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In this work, we investigate how illuminant estimation techniques can be improved taking into account
intrinsic, low level properties of the images. We show how these properties can be used to drive, given
a set of illuminant estimation algorithms, the selection of the best algorithm for a given image. The
algorithm selection is made by a decision forest composed of several trees on the basis of the values of
a set of heterogeneous features. The features represent the image content in terms of low-level visual
properties. The trees are trained to select the algorithm that minimizes the expected error in illuminant
estimation. We also designed a combination strategy that estimates the illuminant as a weighted sum of
the different algorithms' estimations. Experimental results on the widely used Ciurea and Funt dataset
demonstrate the effectiveness of our approach.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Computational color constancy aims to estimate the actual color
in an acquired scene disregarding its illuminant. The different ap-
proaches can be broadly classified into color invariant and illumi-
nant estimation [2]. The former approaches derive invariant color
descriptors from the image data without estimating explicitly the
scene illuminant. The latter is actually a two stage procedure: the
scene illuminant is estimated from the image data, and the image
colors are then corrected on the basis of this estimate to generate a
new image of the scene as if it were taken under a known, canoni-
cal illuminant. Many illuminant estimation solutions have been pro-
posed in the last few years, although it is known that the problem
addressed is actually ill-posed as its solution lacks uniqueness and
stability. Moreover, we have recently shown that on large datasets
of both synthetic and real images, the best and the worst algorithms
do not exist at all (in a set of well known and widely used color
constancy algorithms) [1].

Different solutions usually exploit some assumptions about the
statistical properties of the expected illuminants and/or of the ob-
ject reflectances in the scene. Hordley in his survey [2] gives an
excellent review of illuminant estimation algorithms and highlights
two research areas that are important in the context of improv-
ing the performance of color constancy algorithms by making ad-
ditional measurements at the time of image capture (i.e. use more
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color pixel information), and by algorithm combining (i.e. using
two or more estimations of the illuminants). Another recent re-
search area which shows promising results aims to improve illumi-
nant estimation by using high level visual information on the image
content.

The use of content-based image analysis for automatic color
correction has been originally proposed by Schröder and Moser [3].
They classify the images into several signal-oriented generic classes
(e.g. scene with high color complexity) and, after the class-specific
application of a set of color correction algorithms (White Patch
and Gray World), they combine the results in a way that they take
into account the class-specific reliabilities of each algorithm. Their
proposal is based on a hierarchical Bayesian image content analysis
consisting of feature extraction and unsupervised clustering. They
also suggest that semantic classes (e.g. indoor, outdoor, vegetation
scene, mountain scene, etc.) and specific image degradation classes
(e.g. under-exposure, strong color cast, etc.) could be used in a sim-
ilar way. Gasparini and Schettini [4] applied an adaptive mixture of
the white balance and Gray World procedures. In order to avoid the
mistaken removal of an intrinsic color, regions identified as prob-
ably corresponding to skin, sky, sea or vegetation, are temporarily
removed from the analyzed image. Van de Weijer et al. [5] proposed
high-level visual information to improve illuminant estimation. They
modeled the image as a mixture of semantic classes such as grass,
skin, road and building and exploited this information to select the
best illuminant out of a set of possible ones. They applied several
illuminant estimation approaches to compute a set of possible illu-
minants. For each of them an illuminant color corrected image is
evaluated on the likelihood of its semantic content, and the illumi-
nant resulting as the most likely semantic composition of the image
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is selected as the illuminant color. They tested their method on a
small subset of the Ciurea and Funt database [6], which is composed
of a variety of both indoor and outdoor scenes and has shown that
their top-down approach on outdoor images works better than any
other tested algorithms.

A recent work [7] classifies the images into indoor and outdoor
categories. Several state-of-the-art illuminant estimation algorithms
are compared against the proposed classification based strategy.
Three instantiations of each algorithm are used: one with the algo-
rithm parameters optimally tuned for images in the indoor class, one
with parameters tuned for images in the outdoor class and one with
parameters tuned to be used indiscriminately on both classes. Each
image is classified as indoor or outdoor and according to the class
label, the best algorithm with the parameters setting for that class
is used in the estimation of the image illuminant. The images for
which the classifier is not confident enough are processed using the
general purpose parameters. Results show that the performance in
the illuminant estimation improves when the image semantic class
is taken into account.

The above approaches show that the illuminant estimation can
be improved using semantic information on the image content. One
drawback of the approaches is that the semantic classes must be
accurately chosen in advance; and in no way can these classes be
exhaustive or considered representative for all the images, but only
for a given task.

Gijsenij and Gevers [8] used natural image statistics to identify
the most important characteristics of color images and achieve se-
lection and/or combination of color constancy algorithms. For this,
they used the Weibull parameterization on the first-order deriva-
tive filter in the x and y direction to capture the image charac-
teristics, they applied a k-means algorithm to cluster the param-
eters in a set of an heuristically defined number of clusters and
then they associated the best-suited color constancy algorithm to
each cluster. Unseen images are assigned to the computed clus-
ters, and the best color constancy algorithm for that image is cho-
sen. The authors show that a correlation between the clusters and
image categories can be found. A combining strategy which com-
bines the results of color constancy algorithms assigned to neigh-
bor clusters is also considered. Slightly better results with respect
to a baseline algorithm are obtained by the combination strategy
applied on the five algorithms considered, while the most relevant
increment in the performance is obtained with the combination
strategy applied on 75 different instantiations of color constancy
algorithms.

