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Abstract—In this work we design an adaptive color constancy algorithm that, exploiting the skin regions found in faces, is able to

estimate and correct the scene illumination. The algorithm automatically switches from global to spatially varying color correction on the

basis of the illuminant estimations on the different faces detected in the image. An extensive comparison with both global and local

color constancy algorithms is carried out to validate the effectiveness of the proposed algorithm in terms of both statistical and

perceptual significance on a large heterogeneous data set of RAW images containing faces.

Index Terms—Color constancy, face detection, global illuminant estimation, local illuminant estimation
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1 INTRODUCTION

COMPUTATIONAL color constancy aims to estimate the
actual color in an acquired scene disregarding its illu-

minant rendering the color of the objects in the scene invari-
able in spite of changes in the illumination conditions. This
can be done either by computing features that are invariant
to the color of the scene illumination [54], or by estimating
the scene illuminant from the recorded image and then by
transforming it such that the effect of the color of the light
source is removed [17]. This paper focuses on the illuminant
estimation approach to color constancy, which is also called
white balancing [36], [42]. Color constancy is useful for vari-
ous computer vision applications [54], such as image seg-
mentation, object recognition, scene classification, for digital
photography [55] and image forensics [40]. Since color con-
stancy is an ill-posed problem, as its solution lacks unique-
ness and stability [12], many different solutions exist in the
literature, each based on different assumptions [22]. It is
known that when these assumptions are not met the algo-
rithm’s estimate of the actual illuminant can be very poor. It
has been shown that the universal best and the universal
worst algorithms do not exist [4]: the algorithm that per-
forms best for a specific image depends on the image con-
tent. For this reason a recent research area which has shown
promising results aims to improve illuminant estimation by
using visual information automatically extracted from the
images. The existing algorithms exploit both low-level [3],
[15], intermediate-level [2] and high-level [30] visual infor-
mation. Moreover, most state-of-the-art color constancy
methods were designed assuming that in the scene a uni-
form illumination is present. In real-world images, this
assumption is often violated as more than one light source,
with different spectral distributions, are present.

Hansen et al. [20] showed that in the human visual
system, memory colors could be used as hints to give an

estimate of the illuminant in the scene. Moreno et al. [25]
obtained memory colors for three different objects (grass,
snow and sky) using psychophysical experiments. They
then used a supervised image segmentation method to
detect memory color objects and exploit them to color cor-
rect the image using a weighted Von Kries formula. In [18]
a color constancy approach is used to compensate for skin
color variations to achieve accurate skin color segmentation,
while the use of contextual information in the form of
detected faces to improve skin pixel detection for tracking
has been proposed by Soriano et al. [28]. Skin tones have
been also used to automatically tune the parameters of dif-
ferent enhancement algorithms to correspond to human
preferences regarding the appearance of people in an image
[26], [41]. However, they assume that the image has already
been white balanced and mapped in a standard color space.
Montojo presents a post hoc chromatic adaptation method
for semi-automatically removing color casts due to the
incorrect application of in-camera white balance settings
[37]. After choosing a reference image which exhibits the
desired skin tones of a particular person, correction is done
in a perceptually uniform opponent color space derived
from the Munsell color system. Its evaluation is limited,
since no performance measure is given and the method
requires face recognition to get per-person skin color mod-
els. In [38] variations in the chromaticity gamut of varying
types of pre-recognized human skin under varying illumi-
nation are characterized. Using a LED illuminator and a
spectroradiometrically calibrated hyperspectral camera,
they showed that human skin gamuts in cone-contrast space
are characterized by a set of features that can be used to dif-
ferentiate between similar illuminations, whose estimate
can then be used to color correct an image. They tested their
approach on hyperspectral images of hands taken from 8
different human subjects, under 39 distinct illuminations.

Preliminary findings reported in this paper appeared in
[5], where we showed that skin colors provide enough and
reliable information to estimate the scene illuminant. We
showed that since skin colors tend to form a cluster in color
spaces [13], [24], the diversity between the gamut of skin
pixels of the detected faces and the skin canonical gamut
can be affordably used to estimate the scene illuminant. The
method was compared with state-of-the-art algorithms on a
standard data set of RAW camera images having a known
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color target [14]. This paper extends the work in [5] in sev-
eral ways:

� Since one of the assumptions that is often violated in
color constancy is the presence of a uniform illumi-
nation in the scene, we have extended the applicabil-
ity of the proposed algorithm to the case of non-
uniform illumination. The method is adaptive, being
able to distinguish and process in different ways
images of scenes taken under a uniform and those
acquired under non-uniform illumination. To the
best of our knowledge, this is the first algorithm
which automatically modify its behavior from global
to local color correction according to the analysis of
the image content.

� We design a more efficient algorithm to estimate the
scene illuminant from extracted skin regions using
only their mean color value instead of the whole
gamut. This algorithm is more suitable for resource-
limited camera devices, such as consumer digital
cameras and camera phones.

� Preliminary results reported in [5] included only
95 images having faces. We present a much more
detailed experimental evaluation using a new por-
trait data set consisting of a total of 1,145 RAW
images containing faces and at least one known color
target for benchmarking. Statistical and perceptual
significance tests are carried out. The results
obtained confirm that the proposed methods are sta-
tistically and perceptually better than the other ones
in the state of the art.

