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The color reproduction accuracy is a key factor to the overall perceived image quality in digital photography. In
this framework, both the illuminant estimation process and the color correction matrix concur in the formation of
the overall perceived image quality. To the best of our knowledge, the two processes have always been studied
separately, thus ignoring the interactions between them. We investigate here these interactions, showing how the
color correction transform amplifies the illuminant estimation errors. We demonstrate that incorporating knowl-
edge about the illuminant estimation behavior in the optimization of the color correction matrix makes it possible
to alleviate the error amplification. Different strategies to improve color accuracy under both perfect and imperfect
white point estimations are investigated, and the experimental results obtained with a digital camera simulator are
reported. © 2012 Optical Society of America

OCIS codes: 100.0100, 330.1710.

1. INTRODUCTION
The color reproduction accuracy of digital imaging acquisi-
tion devices is a key factor to the overall perceived image
quality [1]. The first stage of the color correction pipeline
[1] aims to estimate and compensate for the color of the il-
luminant in the scene, rendering the acquired objects as if
they were lit by an ideal illuminant [2]. The second stage
of the color correction pipeline is the device chromatic re-
sponse characterization that transforms the image data into
a standard RGB color space. This transformation, usually
called color matrixing, is needed because the spectral sensi-
tivity functions of the sensor color channels rarely match
those of the desired output color space. This transformation
is usually performed using a linear transformation matrix,
and it is optimized assuming that the illuminant in the scene
has been successfully estimated and compensated for [3,4].
Both the illuminant estimation process and the color correc-
tion matrix concur in the formation of the overall perceived
image quality. To the best of our knowledge, the two pro-
cesses have always been studied separately, thus ignoring
the interactions between them.

In this paper we investigate the interactions between the
illuminant estimation process and the color correction matrix
in the formation of the overall color accuracy, especially
when the white point estimation is imperfect. We also inves-
tigate how the color correction transform amplifies the illumi-
nant estimation errors. The only work we found on a related
topic [5] analyzes the error propagation in color measurement
and imaging focusing on how linear, matrix, and nonlinear

transformations influence the mean, variance, and covariance
of color measurements. The error analyzed by Burns and
Berns [5] is the measurement noise, while, in this paper,
we analyze the error introduced by the modules of the ima-
ging pipeline. In Section 2, we briefly describe the image for-
mation process and a simplified color correction pipeline. In
Sections 3 and 4, it is shown how to derive illuminant varying
color correction matrices and how to incorporate information
about the illuminant estimation process in the derivation of
the color correction matrix to alleviate the error amplifica-
tion. The experimental results are derived under both ideal
and nonideal illuminant estimation conditions and are de-
scribed in Sections 5 and 6. Finally, in Section 7, conclusions
are drawn.

2. COLOR CORRECTION PIPELINE
An image acquired by a digital camera can be represented as a
function ρ mainly dependent on three physical factors: the il-
luminant spectral power distribution I�λ�, the surface spectral
reflectance S�λ� and the sensor spectral sensitivities C�λ�.
Using this notation, the sensor responses at the pixel with co-
ordinates �x; y� can be thus described as

ρ�x; y� �
Z
ω
I�λ�S�x; y; λ�C�λ�dλ; (1)

where ω is the wavelength range of the visible light spectrum,
ρ and C�λ� are three-component vectors. Since the three
sensor spectral sensitivities are usually, respectively, more
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sensitive to the low, medium, and high wavelengths, the three-
component vector of sensor responses ρ � �ρ1; ρ2; ρ3� is also
referred to as the sensor or camera raw RGB � �R;G; B�
triplet. Usually the image sensor is composed of three differ-
ent photo-receptors acquiring red, green and blue color com-
ponents, displaced following the Bayer pattern [6]. In the
following, we adopt the convention that RGB triplets are
represented by column vectors.

The first stage of the color correction pipeline aims to es-
timate and compensate for the color of the illuminant in the
scene, rendering the acquired objects as if they were lit by an
ideal illuminant. The dedicated module is usually referred to
as automatic white balance (AWB), which should be able to
determine from the image content the color temperature of
the ambient light and compensate for its effects. Numerous
methods exist in the literature, and Hordley [2] gives an ex-
cellent review of them. Once the color of the ambient light
has been estimated, the compensation for its effects is gener-
ally based on an independent regulation of the three color
signals through three different gain coefficients [7]. This cor-
rection can be easily implemented on digital devices as a
diagonal matrix multiplication.

The second stage of the color correction pipeline is the de-
vice chromatic response characterization, which transforms
the image data into a standard RGB color space (e.g., sRGB,
ITU-R BT.709). This transformation, usually called color ma-
trixing, is needed because the spectral sensitivity functions of
the sensor color channels rarely match those of the desired
output color space. Typically, this transformation is a 3-by-3
matrix with nine variables to be optimally determined, and
both algebraic [3] and optimization-based methods [4] exist
to find it.

The typical color correction pipeline can be thus described
as follows:

2
4R
G
B

3
5

out

�
0
@α

2
4a11 a12 a13
a21 a22 a23
a31 a32 a33

3
5
2
4rawb 0 0

0 gawb 0
0 0 bawb

3
5
2
4R
G
B

3
5

in

1
A;

(2)

where RGBin are the camera raw RGB values, α is an ex-
posure compensation common gain, the diagonal matrix
diag�rawb; gawb; bawb� is the channel-independent gain compen-
sation of the illuminant, the full 3-by-3 matrix a�i;j�, �i; j� �
f1; 2; 3g2 is the color space conversion transform from the de-
vice-dependent RGB to the sRGB color space, γ is the gamma
correction defined for the sRGB color space (where, for abuse
of notation, it is intended to be applied componentwise), and
RGBout are the output sRGB values.