We investigated here if it is possible to automatically derive the
suitability of an illuminant estimation algorithm for a given image
by analyzing a set of visual features. To validate this hypothesis we
developed an illuminant estimation framework and evaluated its
performance on a public available dataset of images. Given a set of
illuminant estimation algorithms, the proposed framework deter-
mines how the estimation of the illuminant of a given image should
be computed. The prediction of the suitability of each algorithm is
carried out by an image classifier based on an ensemble of decision
trees. The trees are trained to identify the best algorithm in the set
considered, on the basis of the values of a set of low-level visual
features. For the most part these are general purpose features taken
from the pattern recognition and image analysis fields. Some fea-
tures have been specifically designed for the illuminant estimation
problem.

Two illuminant estimation strategies are evaluated: the first se-
lects a single algorithm on the basis of the responses of the trees; the
second combines the algorithms according to the ensemble consen-
sus. Using a small set of simple, well known, illuminant estimation
algorithms we obtained a significant improvement with respect to
the performance of the algorithms considered.

2. Proposed framework

The image values for a Lambertian surface located at the pixel
with coordinates (x, y) can be seen as a function q(x, y), mainly
dependent on three physical factors: the illuminant spectral power
distribution I(�), the surface spectral reflectance S(�) and the sen-
sor spectral sensitivities C(�). Using this notation q(x, y) can be
expressed as

q(x, y) =
∫
�
I(�)S(x, y,�)C(�) d�, (1)

where � is the wavelength range of the visible light spectrum, q
and C(�) are three-component vectors. Since the three sensor spec-
tral sensitivities are usually, respectively, more sensitive to the low,
medium and high wavelengths, the three-component vector of sen-
sor responses q= (�1,�2,�3) is also referred to as the sensor or cam-
era RGB = (R,G,B) triplet.

The goal of color constancy is to estimate the color I of the scene
illuminant, i.e. the projection of I(�) on the sensor spectral sensitiv-
ities C(�):

I =
∫
�
I(�)C(�) d�. (2)

Since the only information available are the sensor responses q
across the image, color constancy is an under-determined problem
[9]; and thus further assumptions and/or knowledge are needed to
solve it. Typically, some information about the camera being used is
exploited, and/or assumptions about the statistical properties of the
expected illuminants and surface reflectances. When these assump-
tions are not fulfilled, the illuminant estimation is expected to be
very inaccurate and leads to an erroneous color correction.

In this paper we propose a classification approach which im-
proves the performance of existing color constancy algorithms. Since
it is difficult to select an exhaustive and comprehensive set of image
categories (using either supervised or unsupervised classification),
our approach does not classify the images into high level categories
and then process each image with an ad hoc algorithm for that class,
but it learns from the images themselves some intrinsic, low level
properties that can be used to drive the selection of the best algo-
rithm for that image. That is, the selection of the algorithm is not
class-based but feature-based.

Several computational color constancy algorithms exist in the
literature, each based on different assumptions. Recently Van de
Weijer et al. [10] have unified a variety of algorithms. These algo-
rithms approximate the illuminant color I by implementing instan-
tiations of the following equation:

I(n, p,�) = 1
k

(∫ ∫
|∇nq�(x, y)|p dxdy

)1/p

, (3)

where n is the order of the derivative, p is the Minkowski norm,
q�(x, y) = q(x, y) ⊗ G�(x, y) is the convolution of the image with a
Gaussian filter G�(x, y) with scale parameter �, and k is a constant
to chosen such that the illuminant color I has unit length. The inte-
gration is performed over all pixel coordinates. In this work, varying
the three variables (n,p,�) we have generated four algorithm in-
stantiations that correspond to well known and widely used color
constancy algorithms:

1. Gray World (GW) algorithm [11], which is based on the assump-
tion that the average reflectance in a scene is achromatic. It can
be generated setting (n,p,�) = (0, 1, 0) in Eq. (3).

2. White Point (WP) algorithm [12], also known as Maximum RGB,
which is based on the assumption that the maximum reflectance
in a scene is achromatic. It can be generated setting (n,p,�) =
(0,∞, 0) in Eq. (3).
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3. Gray Edge (GE1) algorithm [10], which is based on the assumption
that the p-th Minkowski norm of the first order derivative in a
scene is achromatic. It can be generated setting (n,p,�)= (1,p,�)
in Eq. (3).

4. Second Order Gray Edge (GE2) algorithm [10], which is based on
the assumption that the p-th Minkowski norm of the second order
derivative in a scene is achromatic. It can be generated setting
(n, p,�) = (2,p,�) in Eq. (3).

A fifth algorithm has been considered—the Do Nothing (DN)
algorithm—which gives for every image the same estimation for the
color of the illuminant, I = [1 1 1].

To select the algorithm to be used with a given image, we used
a decision forest tree approach based on the CART methodology
where each classifier in the forest votes for one of the illuminant
estimation algorithms to be used. The most voted algorithm is then
applied to the input image. In the training of the classifier we con-
sidered the error costs of the erroneous algorithm's selection. That
is, the algorithm selected by the classifier is the one that minimizes
the expected error in the illuminant estimation. We also designed a
combination approach that estimates the illuminant as a weighted
sum of the algorithms' estimations. For each algorithm, its weight
is computed using the votes of the classifiers in the forest and is
proportional to the number of classifiers that have selected that al-
gorithm. The features used in the classification process are hetero-
geneous and representative of the image content and can be related
to visual properties of the images such as color, texture, composi-
tion, etc. For the most part they are taken from the content-based
image retrieval research field and have been selected because they
are widely used in different applications. We added a few features
that are related to the illuminant estimation problem that may be
helpful in the algorithm's selection process.

The following two sections describe the classifier and the low-
level visual features more in detail.

