	1, . . . ,Nc
.

Algebrically, the characterization problem is to find the
matrix M:
Oct–Dec 2008/Vol. 17(4)2
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= arg� min
M�R3�q

�
k=1

Nc

�Mrk − L�sk��2 , �9�

here L�·� is the transformation from CIEXYZ to the ap-
ropriate standard color space chosen, and �·� is the error
etric in the chosen color space.
M is a 3�q matrix, where q is the number of terms of

he polynomial P�R ,G ,B�; the number of terms q is related
o the order m of the polynomial by:

= ��
k=1

m �k + 2

2
� + 1 .

being a 3�q matrix, the problem of finding M consists
f determining 3q coefficients; in having enough equations
o solve for the 3q unknowns and to deal with a less ill-
osed problem, then we have to use Nc�q different color
atches. In other words, the higher the order of the polyno-
ial, the larger the number of its terms, and consequently

he larger the number of different color patches that we
ave to use.

Different functions to be minimized can be defined to
nd the unknown matrix M. Depending on the function
dopted, different optimization methods have to be consid-
red.

The easiest way to find the unknown matrix M in Eq. �9�
s to minimize the function:

LS = �s − ŝ�2 with ŝ = Mr , �10�

using the least squares minimization �LS�. Analytically,
he matrix M can be easily found by:

= srT�rrT�−1. �11�

he LS method assumes that errors are present only in the
atrix s, while the matrix r is assumed free of error.11

The total least squares �TLS� method11 is a generaliza-
ion of the LS method: it assumes that both the matrices s
nd r are affected by error. It searches for the solution M
hat minimizes the function:

TLS = ��r;s� − �r̂; ŝ��F with ŝ = Mr̂ , �12�

here � · �F is the Frobenius norm, defined for a generic m
n matrix A as:

A�F = ��
i=1

m

�
j=1

n

�aij�2�1/2

. �13�

he analytic solution for the minimization of HTLS exists
nd can be found using singular value decomposition.

Since the color accuracy of the characterization methods
s evaluated using a color error in the CIELAB color space,
otal color difference minimization �TCDM�12 has been
roposed to search for the matrix M that minimizes the
um of the CIELAB �E94 color error between the measured
nd the predicted CIELAB values �respectively sLab and ŝ�
or the n patches, i.e.:
ournal of Electronic Imaging 043002-
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HTCDM = �
i=1

n

�E94�sLab, ŝ� with ŝ = Mr . �14�

The minimization of HTCDM does not have an analytic so-
lution, and has to be solved with an iterative method. In this
work following Ref. 12, it has been solved using a downhill
simplex method, as it does not require the calculation of
derivatives of the objective function.17

The CIELAB least squares minimization �LAB-LS�12

method employs a preprocessing consisting of a p’th root
correction of the scanner responses r before calculating the
LS regression with the CIELAB values sLab of the mea-
sured patches. The LAB-LS method then minimizes:

HLAB−LS = �sLab − ŝ�2 with ŝ = Mr1/p. �15�

This p’th root correction has the aim to compensate for
the cubic root relationship between the RGB scanner color
space and the CIELAB color space. It can be easily found
that if the RGB data have been properly linearized, the best
choice for the p’th root is p=3m, where m is the order of
the polynomial used. Such a choice for p permits the can-
cellation of the cubic relationship whatever the polynomial
used is. Performing a LS regression, the LAB-LS method
admits an analytic solution that can be found as:

M = sLab�r1/p�T�r1/p�r1/p�T�−1. �16�

3 Characterization Procedures
In this section, we decribe the characterization procedures
that we have designed to asses matrix M given a priori
fixed polynomial. These procedures are based on GAs �see
Appendix A�. Among the optimization methods that can be
used, we adopted GAs, as they are a well known and
widely accepted optimization method. Moreover, GAs are
intrinsically parallel: most other optimization algorithms
�like Hill Climbing,18 Simulated Annealing,19 Tabu
Search20,21� are serial and can only explore the solution
space to a problem one direction at a time. If that direction
leads to a local- or suboptimal solution, another direction
has to be taken by means of some backtracking technique
or by restarting the algorithm from the beginning. On the
other hand, since GAs have multiple offspring, they can
explore the solution space in multiple directions at once.
This makes GAs particularly well suited to solving prob-
lems where the space of all potential solutions is
complex.15,16 In particular, we introduce three novel func-
tions that are minimized by GAs.