Usually the color matrix transform is optimized for a single
illuminant and is applied as it is for all the illuminants that can
occur. This could lead to high colorimetric accuracy if the oc-
curring illuminant is the one for which the matrix has been
derived (assuming that it is correctly compensated by the
AWB module), and low colorimetric accuracy for different il-
luminants. The first part of the proposed strategy shows how
to compute a combined matrix for different classes of com-
monly occurring illuminants. If only a priori probability dis-
tribution about the illuminant occurrences is known, the best
color matrix can be found offline and applied as it is for all the

shots; if the AWB is able to give a probability distribution
about the illuminant in the scene (as color-by-correlation
[8] does), an adaptive optimal matrix transform could be
found for each shot.

Starting from the observation that the illuminant estimation
is not error free and, being an ill-posed problem [9], a perfect
algorithm does not exist, the second part of the proposed
strategy shows how to derive color correction matrices that,
in addition to color space conversion, incorporate information
about the illuminant estimation process in order to compen-
sate for its possible errors.

3. ILLUMINANT VARYING COLOR
CORRECTION MATRIX
In the following, a more compact version of Eq. (2) is
used:

RGBout � �αAD · RGBin�γ ; (3)

where α, D, and A, respectively, represent the exposure com-
pensation gain, the diagonal matrix for the illuminant compen-
sation, and the color matrix transformation.

Given a set of n different patches whose sRGB values r
are known, and the corresponding camera raw values c mea-
sured by the sensor when the patches are lit by the chosen
illuminant, what is usually done is to find the matrix M that
satisfies

M � arg
�

min
A∈R3×3

Xn
k�1

E�rk; �αADck�γ�
�
; (4)

where E is the chosen error metric, and the subscript k indi-
cates the triplet in the kth column of the matrix. In this work,
the error metric E consists of the computation of the average
ΔE94 colorimetric error between the reference and calculated
sRGB values mapped in the CIELAB color space. Details
about the sRGB to CIELAB conversion andΔE94 colorimetric
error computation are given in Appendix A. The values of α
and D are previously computed in order to perfectly expose
the scene and compensate for the illuminant. Given the impor-
tance of neutral tones in the color reproduction, usually the
9 degrees of freedom of the color matrix transformation are
reduced to 6 by a white point preserving constraint, i.e., a neu-
tral color in the device-dependent color space should be
mapped to a neutral color in the device independent color
space. This can be easily obtained by constraining each
row to sum to 1.

In order to be able to optimize the color matrix transforma-
tion under multiple illuminants we have to extend Eq. (4). Let
us suppose to considerm different illuminants, and to have an
a priori probability distribution w � fw1;…; wmg about them.
Equation (4) can then be easily extended as

M � arg
�

min
A∈R3×3

Xm
j�1

wj

�Xn
k�1

E�rk; �αjADjck�γ�
��

subject to
X3
j�1

A�i;j� � 1; ∀i ∈ f1; 2; 3g. (5)
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Obviously, the probability distribution w can also represent
the relative importance that we want to give to the errors un-
der each considered illuminant. As for the single illuminant
case, the color matrix can be calculated offline and then ap-
plied as it is to each different shot.

If we use an AWB algorithm that is able to give information
about the probability of the illuminant in the scene, we can use
this information to give the best color matrix transform for
that illuminant probability distribution. In this case, an adap-
tive color matrix is applied for each shot, thus leading to more
computational requirements. Different strategies can be
adopted, ranging from higher to lower computational and
memory requirements:

• for each shot, a new optimization could be carried out
by using into Eq. (5) the illuminant probability distribution as
it comes out from the AWB process;

• all the possible illuminant probability distributions
that the AWB could produce in real situations could be quan-
tized and, for each of them, a different optimization could
be carried out; the transforms obtained could be stored into
a lookup table (LUT). Then for each shot the best color matrix
transform could be found by interpolation of the LUT
distributions;

• a different optimization could be carried out for each
illuminant by using Eq. (4) and storing the color matrix trans-
forms obtained. Hence, the best color matrix transform for
each shot could be obtained through a linear combination
of the stored transforms by using the illuminant probability
distribution provided by the AWB estimation as weighting
vector.

4. COLOR CORRECTION MATRIX ROBUST
TO ILLUMINANT ESTIMATION ERRORS
In order to give a faithful representation of the scene in the
sRGB color space, all the existing color matrix transforma-
tions rely on the assumption that the illuminant has been cor-
rectly estimated and compensated by the AWB. As mentioned
above, the illuminant estimation is an ill-posed problem and
the AWB estimation module often fails. The authors also de-
monstrated that the best AWB algorithm of all does not exist
and, for each different algorithm, there are images on which it
produces poor results [10]. Moreover, when the AWB fails, the
errors in the illuminant estimation and compensation could be
even amplified by the color matrix transformation. Inspired
by this consideration, we have developed a strategy to com-
pute color matrix transformations assuming an illuminant
white point estimation error, i.e., color matrix transforma-
tions more robust to illuminant estimation and compensation
errors.