3. Algorithm selection by decision forests

Wedecided to adopt classification trees as classifiers because they
present several advantages which make them particularly suitable
for our problem:

• classification trees can be trained to distinguish an arbitrary high
number of classes, so that we are free to consider any set of illu-
minant estimation algorithms;

• since they do not require any feature normalization or decorrela-
tion, they allow feature vectors to be composed of several hetero-
geneous features;

• classification trees can exploit information about the a priori prob-
abilities of the classes and their misclassification costs, making it
easy to integrate information about the correlation between the
errors of different algorithms in the algorithm selection model.

In our approach, decision trees are built according to the Classi-
fication and Regression Trees (CART) methodology [13] which has
proven to be effective for image classification tasks [14,15]. CART
trees are produced by recursively partitioning a set of feature vec-
tors T = {x1, . . . ,xN} labeled with the corresponding correct class
{y1, . . . , yN}, yj ∈ {1, . . . ,K}. The partition is driven by an impurity
function which measures the diversity of the classes associated to a
set of feature vectors on the basis of the estimated distribution of
the classes in that set. The Gini diversity index can be used as the
impurity function: iGini(P1, . . . , PK )=1−∑k

j=1P
2
j . The process starts by

considering the whole training set T. For each feature j and for each
value of the threshold �, the subsets TL = {x ∈ T|xj��}, TR = T\TL are

defined and the decrease in impurity is computed as

�I(j, �) = i(T) − i(TL)PL − i(TR)PR, (4)

where PL and PR are the resubstitution estimates of the probabilities
that an element of T falls into the subsets TL and TR, respectively;
i(T) represents the application of an impurity function i to the re-
substitution estimates of the distribution P(y= 1|T), . . . , P(y= K|T) of
the classes of the elements of the set T. Among all possible splits
(j, �) the one which maximizes the decrease in impurity is selected.
In tree terminology T represents the parent node of the nodes TL and
TR. The process is recursively repeated for the new nodes TL and TR
until no further decrease in impurity is possible.

At this point, each terminal node L of the tree is labeled with the
class which minimizes the misclassification error:

ŷ = arg max
j∈{1,. . .,K}

P(y = j|L). (5)

New cases are classified by choosing the classes associated to the
terminal nodes in which they fall on the basis of the values of the
features. Since the trees almost certainly overfit the training data,
generalization accuracy is expected to be low. To avoid overfitting,
we applied a pruning procedure. Instead of minimizing the misclas-
sification error on the training set, a cost-complexity criterion is con-
sidered: given a tree T, its performance is measured by

R�(T) = R(T) + �|T|, (6)

where R(T) is the probability of misclassification estimated on the
training set, |T| is the size of the tree (the number of terminal nodes),
and � is a parameter which weights prediction errors and complexity
of the tree. Starting from an initial tree T0 (corresponding to � = 0)
built as described above and increasing the value of �, the sequence
of best subtrees T0, T1, . . . , TM is considered. Each subtree corresponds
to the optimal subtree of T0 for a range of values of the parameter �.
The subtree of the sequence which minimizes the misclassification
error on an independent validation set is finally selected.

The pruning process improves the generalization accuracy of the
trees. However, a low misclassification error cannot be ensured due
to the instability of the training procedure (slightly different training
sets could produce completely different trees). To avoid instability,
we adopted a multiple classifier approach. Several CART trees are
built to form a decision forest [16]. The trees of the forest are first
built using different bootstrap replicates of the training set. The com-
plement of each replicate is then used as a validation set to prune
the corresponding tree. New cases are classified by majority vote on
the output of the trees of the forest.

In our approach, the classifier is used to select the most appro-
priate illuminant estimation algorithm on the basis of the content of
the images. Illuminant estimation algorithms are modeled as classes:
an image is of class j if the j-th algorithm is the one which produces
the lowest estimation error on that image among the algorithms
considered. The feature vector which describes each image is built
by computing a set of low-level features (see Section 4) and by con-
catenating the values obtained.

The straightforward application of the CART training process to
this problem leads to poor results. This is due to the fact that some
properties of the problem are not taken into account in the formu-
lation:

• some algorithms generally perform better than others;
• the performance of the algorithms are correlated so that the con-

sequences of a non-optimal choice may present a high variability.

The first point is addressed by estimating the a priori probability for
each algorithm that it is the best algorithm. They are estimated as
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the ratio Nj/N, where Nj is the number of training cases for which the
j-th algorithm is the best choice and N is the size of the training set.
The a priori probabilities are then used during training to compute
the resubstitution estimates of conditional probabilities in (4)–(6).

For each pair of algorithms, Class correlation is modeled by con-
sidering, the average difference in performance obtained when one
of the two algorithms corresponds to the best choice:

c(k|h) =
∑

j:yj=he
(k)
j − e(h)j

|{j : yj = h}| , h, k ∈ {1, . . . ,K}, (7)

where e(k)j is the error of the k-th algorithm on the j-th training
sample. In other words, c(k|h) is the expected cost (i.e. degradation
in performance) caused by the choice of algorithm kwhen algorithm
h is the best choice.

Misclassification costs are used during training to influence prun-
ing and label assignment. Eq. (5) is replaced by

ŷ = arg min
j∈{1,. . .,K}

K∑
h=1

c(j|h)P(y = h|L), (8)

while R(T) is now the estimated average cost of the decisions of
tree T:

R(T) =
∑
L∈T̃

⎛
⎝ min

j∈{1,. . .,K}

K∑
h=1

c(j|h)P(y = h|L)
⎞
⎠ P(L), (9)

where T̃ is the set of the leaves of T and P(L) is the resubstitution
estimate of the probability that a case falls in the leaf L.