The CIELAB genetic algorithm �LAB-GA� procedure is
a hybrid procedure based on both TCDM and LAB-LS. It
uses the same preprocessing p’th root correction of the
scanner responses calculated by LAB-LS, but then mini-
mizes the CIELAB �E94 color error between these values ŝ
and the CIELAB measured values sLab:

HLAB−GA = �
i=1

n

�E94�sLab, ŝ� with ŝ = Mr1/p. �17�

The LAB-GA procedure inherits the nonexistence of an
analytical solution from the TCDM method.
Oct–Dec 2008/Vol. 17(4)3
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The CIELAB genetic algorithm p’th root �LAB-GAp�
rocedure is a variant of the LAB-GA procedure: it does
ot use the same p=3m value of LAB-LS and LAB-GA for
reprocessing, but lets the GA look for it. This is justified
y the fact that the p=3m is the best choice if the scanner
esponses are linear: even if the scanner responses have
een linearized, some nonlinearity may remain. The use of
he GA to look for the best value of p permits us to correct
part of the residual nonlinearity if present. The function to
e minimized is now defined as:

LAB−GAp = �
i=1

n

�E94�sLab, ŝp� with ŝp = Mr1/p, �18�

here the notation ŝp instead of ŝ of Eq. �17� is to underline
hat p is not a fixed value now, but an added unknown to
ook for.

The CIELAB genetic algorithm p’th root weighted
LAB-GApw� procedure is a variant of the LAB-GAp pro-
edure. As LAB-GAp, it uses the GA to search for the best
alue of p to perform the preprocessing p’th root correc-
ion. The difference is the objective function that it mini-

izes: two more terms are added in Eq. �18�, one for the
aximum �E94 error and one for the �E94 standard devia-

ion. The three terms of the function are multiplied for a
eight vector w= �w1 ,w2 ,w3�, which reflects the relative

mportance to be given to the various terms. In this work
e have heuristically adopted the following weights w
�w1 ,w2 ,w3�= �0.35 0.50 0.15�. The LAB-GApw method

hen minimizes:

LAB−GApw = w1 · mean��E94�sLab, ŝp��

+ w2 · max��E94�sLab, ŝp��

+ w3 · std��E94�sLab, ŝp�� with ŝp = Mr1/p.

�19�

he first term has been changed with respect to Eqs. �17�
nd �18�, but the problem to minimize the sum of some
uantities or their mean is equivalent.

able 1 Mean, maximum, and standard deviation for �E94 errors
onsidered using the full third polynomial on the Macbeth ColorChe

ethod

�E94 training

Mean Max Std Dev Mean

S 1.71 12.92 1.83 1.61

LS 2.74 51.65 6.24 2.14

CDM 1.53 8.52 1.52 1.55

AB-LS 1.33 6.66 1.13 1.23

AB-GA 1.25 8.21 1.16 1.16

AB-GAp 1.23 8.18 1.16 1.15

AB-GApw 1.31 5.83 1.09 1.18
ournal of Electronic Imaging 043002-
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4 Polynomial Modeling Using Genetic
Programming

Since there is no clear relationship between the best poly-
nomial for a given imaging device and the imaging device
characteristics, a common solution is to use full-order poly-
nomials or to determine it by a trial-and-error process.10,12

We automatically determine the best polynomial for a
given imaging device using genetic programming �GP�.15,16

GP is a domain-independent evolutionary method that
genetically breeds a population of functions, or more gen-
erally, computer programs to solve a problem. For a brief
introduction of GP, see Appendix A; for a more detailed
presentation, see for instance Refs. 15, 16, and 22.

Chosen the polynomial order m and the maximum num-
ber n of polynomial terms, the polynomials evolved by GP
have been built using the set of functionals �or nonterminal�
symbols F= 	Join
 and the set of terminal symbols: T
= 	RiGjBk �0� i+ j+k�m
. Given two terminal symbols t1

�T and t2�T, the Join function concatenates them in a
new list, i.e.:

Join�t1,t2� = �t1 t2�;

thus, the expressions evolved by GP may be seen as a list of
polynomial terms, each one of the form RiGjBk with 0� i
+ j+k�m. In our experiments, we have set the polynomial
order m to 4 and 7.

GP individuals, corresponding to different polynomials,
have been evaluated using a fitness function composed of
the measure of the �E94 color error on a chosen training
set, weighted by the value of the leave-one-out cross-
validation �LOOCV�.23 The LOOCV uses a single observa-
tion from the original sample as validation data, and the
remaining observations as training data. This process is re-
peated to allow each observation in the sample to be used
exactly once as validation data. The use of the LOOCV
permits us to understand if the polynomial chosen has good
generalization capability.

ilcoxon sign test score �on the test set� of the seven procedures
C dataset.