Let us consider the case of a single illuminant optimization.
The generalization to the multiple illuminant case is straight-
forward. Suppose that the best gain coefficients g0 �
�r0; g0; b0� have already been determined and reshaped in
the diagonal transform G0 to compensate the considered illu-
minant. The gain coefficients g0 can be easily determined tak-
ing the inverse of the camera raw values measured by the
sensor when a gray patch is acquired under the considered
illuminant. To simulate the errors that may occur in the
AWB, we can generate a set g � fg1;…; gsg of s gain coeffi-
cients with different distances from g0; in practice, this is done

by sampling the illuminant estimation error space. Different
sampling strategies could be used to generate the set g; the
one adopted in this work is described in Subsection 6.C.
Knowledge about the error distribution in the illuminant esti-
mation can be modeled with a weight distribution u �
fu0;…; usg over the set g. The weight distribution u can be
then modified to incorporate the error acceptability in the il-
luminant estimation for different hue and chroma values. In
fact, it has been shown that humans are not equally sensitive
to illuminant estimation errors for all the hue and chroma
values [11]. The knowledge modeled with the weight distribu-
tion u can be then exploited during the optimization of the
color correction matrix. The optimization problem can be thus
formulated as

M � arg
�

min
A∈R3×3

Xs
j�0

uj

�Xn
k�1

E�rk; �αjAGjck�γ�
��

subject to
X3
j�1

A�i;j� � 1; ∀i ∈ f1; 2; 3g; (6)

where Gj , j � f0;…; sg are the diagonal matrices obtained,
respectively, by reshaping the gain coefficients fg0;…; gsg.
Although very similar to Eq. (5), the idea behind Eq. (6) is
quite different.

5. EXPERIMENTAL SETUP
All the experiments were performed by using the ISET Digital
Camera Simulator [12] developed at Stanford University. This
system makes it possible to simulate the entire image proces-
sing pipeline of a digital camera, combining both optical mod-
eling and sensor technology simulation. Moreover, the ISET
is able to emulate different kinds of noise sources involved
in the image acquisition process. As reference camera inside
the ISET, we used the widely diffused Nikon DSLR D70,
whose sensor spectral sensitivities are known.

6. RESULTS AND DISCUSSION
A. Fixed Color Correction Matrix Optimized for a
Single Illuminant, under Ideal Illuminant Estimation
Conditions
For the single illuminant case, two different benchmarking al-
gorithms in the state of the art have been used for comparison:
the White Point Preserving Least Squares (WPPLS) [3] and an
optimization-based algorithm [White Point Preserving Pattern
Search (WPPPS)] proposed by the authors [4]. The WPPLS
finds the linear transform M in Eq. (4) such that the residual
squared error is minimized (i.e., E is the L2-norm) under a neu-
tral axis preserving constraint. Given the formulation in the
least squares sense, the WPPLS is able to find a closed form
solution. The second method, the WPPPS, finds the linear
transform in Eq. (4), permitting more general formulations
for the error metric E. In this paper, we use the average
L1-norm, together with its minimum, maximum, and standard
deviation under a neutral axis preserving constraint [4]. Given
the nature of the error metric considered, a closed form solu-
tion does not exist and a direct search method for nonlinear
optimization is adopted [4].
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The results obtained by the WPPLS and WPPPS are com-
pared with the single illuminant strategy (SILL) described
in Eq. (4), where the error metric E is theΔE94 under a neutral
axis preserving constraint. For this comparison, 14 different
training illuminants have been considered: six CIE daylight
illuminants (D48, D55, D65, D75, D100, D200), three CIE stan-
dard illuminants (A, B, C), a 2000 K Planckian blackbody
radiator, a uniform white (UW), and three fluorescent illumi-
nants (F2, F7, F11). These are the same used by Finlayson [13]
with the addition of the three fluorescent illuminants. The
training scenes consisted of the Macbeth ColorChecker
(MCC) chart illuminated by each of the training illuminants.
The data used for the computation of the color correction
matrices were derived directly from the ISET sensor raw data
by extracting, for each different patch of the MCC, the mean
value of the central area.

In Table 1, the average ΔE94 colorimetric error obtained
by the considered approaches on the training scenes are
reported. Fourteen different color matrix transformations
were derived (one for each illuminant) and the results under
the optimized illuminant are reported. For more details about
error statistics see Table 8 in Appendix B.

In Fig. 1, a radar plot is reported to graphically compare the
performance obtained by the single illuminant SILL approach
under all the 14 training illuminants considered. For better
reading, only four different transformations are compared:
they are the ones derived for the D65, A, 2000 K, and F11
illuminants; the complete results are reported in Table 9 of
Appendix B. It can be noticed that, for each illuminant, the
lowest ΔE94 error is reached by the transformation optimized
for that specific illuminant. In particular, the overall best
results are obtained for illuminants with a correlated color
temperature (CCT) in the range 4800–6500 K, which could
suggest a color filter design aimed to optimize the camera
color response under average daylight illuminant. These re-
sults suggest that relying on a single transformation optimized
for a single illuminant is not the best strategy for the color
correction module.

B. Fixed Color Correction Matrix Optimized for
Multiple Illuminants, under Ideal Illuminant Estimation
Conditions
An alternative approach could be based on the computation
of a color matrix transformation optimized simultaneously
for multiple illuminants, taking eventually into account an a

priori probability distribution of the training illuminants.
For greater generality, a uniform a priori distribution for
the illuminant probability in Eq. (5) is adopted here, i.e.,
w � fwD48; wD55;…; wF7; wF11g � f1∕14;…; 1∕14g. The results
obtained on the training scenes are reported in Table 2, where
the most expensive and the cheapest strategy exposed in Sec-
tion 3 are compared. The first one (HILL) is the result of the
minimization using Eq. (5) with the uniform a priori distribu-
tion, the second one (HILLA) is a linear approximation of it: it
is the result of the linear combination of the results obtained
on the 14 different illuminants considered. It is possible to no-
tice that the two strategies convey almost identical results,