Class correlation is also exploited by using the twoing criterion as
the impurity function: the impurity of a node is computed by dividing
the set of the classes into two macro-classes, and then by applying
the Gini diversity index to the distribution of the two macro-classes.
In practice, the twoing criterion is implemented by substituting (4)
with the following expression:

�Itwoing(j, �) = PLPR
4

⎡
⎣ K∑
k=1

|P(y = k|TL) − P(y = k|TR)|
⎤
⎦
2

. (10)

The effect of the twoing criterion is that during the first steps of the
tree growing process few resources are wasted trying to discrimi-
nate between similar classes (i.e. highly correlated algorithms). The
discrimination of such classes occurs only near the leafs.

4. Image features

Since an image conveys information at different levels, the use
of different features at the same time is a necessary requisite if we
want to capture most of the image information. There is no single
“best” representation of the content of an image, but only multiple
representations which characterize the content from different per-
spectives. In the literature many features exist to be used in describ-
ing the image content [17–20].

We have considered two groups of low level features: general
purpose features and problem-dependent features. The general pur-
pose features are features that can be used on a large range of ap-
plications since they do not capture characteristic of the images that
are problem specific. The features in this category that we have se-
lected are: color histogram, edge direction histogram, statistics on
the wavelet coefficients, and color moments.

Problem-dependent features try to capture properties of the im-
ages that can be useful in improving the performance of the task
under consideration. Since several algorithms of illuminant estima-
tion rely on some image characteristics or make certain assumptions

Table 1
Summary of the features used to describe the images.

Name No. components Category

YCbCr color moments 6 Color
RGB color histogram 27 Color
Number of colors 1 Color
Cast indexes 2 Color
Color clipping 8 Color
Edge magnitude histogram 5 Edges
Edge direction histogram 18 Edges
Wavelet statistics 20 Texture

Fig. 1. Examples of images of man-made structures.

about the color of the images, some of the problem dependent fea-
tures have been chosen to exploit these properties. For example, the
extent of a color cast in an image is a feature that may be useful
in the color balancing problem. A strong cast may be an indication
that a particular illuminant is present. The number of different col-
ors is an indication of color variability, and thus that the Gray World
assumption can be justified for the image under consideration. Con-
versely, an image with very few colors may not be reliably processed
for balancing since it may lack a sufficient amount of information
to estimate the White Point. Several algorithms rely on the edges
found in the image, so we have included features that extract edge
information at different perspectives.

Summarizing, the problem-dependent features chosen are: the
number of different colors, the percentage of color components that
are clipped to the highest and lowest value that can be represented
in the image color space, a cast index representing the extent of the
presence of a color cast in the image and themagnitudes of the edges.

Note that all these features have been chosen independently from
their usefulness in the image classification process. They have been
chosen uniquely for their ability to describe the content of an image.
Some of them are not strictly independent in the sense that simi-
lar properties of the images are evaluated using different features.
The aim of the classifier is to choose the features as well as which
specific components in a feature are more relevant to discriminate
between the classes selected for the problem under analysis. More-
over, while all the features must be computed for the images in
the training sets, only the features actually chosen and used by the
classifier need to be computed for the images in the test sets and
for new images to be processed. This approach is made possible by
the use of CART trees as classifiers. Other classification methodolo-
gies (such as support vector machines and neural networks) would
have required a complex feature selection (and normalization) step.
Table 1 summarizes the features considered.

4.1. Edge direction histogram

Edges are a clue about the subject depicted in an image. Strong
edges can be found in buildings, roads, and other man-made struc-
tures. These edges usually have directions in a definite pattern (see
Fig. 1). On the other hand, pictures of natural scenes usually do not
show strong edges and since the subject has no clear structure they
do not show a specific pattern (see Fig. 2). Edge direction histogram
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Fig. 2. Examples of images of natural scenes.

Fig. 3. Examples of images with weak (left) and strong (right) edge magnitudes.

can be used to determine the edge structures within an image and
thus allow us to distinguish between different image classes. Edges
are computed applying a Derivate of the Gaussian filter with �=1 on
the luminance image in both the x and y directions (Gx,Gy) and then
the edge orientation at edge position (x, y) are computed as follows:

�(x, y) = arctan
(
Gy(x, y)
Gx(x, y)

)
. (11)

The orientations are quantized into 18 bins each corresponding to
angles of intervals of 10◦. The quantized orientations are then used
to compute an edge direction histogram of 18 components. Only
the orientations belonging to edges whose gradient's magnitude is
above a given threshold (0.50 in our case) are taken into account.
This ensures that only edges with sufficient strength are used in
computing the direction histogram.

4.2. Edge strengths

In order to capture the relevance of the edges we compute a his-
togram of edge magnitudes. The edges are detected as in the case
of the edge direction histogram. The magnitude is quantized into 5
bins corresponding to the following intervals: [0, 0.25), [0.25, 0.50),
[0.50, 0.75), [0.75, 1.0), [1.0,∞). Two examples of images with differ-
ent edge strengths are shown in Fig. 3.

4.3. Color histogram

Color histogram is one of the most widely used image descrip-
tors [21,22] and represents the color distribution of the image. It
possesses several useful properties that make it a robust visual fea-
ture such as compactness, invariance and robustness with respect to
the geometric transformation of the original image like rotation and
scale. In order to compute the histogram we quantized the RGB color
space by uniformly dividing each color axis into three intervals. The
RGB cube is thus subdivided into 27 smaller cubes and each of the
original colors is mapped to the cube which it falls into.