test �E94 total

WST
scoreStd Dev Mean Max Std Dev

1.53 1.68 12.92 1.71 1

2.74 2.55 51.65 5.33 0

1.51 1.54 8.52 1.52 1

0.80 1.29 6.66 1.05 3

0.81 1.21 8.21 1.00 3

0.80 1.20 8.18 1.00 5

0.79 1.26 5.83 0.98 5
and W
cker D

�E94

Max

6.39

15.92

8.30

3.16

3.66

3.64

2.84
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Experimental Results

n this section we present the results of our characterization
rocedures and compare them with those presented by
hen, Xin, and Mou3,4,12 using their own acquisition data:

he 198 patches of the Macbeth ColorChecker DC �MDC�,
he 144 patches of the Kodak Q60 photographic standard
IT8�, and the 20 patches of the Kodak Gray Scale Q-14.
he spectral reflectance values of MDC and Q14 were
easured by Shen et al. using a GretagMacbeth Spectro-

hotometer 7000A, and those of IT8 were measured using a
retagMacbeth Spectrolino spectrophotometer. The
IEXYZ and CIELAB values under the CIE D65 standard

lluminant were then calculated from these reflectance data
or scanner characterization. The three color targets have
een scanned using an Epson GT-10000�. During the
canning process, all the color adjustment functions of the
canner have been disabled. The target Q14 is used to cal-
ulate the inverse optoelectronic conversion function F in
q. �3�. The targets MDC and IT8 are used for the colori-
etric characterization of the scanner.
In the first part of our experiments �Sec. 5.1�, we test the

erformance of the seven optimizing procedures described
n Secs. 2 and 3 using the full third-order polynomial sug-
ested for the considered device by Shen, Mou, and Xin:12

ull 3d = 1 + R + G + B + R2 + RG + RB + G2 + GB + B2

+ R3 + R2G + R2B + G3 + RG2 + G2B + B3 + RB2

+ GB2 + RGB .

Then, in the second part of the experiments �Sec. 5.2�,
e try to further improve the characterization performance
f the optimizing procedures, generating new polynomials
y means of GP.

For all the experiments, we study both the performance
uring the training phase and the generalization capability.
ollowing Shen et al., we have partitioned both the Mac-
eth ColorChecker DC and the IT8 datasets into a training
et and a test set using the following algorithm.

Initialize an empty training set and an empty test set
�let their names be Train and Test, respectively, and let
Nc be the total number of patches in the whole dataset�;
iª1;
repeat

Insert the i’th and the �i+1�’th patches of the dataset
into Train;
Insert the �i+2�’th patch of the dataset into Test;
i= i+3;

until i�Nc−2.

In this way, training and test sets are interleaved parts of
he same dataset, and the training set is approximately two
imes larger than the test set. For all the patches of the
raining and test sets, we calculate the �E94 color error
etween the predicted and measured CIELAB values. We
eport the mean, maximum, and standard deviation for the
E94 color error for each of the minimization procedures
onsidered, both in the case of full third and GP-generated
olynomials.

As we are interested in comparing performances of the
onsidered procedures, together with single summary sta-
istics, it is worthwhile to compare the whole error distri-
ournal of Electronic Imaging 043002-
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bution of the methods. Since the underlying error distribu-
tion cannot be well modeled by a standard distribution, we
need a test that does not require any assumptions about it.
An appropriate test in this case is the Wilcoxon sign
test,24,25 as it is a nonparametric test for assessing whether
two samples of observations come from the same distribu-
tion. The null hypothesis is that the two samples are drawn
from a single population, and therefore that their probabil-
ity distributions are equal. It requires the two samples to be
independent, and the observations to be ordinal or continu-
ous measurements, i.e., one can at least say which one of
any two observations has the larger value. In a less general
formulation, the Wilcoxon-Mann-Whitney two-sample test
may be thought of as testing the null hypothesis that the
probability of an observation from one population exceed-
ing an observation from the second population is equal to
0.5. Formally, let X and Y be random variables representing
the �E94 colorimetric error of the methods X and Y. The
Wilcoxon test is used to test the hypothesis that the random
variables X and Y are such that p= P�X�Y�=0.5. We test
the null hypothesis H0: p=0.5 �i.e., we hypothesize that the
methods X and Y have the same performance� against the
alternative hypothesis H1: p	0.5 �which if true implies
that colorimetric errors for method X are lower than those
for method Y�. To test the hypothesis H0, we consider in-
dependent pairs �X1 ,Y1� , . . . , �Xn ,Yn� of errors for Np dif-
ferent patches. We denote by W the number of patches for
which Xi�Yi. When H0 is true, W is binomially distributed
�b�Np ,0.5�� and the Wilcoxon test is based on this statistic.
We accept or reject the null hypothesis at the significance
level 
=0.05. For a better comprehension, we have sum-
marized the result of the Wilcoxon sign test in a score: this
score is the number of times that we have rejected the null
hypothesis for the considered procedure, i.e., the number of
procedures in respect to which the results of the procedure
being considered are statistically better. This permits us to
obtain an overall rank among the methods despite the fluc-
tuations in the single error statistics adopted �mean, maxi-
mum, and standard deviation�.