Table 1. Average ΔE94 Colorimetric Error

Obtained by the Color Correction Matrices

Optimized for the Different Illuminants,

Evaluated on the Same Illuminant for Which the

Optimization Is Carried Out

Method

Illuminant WPPLS WPPPS SILL

D48 1.5814 0.8585 0.8213
D55 1.8060 0.7420 0.7175
D65 1.2924 0.7847 0.6454
D75 1.4321 0.7743 0.6333
D100 2.2523 0.7710 0.6871
D200 2.3075 0.9529 0.8745
A 2.9431 1.8278 1.7083
B 2.2336 0.8640 0.8337
C 1.5291 0.6704 0.6289
2000 K 4.7032 3.1238 2.9595
UW 1.3010 1.7990 0.7028
F2 2.2654 1.4226 1.3488
F7 1.4263 3.3418 0.5683
F11 2.6258 1.4277 1.308

Fig. 1. (Color online) Radar plot of the mean ΔE94 errors obtained
under the different illuminants considered by four different SILL
approaches optimized for four different illuminants; D65, A, 2000 K,
and F11.

Table 2. Average ΔE94 Colorimetric Error

Obtained by the Color Correction Matrices

Optimized Simultaneously for the Different

Illuminants, Evaluated on All the Considered

Illuminants

Illuminant SILLD55 SILLUW HILL HILLA

D48 0.9093 0.9462 0.9325 0.9326
D55 0.7175 0.7574 0.7495 0.7495
D65 0.7952 0.7910 0.7972 0.7971
D75 0.9852 0.9793 0.9886 0.9870
D100 1.4092 1.4049 1.4220 1.4237
D200 2.1496 2.1320 2.1704 2.1699
A 3.1261 3.1356 3.1444 3.1445
B 0.9454 0.9419 0.9507 0.9510
C 0.9482 0.9010 0.9433 0.9442
2000 K 6.1841 6.1806 6.1903 6.1908
UW 0.7674 0.7028 0.7237 0.7239
F2 3.6511 3.6831 3.5429 3.5415
F7 0.9251 0.9644 0.8432 0.8442
F11 3.1802 3.1513 3.0754 3.0770

avg 1.9067 1.9051 1.8910 1.8912
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making it possible to use the cheapest strategy without affect-
ing the color accuracy. A further analysis shows how both the
HILL and HILLA strategies, at least on the simulation carried
out in these experiments, lead to almost identical results to
those obtained by the best SILL approaches (i.e., SILLD55
and SILLUW).

The analysis of Fig. 1 and Table 2 shows that there is not
enough room for improvement for the HILL and HILLA stra-
tegies. In fact, it is possible to notice that, for example, the
SILLD65 color transform conveys small colorimetric errors
for illuminant with a CCT close to the one for which the trans-
formation has been optimized (i.e., 6500 K) and high errors for
very distant CCTs. On the other hand, the transformations op-
timized for very low CCTs (for example, the SILL2000 K with a
CCT of 2000 K) convey high colorimetric errors for a large
number of illuminants. This means that, if we want to lower
the colorimetric errors for very low CCTs, we have to de-
crease the color accuracy for less extreme CCTs. This, at least
on the simulation carried out in these experiments with the
illuminant probability adopted, does not lead to a significant
improvement.

C. Illuminant Varying Color Correction Matrices under
Ideal Illuminant Estimation Conditions
The behavior of the different color transformation matrices
under the different illuminants suggests that a greater im-
provement in color accuracy for all the illuminants could
be reached, if we were able to identify the actual illuminant
and choose the best color correction matrix for it. In order to
test this hypothesis, 1000 different test scenes have been gen-
erated. Each of them was composed of a random power of 2
different patches (2k; k ∈ N; k ≤ 11) extracted from the Inter-
national Organization for Standardization (ISO) reflectance
database [14] and illuminated by a random illuminant ex-
tracted from the illuminant test dataset [15]. Three different
approaches are tested: the first one is the multiple illuminant
ideal case (MILL), i.e., for each of the test illuminants, the best
color correction matrix is computed and applied. This is an
ideal case, since we assume that we have a color correction
matrix optimized for each testing illuminant, and is used to
compute the lower bound of the colorimetric error achievable
with strategies based on illuminant varying color correction
matrices. In the second one (MILLA), the illuminant CCT is
first computed and the color correction matrix optimized
for the training illuminant with the closest CCT is applied.
In the last case (MILLA2), the illuminant CCT is first com-
puted, the two training illuminants ILLi and ILLj with the clo-
sest CCTs are identified, and the color correction matrix is
calculated as follows:

M � αSILLi � �1 − α�SILLj ; (7)

where

α � d�CCT;CCTj�
d�CCT;CCTi� � d�CCT;CCTj�

.

The mean colorimetric error obtained on the test images by
the proposed strategies are reported in Table 3. The percen-
tage accuracy improvement with respect to the SILLD65 is also

reported. This is chosen as a benchmarking strategy since
a fixed, single color correction matrix optimized for the
D65 illuminant is what is usually used for the colorimetric
characterization of imaging devices that use sRGB as the
output color space.