4.4. Wavelet statistics

Information about the textures and structures within the image
can be obtained using a wavelet decomposition. This technique is

Fig. 4. A three-iteration Daubechies wavelet decomposition.

often used in content-based retrieval for similarity retrieval, tar-
get search, compression, texture analysis, biometrics, etc. [23,24]. In
multiresolution wavelet analysis, at each level of resolution (i.e. at
each application of the wavelet decomposition) we have four bands
containing different information obtained by applying a combina-
tion of a low pass filter (L) and a high pass filter (H). Specifically,
the information corresponds to a low-pass filtered version of the
processed image (LL band), and three bands of details that roughly
correspond to the horizontal edges (LH band) of the original images,
the vertical edges (HL band) and the diagonal edges (HH band). Each
band is a matrix of values, one fourth the size of the original image.

Wavelet decomposition is applied recursively to the LL band. The
resultant decomposition will contain information, i.e. details, at the
lower resolution. The process can be repeated until the LL sub-band
cannot be further processed or until a given number of wavelet de-
composition applications is reached. Different filters can be used to
produce the bands of the wavelet analysis [25] e.g. Harr, Daubechies,
Symlet, Biort, etc.

For our purposes thewavelet statistics features are extracted from
the luminance image using a three-iteration Daubechies wavelet de-
composition, producing a total of 10 bands as shown in Fig. 4. The
mean and variance of the absolute values in each band are then com-
puted as band statistics. These feature values represent the energy
i.e. the amount of information within each band and provide a con-
cise description of the image's content. This feature thus composed
of 20 (two energy values for each of the 10 bands) components.

4.5. YCbCr color moments

To describe the color distribution of an image, we computed the
first two central moments, mean, and standard deviation of each
color channel of the YCbCr color space, derived by transforming the
R, G, and B color coordinates. The color distribution of an image can,
in fact, be considered a probability distribution and can therefore
be characterized uniquely by its central moments alone, as can any
probability distribution [26]. The choice of the YCbCr color space al-
lows the separation of the luminance component from the chromi-
nance components in a simple way using a linear transformation.
The color transformation used is that defined in the ITU-R Recom-
mendation BT.601 [27]:⎛
⎝ Y
Cb
Cr

⎞
⎠=

⎛
⎝ 16
128
128

⎞
⎠+

⎡
⎣ 65.74 129.06 25.06

−37.95 −74.50 112.44
112.44 −94.15 −18.29

⎤
⎦
⎛
⎝ r
g
b

⎞
⎠ , (12)

where r, g, b are the RGB coordinates normalized in the range [0, 1].
This feature is composed of six values (two statistics for each of the
three color channels).

4.6. Number of colors

The number of distinct colors is related to the color range of
the image. Since several illuminant estimation algorithms are based
on the Gray World assumption, the color range is an indication of
whether this assumption holds true for the given image or not. The
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Fig. 5. Examples of images with many different colors. Left image: 10782 colors
with average color (122, 123, 121). Right image: 13882 colors with average color
(107, 106, 110). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 6. Examples of images with few different colors. Left image: 5380 colors with
average color (150, 97, 47). Right image: 7538 colors with average color (96, 126,
150). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

actual values of the pixels colors may impede the occurrence of the
assumption, but if an image contains many different colors then the
average color is likely to be a gray value. Two examples can be seen in
Figs. 5 and 6. To remove small variations in the color appearance and
thus limit the influence of noise in the computation of the feature,
the RGB color channels are quantized by considering only the six
most significant bits. Thus, the maximum number of different colors
that can be discriminated is 26 × 26 × 26 = 262144.

4.7. Clipped color components

To take into account the extent of highly saturated color pixels,
we compute the percentage of pixels whose color components are
clipped to the maximum value that can be represented. For digital
images with eight-bit color channel representation, the maximum
value is 255. We discriminate between pixels with zero, one, two or
all three color components clipped to the maximum value. In total
the histogram of clipped color components is composed of eight
bins: 0 clipped components, 1 clipped component (either R, or G or
B), 2 clipped components (either R and G, or R and B, or G and B)
and 3 clipped components (R and G and B).

The values in the histogram bins are normalized with respect
to the total number of pixels in the image, so that the histogram
represents a probability density distribution.

4.8. Cast indexes

The cast index is aimed at identifying the presence of a rele-
vant cast within the image; and it is inspired by the work done
in [4], where the cast is detected and classified into several classes

according to its relevance. The basic idea of the cast detection is that
the color distribution of an image can be analyzed by converting it
into a suitable color space and using statistical tools to characterize
the presence of the cast. In [4] the presence of a color cast is used
to process images producing more pleasing images; that is, images
that users perceive as more natural than the original one.

In this work, we made small modifications of the original formu-
lation since the problem we face is different from the one in [4]. We
changed the color space representation from the CIELAB to YCbCr,
since the former depends on the knowledge of theWhite Point of the
scene. Moreover, we only considered the cast indexes disregarding
the final cast classification.

An image with a very strong cast will show one definite peak
within the CbCr plane, far away from the neutral axis corresponding
to the color cast.

The means and variances of the Cb and Cr components (	Cb and
	Cr , �2

Cb and �2
Cr) are used to compute the color equivalence circle

center C = (	Cb,	Cr) and its radius r = (�2
Cb + �2

Cr)
1/2, as well as the

two cast indexes D=	−� and D� =D/� where 	= (	2
Cb +	2

Cr)
1/2. D is

a measure of how far the color distribution is from the neutral axis
(i.e. from (0, 0) in the CbCr coordinates), indicating thus the presence
of a cast. D� quantifies the strength of the cast. An example of an
image showing a strong cast is depicted in Fig. 7. Fig. 8 shows an
example of an image without cast.