5.1 Full Third-Order Polynomial
In this part of the experiments, the procedures considered
are applied to the full third-order polynomial. The four lit-
erature procedures that we have considered �LS, TLS,
TCDM, and LAB-LS� do not need any particular parameter
setting �except for the p’th root of the LAB-LS chosen, as
indicated in Sec. 2�. The GAs procedures �LAB-GA, LAB-
GAp, and LAB-GApw� instead need the setting of some
parameters, the meaning of which can be found in Appen-
dix A or in Refs. 13 and 14. The results that we present in
this section have been obtained using the following set of
parameters:

• population size N=1000
• size of the individuals=25
• maximum number of generations=100,000
• selection type: tournament selection, with tournament

size=100
• crossover rate pc=0.8
• mutation rate pm=0.2
• presence of elitism.
Oct–Dec 2008/Vol. 17(4)5
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The mutation rate has usually a large impact on time to
onverge to a solution and on the quality of that solution.
he parameter value adopted here is the one that has re-

urned the best results both on the training and tests sets
sed in this work. The genetic operators we have used are
he standard one-point crossover and point mutation de-
ned in Refs. 13 and 14. The results of the GAs that we
eport in this work are the best ones obtained over five
ndependent runs for each GA version. The choice of per-
orming a limited number of runs �five� for a large number
f generations �100,000� is justified in Ref. 26, where the
uthors show that under a constant cost constraint, execut-
ng a small number of large runs can reach better solutions
aster than executing many small runs.

Table 1 shows the results returned by the considered
rocedures for Macbeth ColorChecker DC with the full
hird ploynomial. Column one identifies the methods; col-
mns 2, 3, and 4 report the results on the training set;
olumns 5, 6, and 7 report the results on the test set; while
olumns 8, 9, and 10 report the results of the models
earned on the training set executed on both the training and
est sets together. Column 11 reports the Wilcoxon sign test
core on the test set, which is representative of the number
f the procedures in respect to which the procedure-
onsidered results are statistically better.

As Table 1 shows, our three functions, optimized by the
As, produce lower error statistics with respect to all the
ther methods both on the training and test sets. In particu-
ar, LAB-GApw outperforms all the state of the art proce-
ures �first four rows of Table 1� both on the training and
est sets for all the error measures that we have studied
even though it is outperformed by the other two GAs ver-
ions for the mean error�. Furthermore, the standard devia-
ion of the error of LAB-GApw is smaller than those of all
he other methods.

In Table 2 we report the results on IT8 �the columns of
his table have to be interpreted as those of Table 1�. Also in
his experiment, our functions perform better than the other

ethods.

able 2 Mean, maximum, and standard deviation for �E94 errors
onsidered using the full third polynomial on the IT8 dataset.

ethod

�E94 training

Mean Max Std Dev Mean

S 1.25 6.74 1.07 1.45

LS 1.40 6.75 1.25 1.59

CDM 1.18 5.60 0.93 1.43

AB-LS 0.85 2.64 0.49 1.13

AB-GA 0.79 1.81 0.42 1.05

AB-GAp 0.79 1.72 0.42 1.04

AB-GApw 0.83 1.57 0.35 1.03
ournal of Electronic Imaging 043002-
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5.2 Generating New Polynomials by Genetic
Programming

The second phase of our study consists in defining new
polynomials that can improve the characterization perfor-
mance, compared with those obtained using the full third
polynomial.

The results presented have been obtained using the fit-
ness function defined in Sec. 4, i.e.:

fitness = LOOCV · mean��E94� ,

and using the following set of parameters:

• functional �or nonterminal� symbols F= 	Join
 �see
Sec. 4�

• terminal symbols T= 	RiGjBk �0� i+ j+k�m

• population size N=200
• maximum number of tree nodes=2n−1 �where n is

the maximum number of polynomial terms�
• maximum number of generations=20,000
• algorithm used to initialize the population: ramped

half-and-half
• selection algorithm: tournament, with tournament

size=50
• crossover rate pc=0.5
• the mutation rate pm=0.5
• presence of elitism.

Also in this case, the mutation rate used here is the one
that has allowed us to find the best results both in the train-
ing and test sets used in this work.

First of all, we look for new polynomials with similar
characteristics to the full third polynomial: thus we look for
a fourth degree polynomial �m=4�, composed of a maxi-
mum of 20 terms �n=20, the same number of terms of the
full third�. The fitness of the polynomials evolved by GP
has been set equal to the error obtained by LAB-LS, since
it is faster than the other techniques. The best polynomial
obtained is:

ilcoxon sign test score �on the test set� of the seven procedures

test �E94 total

WST
scoreStd Dev Mean Max Std Dev

1.25 1.31 7.78 1.14 0

1.37 1.47 7.69 1.30 0

1.12 1.27 6.48 1.02 2

0.67 0.96 3.68 0.57 3

0.55 0.87 2.48 0.47 4

0.56 0.88 2.48 0.47 5

0.52 0.90 2.54 0.41 5
and W

�E94

Max

7.78

7.69

6.48

3.68

2.48

2.48

2.54
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+ G + B + RG + RB + GB + R2 + G2 + R3 + RG2 + G2B

B3 + R4 + R2G2 + R2B2 + RG3 + RG2B + G4 + G2B2

GB3.