D. Color Correction Matrices under Nonideal Illuminant
Estimation Conditions
All the experiments made in the previous subsections rely on
the assumption that the scene illuminant has been correctly
estimated and compensated for. This hypothesis does not of-
ten hold. It is known, in fact, that the different white-balance
algorithms make errors in the illuminant estimation. Let us ex-
amine how the color correction matrix propagates the illumi-
nant estimation error. Let us consider, for example, what
happens under the D65 illuminant. To this end, starting from
the optimal D65 compensation gains, a set of gains with vary-
ing illuminant estimation accuracy levels is generated. The
error measure chosen to generate them is the perceptual Eu-
clidean distance (PED) recently proposed by Gijsenij et al.
[11], but a different choice could be made. The PED consists
in a weighted Euclidean distance between the normalized
RGB measurements of two illuminants; this measure has been
used here since it has been shown to have good correlation
with human observers [11]. The gains are generated at 10 dif-
ferent PED magnitudes in 64 different directions in the YCbCr
color space, i.e., fixed in a direction in the CbCr plane; the gain
along that direction with the desired PED error is found. In
Fig. 2(a), a cylindrical plot is reported where, to each combi-
nation �ρ; θ� representing the magnitude and direction of the
PED error, an altitude information is associated, representing
the average ΔE94 error produced on the MCC acquired under
the D65 illuminant, corrected with the distorted illuminant
gains. In Fig. 2(b), the same plot is represented after the color
correction with the SILLD65 matrix. It is possible to notice that

Table 3. Average ΔE94 Colorimetric Error and

Percentage Colorimetric Accuracy Improvement with

Respect to the Most Performing Strategy, Obtained

by All the Proposed Strategies

Method Opt. Illuminant Mean ΔE94 Improvement

SILL D48 3.0386 7.31%
SILL D55 3.1250 4.67%
SILL D65 3.2782 �
SILL D75 3.4274 −4.55%
SILL D100 3.7436 −14.20%
SILL D200 4.3225 −31.86%
SILL A 3.3380 −1.82%
SILL B 3.0628 6.57%
SILL C 3.3945 −3.55%
SILL 2000 K 7.9029 −141.07%
SILL UW 3.1422 4.15%
SILL F2 3.1371 4.30%
SILL F7 3.0307 7.55%
SILL F11 2.9857 8.92%
SILL avg � 3.6378 −9.89%

HILL w � f1∕14;…; 1∕14g 2.9524 9.94%
HILLA w � f1∕14;…; 1∕14g 2.9578 9.77%

MILL � 2.2002 32.88%
MILLA � 2.7711 15.47%
MILLA2 � 2.6318 19.72%
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the SILL color correction matrix greatly reduces the ΔE94

when the illuminant has been estimated and corrected with
a high accuracy (central part of the plots). The errors become
larger as the illuminant estimation precision lowers. The aver-
age slopes of the surfaces plotted, 0.6589 for the left one and
1.7306 for the right one, reflect the higher dependency on the
illuminant estimation precision of the color correction matrix
SILLD65. The average slope can also be seen as a measure of
the error amplification due to the color correction matrix
used: the higher the average slope value, the higher is the er-
ror amplification of the illuminant estimation error caused by
the color correction matrix used.

The next experiment aims to find color correction matrices
less dependent on the precision of the illuminant estimation.
This means that, in addition to color space conversion, the
color correction matrices will be able to compensate for
AWB errors, featuring what we call the white-balance error
buffer (WEB). To obtain such matrices, for each of the train-
ing illuminants, 1000 different scenes composed of a random
power of 2 different patches (2k; k ∈ N; k ≤ 11) extracted from
the ISO reflectance database are created. In order to estimate
such color correction matrices, we have to know or at least
suppose, the trends of the AWB illuminant estimation errors
[i.e., the weight distribution u in Eq. (6)]. Instead of using a
general uniform probability, we have preferred to use the er-
ror probability distributions of three illuminant estimation al-
gorithms. We have selected the gray world (GW), the white
point (WP), and the gamut mapping (GM) algorithms, but a
different choice could be made. The GW assumes that the
average reflectance in a scene is achromatic, and thus esti-
mates the illuminant color as the average of the colors in
the scene [16]. The WP, also known as maximum RGB, as-
sumes that the maximum reflectance in a scene is achromatic
and thus estimates the illuminant color as the maximum of the
colors in the scene for each channel independently [17]. The
GM assumes that, for a given illuminant, one observes only a
limited number of colors [18]. It has a training phase in which
a canonical illuminant is chosen and the canonical gamut is
computed, observing as many surfaces under the canonical
illuminant as possible. Given an input image with an unknown
illuminant, its gamut is computed and the illuminant is esti-
mated as the mapping that can be applied to the gamut of
the input image, resulting in a gamut that lies completely with-
in the canonical gamut and produces the most colorful scene.

Each of the new color correction matrices found, optimized
for a SILL-WEB, is compared with the previous one (SILL) op-

timized for the same illuminant on 1000 randomly generated
test scenes. Each of them was composed of a random power
of 2 different patches (2k; k ∈ N; k ≤ 11) extracted from the
ISO reflectance database and illuminated by the same training
illuminant for which the matrices have been optimized. The
results of the comparisons are reported in Table 4. It is pos-
sible to notice that both the averageΔE94 errors and the aver-
age slope of the SILL-WEB matrices are lower than the those
obtained by the SILL ones. In particular, the lower slope
values reflect the minor dependence on the illuminant estima-
tion precision, as well as the lower amplification of the
eventual illuminant estimation error. The lower ΔE94 errors
reflect, instead, the fact that the new color correction matrices
have learned and are able to compensate to some extent the
way the illuminant estimation algorithms fails.

In Table 3, we found that an improvement in color accuracy
for all the illuminants could be reached if we were able to
identify the actual illuminant and choose the best color cor-
rection matrix for it (i.e., the strategies named MILL, MILLA,
and MILLA2). We want to compare here the MILL, MILLA, and
MILLA2 strategies based on the SILL color correction ma-
trices, against the MILL-WEB, MILLA-WEB, and MILLA2-
WEB counterparts based on the SILL-WEB color correction
matrices. To this end, 1000 different test scenes have been
generated. Each of them was composed of a random power

Fig. 2. (Color online)ΔE94 error distribution as the error in the illuminant estimation and compensation changes under the D65 illuminant: (a) no
color correction and (b) SILLD65 color correction.