5. Experimental results

To evaluate our approach we measured its performance on a sub-
set of the dataset of images presented by Ciurea and Funt [6] which
is commonly used in the evaluation of color constancy algorithms
as it is labeled with the ground truth illuminants. In this dataset 15
digital video clips were recorded (at 15 frames per second) in dif-
ferent settings such as indoor, outdoor, desert, markets, cityscape,
etc. for a total of 2h of videos. From each clip, a set of images
was extracted, resulting in a dataset of more than 11000 images. A
gray sphere appears in the bottom right corner of the images and
was used to estimate the true color of the scene illuminant. Since
the dataset sources were video clips, the images extracted show
high correlation. To remove this correlation, only a subset of im-
ages should be used from each set. Taking into account that the im-
age sets came from video clips, we applied a two stage video-based
analysis to select the image to be included in the final illuminant
dataset.

In the first stage, a video clip is reconstructed from each set of
images, removing the right part of the images containing the gray
sphere. The video clip is fed to a key frame extraction algorithm [28],
which dynamically selects a set of candidate images by analyzing
the visual content of consecutive frames. Clips showing high vari-
ability in their pictorial content will have a high number of images
extracted, while clips showing little or no variability will have only
a single image extracted.

In the second stage, we further processed the extracted images
with a visual summary post-processing algorithm [29]. A hierarchical
clustering algorithm further removes redundancies within the set by
iteratively eliminating pictorially similar images until the number of
remaining images is equal to the one required.

As a trade-off between the number of images to be included
in the dataset and the correlation problem, we set the parameters
of the key frame extraction algorithm so that it over-extracts im-
ages from the video clip, and so that the number of images that
must be included in the final dataset corresponds to 10% of the
clip size. The parameters of the visual post-processing algorithm are
thus set accordingly. With these settings the final dataset consists of
1135 images. More details about the dataset extraction can be found
in [7].
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Fig. 7. Example of an image with a strong color cast. The equivalence circle is compact and far from the neutral axis.
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Fig. 8. Example of an image without color cast. The equivalence circle is large and close to the neutral axis.

The final dataset has been randomly subdivided into a training
set of 340 images (about 30% of the dataset) and a test of 795 images.
The training set has been used to:

• find the best parameters of the illuminant estimation algorithms;
• make an estimate of the a priori related to the algorithms (i.e. the

probability that an algorithm is the best one);
• estimate the matrix of misclassification costs (7).

A cross validation on the test set has been adopted to train and
evaluate the decision forest and to assess the overall performance of
the strategy.

5.1. Performance evaluation

In order to evaluate the performance of the algorithms consid-
ered, we have to define an error measure. Since in estimating the
scene illuminant it is more important to estimate its color than its
overall intensity, the error measure has to be intensity-independent.

As suggested by Hordley and Finlayson [30], we use as error mea-
sure the angle between the RGB triplets of the illuminant color (qw)
and the algorithm's estimate of it (q̂w):

eANG = arccos

(
qTwq̂w

‖qw‖‖q̂w‖

)
. (13)

Hordely and Finlayson [30] showed that a good descriptor for the
angular error distribution is the median error. To verify if the per-
formances of different algorithms are statistically different, a test
which is able to compare the whole error distribution of different
algorithms is needed. Since standard probability models cannot rep-
resent underlying errors well, we need a test that does not make
any a priori assumptions about the underlying error distributions.
To compare the performance of two color constancy algorithms in
addition to the median angular error, we have used the Wilcoxon
sign test (WST) [31]. Let X and Y be random variables representing
the angular errors between the illuminant estimations of the two
algorithms and the real illuminants; let 	X and 	Y be the median
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values of such random variables. The Wilcoxon signed-rank test can
be used to test the null hypothesis H0 : 	X = 	Y . To test H0, we con-
sider the differences of independent error pairs (X1−Y1), . . . , (XN−YN)
for N different images. We rank these error pairs according to their
absolute differences. Ranks are signed considering whether the cor-
responding error pair difference is positive or negative. If H0 is cor-
rect, the sum of the signed ranks W will approximate zero. If W is
much larger or smaller than zero, the alternative hypothesis H1 :
	X �	Y is true. We can test H0 against H1 at a given significance
level �. We reject H0 and accept H1 if the probability of observing
the error differences we obtained is less than or equal to �. In this
work, we have used the alternative hypothesis H1 : 	X <	Y as im-
plemented in the Matlab statistical package, with a significance level
�=0.01. Comparing each color constancy algorithm with all the oth-
ers, we generated a score representative of the number of times that
the null hypothesis H0 has been rejected for the given algorithm, i.e.
the number of times that the performance of the given algorithm
has been considered to be better than the others.

5.2. Tuning of the color constancy algorithms

Two of the color constancy algorithms considered, (GE1 and GE2),
needed a training phase to opportunely tune the parameters (n,p,�).
As a training set, we used the same 300 images used in [7] in order
to make the results easily comparable. Starting from the 340 training
images, 40 have been discarded in order to balance the frequency of
indoor and outdoor images. The performances of the algorithms are
evaluated using the median angular error. Since the median error is
a nonlinear statistic, we needed a multidimensional nonlinear opti-
mization algorithm: our choice was to use a Pattern Search Method
(PSM). PSMs are a class of direct search methods for nonlinear opti-
mization [32]. PSMs are simple to implement and do not require any
explicit estimate of derivatives. Furthermore, global convergence can
be established under certain regularity assumptions of the function
to minimize [33].