Tables 3 and 4 report the results obtained using the three
rocedures proposed �LAB-GA, LAB-GAp, and LAB-
Apw� on the Macbeth ColorChecker DC and on IT8, re-

pectively, using this fourth order polynomial. These pro-
edures are also compared on the same polynomial with
AB-LS, which is the best characterization procedure that
e have found in the literature for these color targets. As

or the prior tables, column one identifies the method; col-
mns 2, 3, and 4 report the results on the training set;
olumns 5, 6, and 7 report the results on the test set; and
olumns 8, 9, and 10 report the results on the training and
est set together. Column 11 reports the Wilcoxon sign test
WST� score on the test set, which is representative of the
umber of the methods in respect to which the method-
onsidered results are statistically better.

If we compare these results with those of Tables 1 and 2,
e can observe that using the polynomial found by GP

llows all the methods to find a better mean error with
maller standard deviations both on the training and test
ets for the Macbeth ColorChecker DC. For the IT8 dataset,
he mean error that we have found using the polynomial
eturned by GP has always been smaller than the one that
e have found using the full third on the training set. On

able 3 Mean, maximum, and standard deviation for �E94 errors
onsidered using the best fourth order polynomial found by GP �wi
olorChecker DC.

ethod

�E94 training

Mean Max Std Dev Mean

AB-LS 1.18 6.86 1.05 1.13

AB-GA 1.15 7.78 1.06 1.08

AB-GAp 1.14 7.69 1.03 1.07

AB-GApw 1.18 5.85 1.04 1.12

able 4 Mean, maximum, and standard deviation for �E94 errors
onsidered using the best fourth order polynomial found by GP �wit

ethod

�E94 training

Mean Max Std Dev Mean

AB-LS 0.79 1.66 0.36 1.06

AB-GA 0.75 1.67 0.32 1.04

AB-GAp 0.74 1.65 0.33 1.04

AB-GApw 0.78 1.55 0.33 1.02
ournal of Electronic Imaging 043002-
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the test set of the IT8 dataset, LAB-GAp has returned the
same mean error as in the case when the full third has been
used, while all the other methods have returned a smaller
mean error. The GAs versions still perform generally better
than LAB-LS, and LAB-GApw seems to be globally the
best method.

Once these results have been obtained, the next step in
our study consisted in relaxing the polynomial constraints.
In other words, we have used GP to allow a higher degree
for the polynomial �i.e., 7� and no constraint on the maxi-
mum number of terms, except that it does not exceed the
cardinality of the training set minus one.

The best seventh order polynomial obtained has 28
terms and it is reported as:

1 + R2 + GB + R3 + RGB + R4 + RG2B + RB3 + G4 + G3B

+ R4G + R2B3 + G4B + G2B3 + B5 + R4G2 + R2G4 + R2G2B2

+ RB5 + G4B2 + G3B3 + G2B4 + B6 + R4G3 + G4B3 + G3B4

+ G2B5 + B7.

Once again, the fitness of the polynomials evolved by GP
has been set equal to the error obtained by LAB-LS, since
it is faster than the other techniques.

In Tables 5 and 6 we report the results of the methods
studied on the Macbeth ColorChecker DC and on the IT8
respectively, using the new polynomial found by GP.

ilcoxon sign test score �on the test set� of the four procedures
ximum number of terms equal to 20�. The dataset is the Macbeth

test �E94 total

WST
scoreStd Dev Mean Max Std Dev

0.73 1.16 6.86 0.96 0

0.74 1.12 7.78 0.97 0

0.75 1.11 7.69 0.96 0

0.71 1.15 5.85 0.94 3

ilcoxon sign test score �on the test set� of the four procedures
ximum number of terms equal to 20�. The dataset is the IT8.

test �E94 total

WST
scoreStd Dev Mean Max Std Dev

0.52 0.87 2.39 0.41 0

0.53 0.85 2.39 0.39 0

0.52 0.85 2.41 0.39 0

0.50 0.86 2.34 0.38 3
and W
th a ma

�E94

Max

3.06

3.57

3.60

2.81
and W
h a ma

�E94

Max

2.39

2.39

2.41

2.34
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Comparing these results with the ones of Tables 3 and 4,
e observe that when using this new polynomial, all the
ethods return a smaller mean error both on the training

nd test sets. Furthermore, if we compare these results to
he ones initially obtained using the full third polynomial
Tables 1 and 2�, we observe that on the Macbeth Col-
rChecker DC test set, the mean error decreases by 28%
from 1.18 to 0.85�, the maximum error decreases by 22%
from 2.84 to 2.21�, and the standard deviation decreases by
5% �from 0.79 to 0.67�. For what concerns the IT8 test
et, we observe that the mean error decreases by 9% �from
.03 to 0.94�, the maximum error decreases by 12% �from
.54 to 2.23�, and the standard deviation decreases by 23%
from 0.52 to 0.40�.