Table 4. Average ΔE94 Colorimetric Error and

Average Slope of the SILL and SILL-WEB Color

Correction Matrices

SILL SILL-WEB

Opt. Illuminant Mean ΔE94 Mean Slope Mean ΔE94 Mean Slope

D48 3.5666 1.5056 3.3481 1.3469
D55 3.5170 1.6056 3.3043 1.4844
D65 3.4892 1.7306 3.2642 1.5893
D75 3.4653 1.8283 3.2220 1.7118
D100 3.4615 1.9940 3.2277 1.8201
D200 3.5125 2.2206 3.2706 2.0165
A 4.3060 1.4236 4.0250 1.3379
B 3.6232 1.4563 3.4134 1.2810
C 3.4786 1.7486 3.2524 1.6258
2000 K 5.4033 2.3989 5.2324 2.1032
UW 3.5039 1.5232 3.2892 1.3853
F2 3.8222 1.3453 3.6657 1.2536
F7 3.4308 1.6958 3.2157 1.6033
F11 3.9514 1.1698 3.7766 1.0743
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of 2 different patches (2k; k ∈ N; k ≤ 11) extracted from the
ISO reflectance database and illuminated by a random illumi-
nant extracted from the illuminant test dataset. Three new dif-
ferent approaches are tested: the first one is the ideal case
(MILL-WEB), i.e., for each scene of the test set, the illuminant
is estimated and compensated for by using one of the illumi-
nant estimation algorithms considered (i.e., GW, WP, or GM),
and then the best color correction matrix is computed and ap-
plied. In the second one (MILLA-WEB), the illuminant is first
estimated and compensated for by using one of the illuminant
estimation algorithms considered, and then the color correc-
tion matrix optimized for the training illuminant with the clo-
sest gains (estimated with the selected illuminant estimation
algorithm) is applied. In the last case (MILLA2-WEB), the illu-
minant compensation gains are first computed with one of the
illuminant estimation algorithms considered, then the two
training illuminants ILLi and ILLj with the closest gains are
identified and the color correction matrix is calculated as
follows:

M � αSILL−WEBi � �1 − α�SILL−WEBj ; (8)

where

α � PED�gains; gainsj�
PED�gains; gainsi� � PED�gains; gainsj�

. (9)

In Table 5, a brief description of the main features of the
color correction strategies compared is reported: the strate-
gies are grouped into classes on the basis of the type and num-
ber of color correction matrices that they use. All the
strategies compared use the same type of matrices for the il-
luminant compensation, i.e., diagonal matrices. All the color

correction matrices used are optimized under a neutral axis
preserving constraint.

The acronyms of the proposed strategies are generated
using the scheme reported in Fig. 3.

The first part indicates the number and type of the color
correction matrix used (SILL � Single ILLuminant, a single
matrix optimized for a fixed single illuminant; HILL �
Hybrid ILLuminant, a single matrix optimized for multiple il-
luminants simultaneously; MILL � Multiple ILLuminant, mul-
tiple matrices each optimized for a different single illuminant).
The second part indicates if and what kind of approximation
has been used (∅ � not approximated, A � Approximated,
and A2 � Approximated with two nearest neighbors).
The third part indicates if the strategy implements color
correction matrices able to compensate for AWB errors
(WEB � White-balance Error Buffer) or not (∅). The symbol
∅ is reported in the scheme but is intended as the null char-
acter and thus omitted in the acronyms generated.

The mean colorimetric errors obtained on the test images
by all the proposed strategies are reported in Table 6. From
the analysis of Table 6, it is possible to notice that the lowest
colorimetric errors are achieved using the approaches based
on the use of color correction matrices optimized incorporat-
ing knowledge about the AWB module behavior (i.e., ap-
proaches with the suffix WEB, described in Section 4). To
understand if the differences among the different color cor-
rection strategies considered are statistically significant,
and what their ranking is, we have used the Wilcoxon
signed-rank test [19]. This statistical test permits us to com-
pare the whole error distributions without limiting to punctual
statistics. Furthermore, it is well suited because it does not
make any assumptions about the underlying error distribu-
tions, and it is easy to find by using, for example, the Lilliefors
test [20], that the assumption about the normality of the error
distributions does not always hold. Let X and Y be random
variables representing the ΔE94 colorimetric errors obtained
on all the patches of the 1000 test scenes by the color correc-
tion strategiesMX andMY ; let μX and μY be the median values
of such random variables. The Wilcoxon signed-rank test can
be used to test the null hypothesis H0 : μX � μY against the
alternative hypothesis H1 : μX ≠ μY . We can test H0 against
H1 at a given significance level α. We reject H0 and accept
H1 if the probability of observing the error differences we ob-
tained is less than or equal to α. We have used the alternative

Fig. 3. Composition rules for the generation of the acronyms of the
proposed strategies.