The general form of a Pattern Search Method can be described
in the following way. At each step k, we have the current iterate
xk, a set Dk of search directions, and a step-length parameter 
k.
Usually the set Dk is the same for all iterations. For each direction
dk ∈ Dk, we set x+ =xk +
kdk (the “pattern”) and we examine f (x+)
where f is the function to be minimized. If ∃dk ∈ Dk : f (x+)<f (xk),
we set xk+1 = x+ and 
k+1 = �k
k with �k >1; otherwise, we set
xk+1 = xk and 
k+1 = �k
k with �k <1. The algorithm stops when
step 
k is smaller than a fixed threshold, or when the maximum
number of iterations has been reached. In this work we have chosen
to fix the maximum number of iterations n=50, �k =�=2, �k =�=
0.5, Dk = {NW ,N,NE, E, SE, S, SW ,W}, and 
0 = 0.1. The same starting
point has been chosen for the two algorithms that needed a training
phase (GE1 and GE2): x0 = (p0,�0)= (1, 0). The optimal values of the
parameters found by the PSM are (p,�)= (1.10, 1.08) for the GE1 and
(p,�) = (1.55, 1.83) for the GE2.

5.3. Decision forest training and evaluation

To train the decision forest and to evaluate the performance of
our strategy we adopted a cross validation procedure. First, the five
illuminant estimation algorithms are applied to the whole dataset
and their angular errors are computed. The first step of the training
process for the decision forest consists in the estimation of the a
priori probability for each algorithm that is the best choice, and of
the matrix of misclassification costs. These values, estimated on the
340 images of the training set, are reported in Tables 2 and 3. In more
than one third of the images, the Gray World algorithm corresponds
to the best choice. In another 30% of the cases the images are already
well balanced, and thus the “Do Nothing” algorithm produces the

Table 2
A priori probabilities, corresponding to the five illuminant estimation algorithms,
estimated on the images of the training set.

Algorithm Probability

DN 0.33
GW 0.34
WP 0.04
GE1 0.12
GE2 0.17

Table 3
Matrix of the misclassification costs estimated on the images of the training set (7).

Best algorithm Predicted algorithm

DN GW WP GE1 GE2

DN 0.00 10.90 1.98 6.41 4.10
GW 8.43 0.00 5.67 4.13 6.28
WP 0.50 10.19 0.00 4.93 2.68
GE1 2.80 5.48 2.29 0.00 0.77
GE2 2.86 6.18 1.89 0.67 0.00
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Fig. 9. Histogram of the occurrences of the features in the splits of the trained trees.

most accurate illuminant estimation. The remaining one third of the
images are best processed by the GE1 or the GE2 algorithms. For
less than 4% of the images the WP algorithm corresponds to the best
choice. The matrix of misclassification costs tell us that the results
of the GE1 and GE2 algorithms show a high correlation. Detecting
the images for which the GW algorithm should be used is crucial. In
fact, in these cases the errors of the other algorithms are rather high.

At this point, a 10-fold cross validation is used to train and to
evaluate our strategy. The test set is randomly partitioned into 10
subsets. Then a decision forest composed of 30 classification trees
is trained on all the images of the dataset (including the training
set) with the exclusion of a single subset of the test set, which is
finally used to measure the performance of the decision forest. The
procedure is repeated 10 times, one for each subset of the test set.
The results of the 10 forests are finally merged.

Fig. 9 reports the distribution of the occurrences of the features
within the splits of the 10 forests. All the features have been used.
The RGB histogram is used in more than 30% of the splits; however,
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Table 4
Confusion matrix of the decision forest used for algorithm selection, estimated on
the images of the test set.

Best algorithm Predicted algorithm

DN GW WP GE1 GE2

DN 0.85 0.06 0.01 0.04 0.04
GW 0.24 0.61 0.01 0.10 0.05
WP 0.37 0.00 0.11 0.37 0.15
GE1 0.39 0.29 0.04 0.17 0.11
GE2 0.45 0.15 0.02 0.13 0.26
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Fig. 10. Distribution of the rank of the algorithm selected by the decision forest
on the images of the test set. The first bar represents the fraction of test images
for which the best algorithm is selected; the second bar represents the fraction of
cases in which the second best is selected, and so on.

it must be considered that it is the features with the highest number
of components. Very compact features, such as the number of colors
and cast indexes are important as well, if we consider that they are
formed by only one and two components, respectively.

Table 4 shows the confusion matrix obtained on the test set. Each
row corresponds to an algorithm and reports the distribution of the
output of the decision forest estimated on the subset of the test set
for which that algorithm is the best choice. Most of the images for
which the DN algorithm is the best choice are correctly classified
(85% of accuracy). For the other algorithms the correct classifica-
tion rate ranges from 61% (GW) to 11% (WP). However, considering
the a priori distribution of the five algorithms, the aggregated clas-
sification accuracy is about 55%, as shown in Fig. 10 which reports
the histogram of the rank corresponding to the choice of the deci-
sion forest on the test set. The best algorithm is chosen 55% of the
time, the second best algorithm is chosen 11% of the time; and the
frequency of the selection of the third, the fourth, and the worse
algorithm are 16%, 12%, and 5%, respectively. It should be consid-
ered that the forest has not been trained with the aim of finding the
best algorithm, but with the aim of finding the algorithm with the
lowest expected error, taking into account the errors determined by
misclassifications. This means that the performance of the decision
forest should not be evaluated in terms of classification accuracy,
but in terms of the angular error of the selected algorithms. Fig. 11
reports the distribution of the loss determined by the choice of the
decision forest with respect to the best algorithm. In more than 70%
of test cases this loss is below 1◦ of angular error with respect to the
best algorithm. The average angular error of our Classification-based
Algorithm Selection (CAS) strategy is about 4.76◦, while the median
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Fig. 11. Distribution of the difference in angular error between the algorithms
selected by the decision forest and the best choice for each image of the test set.