To further validate our characterization approach, we
ested two additional scanners �Agfa Duoscan and HP
canjet G3010� obtaining similar experimental behavior.
he experimental results are summarized and reported in
ppendix B.
Finally, in Table 7, we report the p’th root values used in

ur experiments for all the methods and polynomials con-
idered.

.3 Behavior with Respect to the Neutral Axis
he higher order polynomials sometimes break the mono-

onic conversion curves, and this might be a serious draw-
ack of the polynomial technique. We report the RGB to
YZ transformation curves for the neutral axis �R=G=B�,

able 5 Mean, maximum, and standard deviation for �E94 errors
onsidered using the best seventh order polynomial found by GP. T

ethod

�E94 training

Mean Max Std Dev Mean

AB-LS 1.09 5.96 1.01 0.98

AB-GA 1.04 6.57 1.02 0.93

AB-GAp 1.02 6.63 1.05 0.91

AB-GApw 1.06 5.42 0.98 0.95

able 6 Mean, maximum, and standard deviation for �E94 errors an
sing the best seventh order polynomial found by GP. The dataset

ethod

�E94 training

Mean Max Std Dev Mean

AB-LS 0.69 1.61 0.36 0.95

AB-GA 0.66 1.68 0.36 0.92

AB-GAp 0.64 1.70 0.37 0.89

AB-GApw 0.68 1.38 0.33 0.94
ournal of Electronic Imaging 043002-
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respectively, for the third order polynomial �Fig. 1�a��, the
fourth order polynomial �Fig. 1�b��, and for the seventh
order polynomial �Fig. 1�c��.

We note that for all the polynomials used, the monotonic
behavior of the conversion curves is preserved. We can also
observe a nonlinear behavior for very low gray values.
However, this nonlinearity is not severe because these out-
of-gamut values are clipped.

6 Conclusions and Future Work
We address the problem of scanner characterization using
multidimensional polynomials. We show that genetic algo-
rithms are a class of optimization methods well suited for
the colorimetric characterization problem, since they can
minimize functions that take into account the mean percep-
tual colorimetric error, together with other error statistics.
Furthermore, we show how the search for the best charac-
terization polynomial can be automatized using genetic
programming. Experimental results on different devices
have shown that our functions, minimized by the GAs, glo-
bally outperform the state of the art methods. Moreover,
relaxing the constraints on the polynomial degree and num-
ber of terms, and modeling the best polynomial with ge-
netic programming, can be further improved.

Currently, we are trying to modify our genetic algo-
rithms to add some constraints to our functions. In particu-
lar, we would like to preserve the neutral axis to avoid
possible color artifacts due to nonoptimal RGB to XYZ

ilcoxon sign test score �on the test set� of the four procedures
aset is the Macbeth ColorChecker DC.

test �E94 total

WST
scoreStd Dev Mean Max Std Dev

0.70 1.05 5.96 0.88 0

0.72 1.00 6.57 0.89 2

0.74 0.98 6.63 0.91 0

0.67 1.02 5.42 0.85 3

xon sign test score �on the test set� of the four methods considered
T8.

test �E94 total

WST
scoreStd Dev Mean Max Std Dev

0.45 0.77 2.36 0.39 0

0.51 0.75 2.51 0.41 0

0.49 0.72 2.53 0.41 2

0.40 0.76 2.23 0.35 3
and W
he dat

�E94

Max

2.78

3.42

3.46

2.11
d Wilco
is the I

�E94

Max

2.36

2.51

2.53

2.23
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Table 7 p’th root values used in our experiments for all the methods and polynomials considered.

Method

Polynomial

Third order Fourth order Seventh order

LS NA NA NA

TLS NA NA NA

TCDM NA NA NA

LAB-LS 9 12 21

LAB-GA 9 12 21

LAB-GAp 9.82 12.51 21.33

LAB-GApw 9.78 12.40 21.19
Fig. 1 RGB to XYZ transformation curves for the neutral axis �R=G=B�: �a� The third order polyno-
mial; �b� the fourth order polynomial, and �c� the seventh order polynomial. X curve is plotted with a red
line, Y with a green one, and Z with a blue one.
ournal of Electronic Imaging Oct–Dec 2008/Vol. 17(4)043002-9
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ransformation. We are also trying to improve the rendering
f some specific color classes �such as skin tone�.