Table 6. Average ΔE94 Colorimetric Error and Percentage Colorimetric Accuracy Improvement with Respect to

the State-of-the-Art Strategy (SILLD65), Obtained by All the Proposed Strategies

Illuminant Estimation Algorithm Used

Gray World (GW) White Point (WP) Gamut Mapping (GM)

Method Mean ΔE94 Improvement Mean ΔE94 Improvement Mean ΔE94 Improvement

SILLD65 5.2252 � 4.8796 � 3.4939 �
MILL 4.5907 12.14% 3.9803 18.43% 2.9947 16.67%
MILLA 4.9384 5.49% 4.3974 10.97% 3.2210 8.47%
MILLA2 4.7171 9.72% 4.1643 17.18% 3.1119 12.27%

SILL-WEBD65 4.7260 9.55% 4.4061 10.75% 3.1469 11.03%

MILL-WEB 3.8805 25.73% 3.1978 52.59% 2.5169 38.82%
MILLA-WEB 4.4420 14.99% 4.1272 18.23% 2.9066 20.21%
MILLA2-WEB 4.2214 19.21% 3.8707 26.07% 2.7857 25.42%
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hypothesis H1 : μX < μY with a significance level α � 0.05.
The outputs of the statistical test are reported in Table 7. A
“�” sign in the �i; j� position of the table means that the color
correction strategy i has been considered statistically better
than the color correction strategy j; a “−” sign means that it
has been considered statistically worse, and a “�” sign means
that they have been considered statistically equivalent. The
count of the number of times that a color correction strategy
has been considered statistically better than the others
gives us a score, which is reported in the last column of
the table.

From the results of the statistical test reported in Table 7, it
is possible to conclude that the strategies based on multiple
color correction matrices each optimized for a different illu-
minant produce significantly lower colorimetric errors with
respect to those based on a single color correction matrix
(i.e., strategies with MILL prefix are better than the ones with
SILL prefix). Being able to accurately estimate the scene illu-
minant and deriving an optimal color correction matrix for it
produces significantly lower colorimetric errors than using a
fixed number of precomputed color correction matrices (i.e.,
MILL is better than MILLA and MILLA2). The use of a single
color correction matrix optimized incorporating knowledge
about AWB module behavior permits us to obtain almost sta-
tistically equivalent colorimetric errors with respect to the
ones obtained with strategies using a fixed number of precom-
puted color correction matrices (i.e., SILL-WEBD65 is almost
equivalent to MILLA and MILLA2). Finally, the use of strate-
gies based on multiple color correction matrices each opti-
mized for a different illuminant incorporating knowledge
about AWB module behavior produce significantly lower col-
orimetric errors with respect to those based on a single color
correction matrix optimized by incorporating knowledge
about AWBmodule behavior (i.e., prefix MILL-WEB strategies
are better than prefix SILL-WEB ones).

7. CONCLUSIONS
In this paper we have investigated the interactions between
the illuminant estimation process and the color correction ma-
trix in the formation of the overall color accuracy, especially
when the white point estimation is imperfect. We have shown
how the color correction transform amplifies the illuminant
estimation errors. Furthermore, we have shown that it is pos-
sible to incorporate knowledge about the illuminant estima-
tion behavior in the optimization of the color correction
matrix in order to alleviate the error amplification. We have
demonstrated that an a priori fixed color correction matrix is
not able to produce a good color accuracy when the scene
illuminant is different from the illuminant adopted for the col-
or correction matrix calculation. We have designed different
strategies that are able to improve color accuracy under both
perfect and nonperfect illuminant estimation. The experimen-
tal results obtained using the ISET digital camera simulator
showed that, with respect to a fixed color correction matrix
optimized for the D65 illuminant, the proposed strategies
make it possible to obtain significant color accuracy improve-
ments. In particular, the best adaptive color transform (i.e.,
MILLA2-WEB) decreased the colorimetric error by 19.72%
for the perfect illuminant estimation case (i.e., ideal illuminant
estimation). For the nonperfect illuminant estimation case,
three different illuminant estimation algorithms have been
used: GW, WP, and GM; the best adaptive color transform de-
creased the colorimetric error by 19.21%, 26.07%, and 25.42%,
respectively.

The experimental results also show that, while failures in
illuminant estimation have the largest impact on the quality
of color reproduction, there are other sources of error that
prevent the color reproduction from being perfect. A first
source of error is the fact that the sensor RGB spectral sen-
sitivities are not the same as cone spectral sensitivities, nor
can they be exactly mapped into each other with a linear
transform (i.e., the Luther condition [21] does not hold).

Table 7. (Color online) Outputs of the

Statistical Test for the Color Correction

Strategies Considereda

aThe sign in the �i; j� position of the table means that the strategy i is statis-
tically better than the sampling j (“�” sign), statistically worse (“−” sign), or
equivalent (“�” sign). The score is the number of times that a sampling strategy
has been considered statistically better than the others. A different table is re-
ported for each of the illuminant estimation algorithms considered: (a) GM,
(b) WP, and (c) GM.
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A second source of error is the presence of different kinds of
noise that affect sensor measurements. A further source of
error is due to the fact that the illuminant correction method
adopted is not able to produce a perfect correction for any
color, even when the scene illuminant is precisely known.
The method used is limited to an adjustment in sensor gain
only (i.e., diagonal transforms); as suggested by a reviewer,
the use of illuminant-dependent full 3 × 3 corrections should
be investigated.

APPENDIX A: CONVERSION FROM sRGB
TO CIELAB AND ΔE94 COLORIMETRIC
DIFFERENCE
The conversion from sRGB to CIELAB is done in two steps:
from sRGB to CIEXYZ [22], and then from CIEXYZ to CIELAB
[23]. The sRGB values are first linearized. We assume that the
sRGB values are normalized in the �0; 1� range. The lineariza-
tion transform is the same for each channel C � fR;G; Bg:

C �
�
C∕12.92; if C ≤ 0.04045
��C � 0.055�∕1.055�2.4; if C > 0.04045

.

The linearized RGB values can be then converted in XYZ
through a matrix multiplication:

2
4X
Y
Z

3
5 �

2
4 0.4124564 0.3575761 0.1804375
0.2126729 0.7151522 0.0721750
0.0193339 0.1191920 0.9503041

3
5
2
4R
G
B

3
5.