Table 5
Summary of the results obtained on the test set by the Classification-based Algo-
rithm Selection (CAS) strategy, compared with the performance of the five simple
algorithms and with the results obtained by an algorithm selection strategy based
on semantic classification [7].

Algorithm Median Mean WSTs

DN 6.05 8.07 0
GW 5.95 7.27 0
WP 5.48 7.45 2
GE1 4.47 5.84 4
GE2 4.65 6.23 3
CAS 3.21 4.76 6
Semantic 3.54 4.89 5
Ideal classifier 2.31 3.27 –

The best score for each column are reported in bold.

angular error is about 3.21◦. These results are compared in Table 5
with those obtained by the five single algorithms. A comparison with
the results of a semantic driven approach [7] (on the same data) is
also reported. The performance of our approach is clearly superior
to that of the single algorithms and of the semantic-based approach,
at least on the dataset we considered. It is interesting to note that
DN is the worst algorithm on average. However, in about 33% of the
cases it is the best choice. This means that in the remaining 67% of
the images its error is very high. Thus, from a color correction point
of view, detecting which images need to be corrected and which do
not is crucial. Our selection strategy seems quite effective in doing
this (see the confusion matrix in Table 4).

In order to determine which part of the error is due to the illu-
minant estimation algorithms and which part should be accounted
to classification errors, we compared our selection strategy with a
strategy based on an ideal classifier. The ideal classifier selects for
each image the best algorithm among the five considered. Using the
ideal classifier we obtained a median angular error of 2.31◦ on the
test set. This means that the performance of our strategy may be
improved up to 0.9◦ of median angular error.

In order to obtain better illuminant estimations, a common ap-
proach is to combine the results of several different algorithms.
Cardei and Funt [34] obtained good illuminant estimation by combin-
ing the results of Gray World, White Patch and neural net methods,
considering both linear and non-linear committee methods. Schae-
fer et al. [35] introduced a combined physical and statistical color
constancy algorithm that integrates the statistics-based Color by
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Fig. 12. Average angular error obtained by the five illuminant estimation algorithms
on the images of the set, as a function of the number of votes received by the trees
of the decision forest.

Table 6
Summary of the results obtained on the test set by the Classification-based Com-
bining (CAC) strategy compared with the performance of other popular combining
methods.

Algorithm Median Mean WSTs

AVG 4.66 5.99 0
LMS 4.12 5.29 2
N2M 4.79 5.82 0
CAC 3.04 4.46 3

The best score for each column are reported in bold.

Correlation method with a physics-based technique, based on the
dichromatic reflectance model, using a weighted combination of
their likelihoods for a given illumination set and taking the maxi-
mum likelihood entry.

In our Classification-based Algorithms Combination (CAC) strat-
egy the five algorithms are linearly combined, using as weights the
consensus of the decision forest; that is, each algorithm is weighted
proportionally to the number of trees which “voted” for it. The num-
ber of votes is, in fact, related to the error of the algorithms, as
shown in Fig. 12 which reports the average angular error (on the
test set) obtained by the algorithms as a function of the votes that
they received. The higher the number of votes is, the lower the
error is. Table 6 reports the results obtained by the combination
strategy and compares it with other combining methods. The first
combining method considered (AVG), simply averages the results of
the estimations given by the five algorithms considered [34]. The
second one (LMS) is a weighted average of the outputs of the in-
dividual algorithms [34]. The weights were optimized in the least
mean squares sense. This combining method was trained and tested
using the same 10-fold cross validation used before. The last com-
bining method considered (N2M), averages the outputs of the three
individual algorithms which gave the closest illuminant estimations,
automatically excluding the two that gave the furthest estimations
[1]. Combining is more effective than simple selection, in fact, it ob-
tained a median angular error of 3.04◦ (versus 3.21 of the selection
strategy). Simple combining methods are clearly outperformed.

6. Conclusions

We presented a framework for automatic illuminant estimation
based on the selection or combination of simple algorithms. In this
workwe used a set of state of the art algorithms. The proposed strate-
gies can be used as it is with any set of color constancy algorithms.

To improve illuminant estimation accuracy, a decision forest is
trained to identify the best algorithm for a given image. The solutions
investigated here included: a Classification-based Algorithm Selec-
tion strategy which applies the algorithm with minimal expected
error, and a Classification-based Algorithms Combination strategy
which linearly combines the algorithms by weighting them on the
basis of the consensus of the trees of the decision forest. The deci-
sions of the classifier are based on a set of low-level features taken
from the literature or specifically designed for the problem.

We tested the strategies on a suitable subset of the widely used
Funt and Ciurea dataset. For this, a method for extracting uncorre-
lated images from the dataset is used. Our results demonstrate that
our approach outperforms the other algorithms selection and com-
bination strategies considered.

We plan to further investigate this topic, including additional
illuminant estimation algorithms and to experiment with other ma-
chine learning tools. We are also considering to extend the frame-
work in order to exploit both visual and semantic information.

Our approach defines a framework, which given a set of algo-
rithms for a given imaging problem, seems to be able to devise an ef-
fective strategy to solve the problem identifying equivalence classes
in the images so that each class can be processed with the best per-
forming algorithm. To verify the generality of the approach, we will
evaluate it against other imaging problems.
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