ppendix A: Evolutionary Algorithms
volutionary algorithms �EAs� are a broad class of stochas-

ic optimization algorithms. They maintain a population of
andidate solutions �or individuals� for the problem at
and, and make it evolve by iteratively applying a set of
tochastic operators, which are usually selection, mutation,
nd recombination �or crossover�. Selection replicates the
ost successful solutions found in a population at a rate

ound to their relative quality, measured by a user-defined
unction called a fitness function. Mutation and recombina-
ion transform selected solutions into new solutions, pro-
iding exploration of the search space. In particular, muta-
ion randomly perturbs a candidate solution; recombination
ecomposes two distinct solutions and then randomly
ixes their parts to form novel solutions. An iteration of

his algorithm is usually called a generation. The initial
opulation may be either a random sample of the solution
pace or may be seeded with solutions found by simple
ocal search procedures or by some a priori information
bout the problem, if these are available. We have used two
inds of EAs: genetic algorithms and genetic programming,
espectively, described as follows.

enetic Algorithms
enetic algorithms �GAs�13,14 are the oldest and most
nown kind of EA. Their peculiarity is that potential solu-
ions that undergo evolution are represented as fixed length
trings of characters or numbers. The iterative process of
As can be summarized by the following pseudocode:

• Generate a population P composed of an even number
N of individuals.

• Generationª0.
• Repeat until a termination condition is satisfied:

– calculate the fitness of all the individuals in popu-
lation P

– create a new empty population P
– repeat until population P� is composed of exactly N

individuals:

• Select two individuals i1 and i2 from population P
using the chosen selection algorithm.

• Perform the crossover between i1 and i2 with
probability pc, and let j1 and j2 be the offspring �if
crossover is not applied, let j1= i1 and j2= i2�.

• Mutate each character of j1 and j2 with a certain
probability pm, and let k1 and k2 be the offspring.

• Insert k1 and k2 into population P�.

– Perform the copy: PªP� and delete P�.
– Generationªgeneration+1.

Examples of termination conditions are: a predetermined
umber of generations or time has elapsed, a satisfactory
olution has been found, or no improvement in solution
uality has been taking place for a predetermined number
f generations. In some cases, another genetic operator is
dded to crossover and mutation: elitism, i.e., the copy of
he best individual unchanged into the newly generated
ournal of Electronic Imaging 043002-1
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population at each generation. In that case, either an odd
number of individuals N is chosen or another individual in
P is selected, mutated, and inserted into P� at each genera-
tion.

The parameters the user has to set before running this
process are:

• the population size N
• the size of the individuals �i.e., number of digits of

each potential solution�
• the maximum number of generations
• the selection algorithm
• the crossover rate pc
• the mutation rate pm
• presence or absence of elitism.

No formal method to properly set these parameters ex-
ists, only some heuristics. Nevertheless, independently
from the setting of the parameters used, the probability that
a GA with elitism finds a globally optimal solution at time
step t asymptotically converges to 1 when t tends to
infinity.27

Genetic Programming

The major difference between genetic programming
�GP�15,16 and the other EAs is that potential solutions to be
evolved are generally speaking computer programs. They
can be represented as trees, lines of code, expressions in
prefix or postfix notations, strings of variable length, etc.
We use the representation first introduced in Ref. 15: po-
tential solutions are represented as LISP-like tree structures
built using a set of terminal symbols and a set of nonter-
minal or functional symbols. The iterative process of GP is
similar to the one of GAs presented in the previous section,
with the difference that crossover and mutation are rede-
fined to act on trees instead of strings.15 Before running GP,
the user has to set a larger number of parameters than for
GAs, mainly due to the variable size of GP individuals.
These parameters are as follows.

• The sets of functional �or nonterminal� and terminal
symbols that are used to build the potential solutions.

• The population size.
• The maximum size of the individuals �typically ex-

pressed as the maximum number of tree nodes or the
maximum tree depth�.

• The maximum number of generations.
• The algorithm used to initialize the population �the

algorithm used to initialize a GA population is usually
simple: each digit composing each individual is gen-
erated randomly with uniform probability; in GP a
population of random computer programs has to be
generated. A set of algorithms to accomplish this goal
can be found in Refs. 15 and 16�.

• The selection algorithm.
• The crossover rate.
• The mutation rate.
• Presence or absence of elitism.
Oct–Dec 2008/Vol. 17(4)0
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ppendix B: Additional Results
he devices investigated are the Agfa Duoscan and the HP
canjet G3010. The experiments are performed in the same
ay as described in Sec. 5. For the Agfa Duoscan, the best

ourth order polynomial found is:

+ B2 + B3 + G + G2 + G2B + G3 + G4 + R1B3 + RG + RGB

RG2B + RG3 + R2 + R2G + R2GB + R2G2 + R3 + R3G

R4,

nd the best seventh order polynomial found is:

+ B3 + B5 + G + G2 + G3 + G3B4 + G4B3 + G5B2 + R1B5

RGB2 + RGB4 + RG2B + RG2B2 + RG3B + R2 + R2B

R2B3 + R2GB + R2GB4 + R2G3 + R2G5 + R3 + R3B + R3B3

R3B4 + R4B3 + R4G2 + R4G3 + R5 + R5B + R6 + R7.

or the HP Scanjet G3010 the best fourth order polynomial
ound is:

Table 8 Mean, maximum, and standard deviati
four procedures considered using the full third p

Method

Macbeth ColorChecker

�E94 test

Mean Max Std Dev

LAB-LS 1.39 3.25 1.15

LAB-GA 1.38 3.46 1.15

LAB-GAp 1.35 3.49 1.15

LAB-GApw 1.37 3.05 1.13

Table 9 Mean, maximum, and standard deviati
four procedures considered using the best fou
number of terms equal to 20� for the Agfa Duos

Method

Macbeth ColorChecker

�E94 test

Mean Max Std Dev

LAB-LS 1.35 3.00 1.14

LAB-GA 1.33 3.05 1.14

LAB-GAp 1.33 3.07 1.13

LAB-GApw 1.33 2.84 1.12
ournal of Electronic Imaging 043002-1
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B2 + B4 + GB + GB3 + G2B + G2B2 + G3B + R + RB + RGB

+ RGB2 + RG2B + R2B + R2B2 + R2G + R2GB + R2G2

+ R3B + R3G + R4,

and the best seventh order polynomial found is:

1 + B5 + B6 + GB + B3 + GB5 + GB6 + G2 + G2B3 + G3B2

+ G4B + G6B + G7 + RGB3 + RGB4 + RG2 + RG3B3 + RG4

+ RG4B2 + RG6 + R2 + R2B + R2GB3 + R2G2B3 + R2G3B2

+ R3 + R3B2 + R4B2 + R4G1B2 + R6G1 + R7.

Experimental results are summarized in Tables 8–13.
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E94 errors and Wilcoxon sign test score of the
ial for the Agfa Duoscan.

IT8

T
re

�E94 test

WST
ScoreMean Max Std Dev

0.85 2.78 0.49 0

0.85 2.79 0.51 0

0.81 2.80 0.50 0

0.83 2.58 0.49 3

E94 errors and Wilcoxon sign test score of the
er polynomial found by GP �with a maximum

IT8

T
re

�E94 test

WST
ScoreMean Max Std Dev

0.83 2.75 0.47 0

0.81 2.75 0.47 0

0.81 2.76 0.47 0

0.82 2.55 0.45 3
on for �
olynom

DC

WS
Sco

0

1

1

3

on for �
rth ord
can.

DC
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Table 10 Mean, maximum, and standard deviation for �E94 errors and Wilcoxon sign test score of the
four methods considered using the best seventh order polynomial found by GP for the Agfa Duoscan.

Method

Macbeth ColorChecker DC IT8

�E94 test

WST
Score

�E94 test

WST
ScoreMean Max Std Dev Mean Max Std Dev

LAB-LS 1.14 2.95 1.13 0 0.61 2.73 0.46 0

LAB-GA 1.13 3.00 1.14 0 0.59 2.73 0.47 0

LAB-GAp 1.12 3.01 1.14 0 0.58 2.73 0.46 0

LAB-GApw 1.12 2.72 1.10 3 0.59 2.53 0.45 3
Table 11 Mean, maximum, and standard deviation for �E94 errors and Wilcoxon sign test score of the
four procedures considered using the full third polynomial for the HP Scanjet G3010.

Method

Macbeth ColorChecker DC IT8

�E94 test

WST
Score

�E94 test

WST
ScoreMean Max Std Dev Mean Max Std Dev

LAB-LS 2.38 5.12 1.30 0 1.10 4.45 0.72 0

LAB-GA 2.37 5.24 1.30 2 1.11 4.48 0.72 0

LAB-GAp 2.35 5.25 1.31 0 1.06 4.48 0.73 0

LAB-GApw 2.36 4.90 1.28 3 1.08 4.06 0.70 3
Table 12 Mean, maximum, and standard deviation for �E94 errors and Wilcoxon sign test score of the
four procedures considered using the best fourth order polynomial found by GP �with a maximum
number of terms equal to 20� for the HP Scanjet G3010.

Method

Macbeth ColorChecker DC IT8

�E94 test

WST
Score

�E94 test

WST
ScoreMean Max Std Dev Mean Max Std Dev

LAB-LS 2.34 5.06 1.30 0 1.03 4.31 0.72 0

LAB-GA 2.30 5.15 1.29 0 1.00 4.32 0.72 0

LAB-GAp 2.29 5.16 1.28 0 1.01 4.32 0.73 0

LAB-GApw 2.30 4.83 1.26 3 1.01 4.01 0.70 3
ournal of Electronic Imaging Oct–Dec 2008/Vol. 17(4)043002-12
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