The conversion from CIEXYZ to CIELAB requires a reference
white �Xr Yr Zr �. We have chosen the CIE D65 reference
white, with coordinates [0.95047 1.0000 1.08883]. First, the
CIEXYZ coordinates are scaled by the reference white:
�X Y Z � � �X∕Xr Y∕Yr Z∕Zr �. For each color channel
C � fX; Y; Zg:

f C �
�
C1∕3; if C > ϵ
�κC � 16�∕116; if C ≤ ϵ ;

with ϵ � 0.008856 and κ � 903.3. The CIELAB coordinates are
then obtained as

2
4L
a
b

3
5 �

2
4 116f Y − 16
500�f X − f Y �
200�f Y − f Z�

3
5.

The colorimetric differenceΔE94 [24] between a sample color
with CIELAB coordinates �L2 a2 b2 � and a reference color
with coordinates �L1 a1 b1 � is defined as

ΔE94 �
������������������������������������������������������������������������������� ΔL
KLSL

�
2
�

� ΔC
KCSC

�
2
�

� ΔH
KHSH

�
2

s
;

where Δ�·� � �·�1 − �·�2, ΔH �
����������������������������������������
Δa2 �Δb2 −ΔC2

p
,

C �
����������������
a2 � b2

p
, SL � 1, SC � 1� K1C1, SH � 1� K2C1,

�KL KC KH � � � 1 1 1 �, and �K1K2� � �0.0450.015�,
which are the values suggested for graphic arts.

APPENDIX B: ADDITIONAL TABLES
In Table 8, the minimum, mean, maximum, and standard de-
viation of the ΔE94 colorimetric error obtained by the consid-
ered approaches on the training scenes are reported. The
colorimetric errors are valued on scenes generated with the
same illuminant for which the specific color correction matrix
was optimized.

In Table 9, we report the average ΔE94 colorimetric errors
obtained by the color correction matrices individually opti-
mized for the different illuminants and then evaluated on

Table 8. Statistics for the ΔE94 Colorimetric Error

Obtained by the Color Correction Matrices Optimized

for the Different Illuminants, Evaluated on the Same

Illuminant for Which the Optimization Is Carried Out

Illuminant Method Min Mean Median Max Std

D48 WPPLS 0.4179 1.5814 1.3563 3.9946 1.0080
WPPPS 0.0230 0.8585 0.6299 4.3109 0.9612
SILL 0.0114 0.8213 0.5623 4.4062 0.9577

D55 WPPLS 0.4399 1.8060 1.5026 4.9417 1.1727
WPPPS 0.0692 0.7420 0.5533 3.6860 0.8024
SILL 0.0257 0.7175 0.5212 3.6407 0.7831

D65 WPPLS 0.4056 1.2924 0.9478 4.0091 0.9552
WPPPS 0.0171 0.7847 0.6603 3.2856 0.7468
SILL 0.0533 0.6454 0.4674 3.0602 0.6596

D75 WPPLS 0.4080 1.4321 1.2494 3.9956 0.8514
WPPPS 0.0641 0.7743 0.5132 2.8967 0.7017
SILL 0.0760 0.6333 0.4985 2.8013 0.6131

D100 WPPLS 0.7918 2.2523 1.8076 5.1838 1.2901
WPPPS 0.0093 0.7710 0.5056 2.9846 0.7647
SILL 0.0780 0.6871 0.6009 2.8135 0.6404

D200 WPPLS 0.8414 2.3075 2.4154 3.3730 0.6708
WPPPS 0.0217 0.9529 0.6037 3.8108 0.9297
SILL 0.0390 0.8745 0.6948 3.5975 0.8381

A WPPLS 0.7814 2.9431 1.9984 9.7471 2.1096
WPPPS 0.0129 1.8278 1.1124 9.1925 2.1240
SILL 0.0491 1.7083 0.8344 8.9678 2.1411

B WPPLS 0.2074 2.2336 1.8791 5.8973 1.7048
WPPPS 0.0317 0.8640 0.6627 4.1517 0.9303
SILL 0.0292 0.8337 0.6168 4.3472 0.9624

C WPPLS 0.4818 1.5291 1.3728 3.0041 0.6567
WPPPS 0.0396 0.6704 0.4380 3.0910 0.7027
SILL 0.0279 0.6289 0.4475 2.9747 0.6605

2000 K WPPLS 1.9435 4.7032 4.2830 8.0833 1.8531
WPPPS 0.5961 3.1238 1.6654 14.2835 3.2635
SILL 0.2112 2.9595 1.4862 15.3819 3.6402

UW WPPLS 0.1984 1.3010 1.2808 2.9917 0.7966
WPPPS 0.1286 1.7990 1.2915 6.1698 1.5562
SILL 0.0915 0.7028 0.5855 3.0210 0.6685

F2 WPPLS 0.5355 2.2654 1.7426 4.9969 1.2462
WPPPS 0.0037 1.4226 0.6329 4.8860 1.4983
SILL 0.0036 1.3488 0.8667 5.5046 1.4042

F7 WPPLS 0.6094 1.4263 1.4061 2.6802 0.5767
WPPPS 0.0970 3.3418 3.1368 10.8883 2.9092
SILL 0.0110 0.5683 0.4116 2.9742 0.6324

F11 WPPLS 0.7488 2.6258 2.3248 8.1779 1.8282
WPPPS 0.0129 1.4277 0.9201 5.2315 1.4583
SILL 0.0054 1.3085 0.8711 6.1566 1.4445
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all the training illuminants considered. The results are re-
ported only for the most performing SILL strategy.
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