2 PROBLEM FORMULATION AND RELATED WORKS

The image values for a Lambertian surface located at the
pixel with coordinates ðx; yÞ can be seen as a function
rrrðx; yÞ, mainly dependent on three physical factors: the illu-
minant spectral power distribution Iðx; y; �Þ, the surface
spectral reflectance Sðx; y; �Þ and the sensor spectral sensi-
tivitiesCð�Þ. Using this notation rrrðx; yÞ can be expressed as

rrrðx; yÞ ¼
Z
v

Iðx; y; �ÞSðx; y; �ÞCð�Þd�; (1)

where � is the wavelength, v is the wavelength range of the
visible light spectrum, rrr and Cð�Þ are three-component vec-
tors. Since the three sensor spectral sensitivities are usually
respectively more sensitive to the low, medium and high
wavelengths, the three-component vector of sensor
responses rrr ¼ ðrrr1; rrr2; rrr3Þ is also referred to as the sensor or
camera RGB ¼ ðR;G;BÞ triplet. The goal of color constancy
is to estimate the color Iðx; yÞ of the scene illuminant, i.e.,
the projection of Iðx; y; �Þ on the sensor spectral sensitivities
Cð�Þ:

Iðx; yÞ ¼
Z
v

Iðx; y; �ÞCð�Þd�: (2)

As it is more important to estimate the chromaticity of
the scene illuminant than its overall intensity [21], usu-
ally the illuminant color is estimated up to a scale factor.
Since the only information available are the sensor
responses rrr across the image, color constancy is an

under-determined problem [12]; and thus further
assumptions and/or knowledge are needed to solve it.

2.1 Color Constancy under Uniform Illumination

Several computational color constancy algorithms exist in
the literature, each based on different assumptions. The
most common assumption they make is that the color of the
light source is uniform across the scene, i.e., Iðx; yÞ ¼ I. Van
de Weijer et al. [29] have unified a variety of algorithms.
These algorithms estimate the illuminant color I by imple-
menting instantiations of the following equation:

Iðn; p; sÞ ¼ 1

k

Z Z
jrnrrrsðx; yÞjpdxdy

� �1
p

; (3)

where n is the order of the derivative, p is the Minkowski
norm, rrrsðx; yÞ ¼ rrrðx; yÞ �Gsðx; yÞ is the convolution of the
image with a Gaussian filter Gsðx; yÞ with scale parameter
s, and k is a constant to be chosen such that the illuminant
color I has unit length (using the 2�norm). The integration
is performed over all pixel coordinates. Different ðn; p; sÞ
combinations correspond to different illuminant estimation
algorithms, each based on a different assumption. For
example, the Gray World (GW) algorithm [7]—generated
setting ðn; p; sÞ ¼ ð0; 1; 0Þ—is based on the assumption that
the average color in the image is gray and that the illumi-
nant color can be estimated as the shift from gray of the
averages in the image color channels; the White Point (WP)
algorithm [8]—generated setting ðn; p; sÞ ¼ ð0;1; 0Þ—is
based on the assumption that there is always a white patch
in the scene and that the maximum values in each color
channel are caused by the reflection of the illuminant on the
white patch, and they can be thus used as the illuminant
estimation; the Gray Edge algorithm [29]—generated setting
for example ðn; p; sÞ ¼ ð1; 0; 0Þ—is based on the assumption
that the average color of the edges is gray and that the illu-
minant color can be estimated as the shift from gray of the
averages of the edges in the image color channels.

The Gamut Mapping assumes that for a given illuminant,
one observes only a limited gamut of colors [11]. It has a
training phase in which a canonical illuminant is chosen
and the canonical gamut is computed observing as many
surfaces under the canonical illuminant as possible. Given
an input image with an unknown illuminant, its gamut is
computed and the illuminant is estimated as the mapping
that can be applied to the gamut of the input image, result-
ing in a gamut that lies completely within the canonical
gamut and produces the most colorful scene. If the spectral
sensitivity functions of the camera are known, the color by
correlation approach could be also used [10].

Bayesian approaches [14] model the variability of reflec-
tance and of illuminant as random variables, and then esti-
mate illuminant from the posterior distribution conditioned
on image intensity data.

Given a set computational color constancy algorithms,
in [2] an image classifier is trained to classify the images
as indoor and outdoor, and different experimental frame-
works are proposed to exploit this information in order to
select the best performing algorithm on each class. In [3]
it has been shown how intrinsic, low level properties of
the images can be used to drive the selection of the best
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algorithm (or the best combination of algorithms) for a
given image. The algorithm selection and combination is
made by a decision forest composed of several trees on
the basis of the values of a set of heterogeneous features.

In [15] the Weibull parameterization has been used to
train a maximum likelihood classifier based on mixture of
Gaussians to select the best performing color constancy
method for a certain image.

In [9] a statistical model for the spatial distribution of col-
ors in white balanced images is developed, and then used to
infer illumination parameters as those being most likely
under their model. High level visual information has been
used to select the best illuminant out of a set of possible illu-
minants [30]. This is achieved by restating the problem in
terms of semantic interpretability of the image. Several color
constancymethods are applied to generate a set of illuminant
hypotheses. For each illuminant hypothesis, they correct the
image, evaluate the likelihood of the semantic content of the
corrected image, and select themost likely illuminant color.

2.2 Color Constancy under Non-Uniform
Illumination

The great majority of state-of-the-art color constancy
methods assume that a uniform illumination is present in
the scene. This assumption is often violated in real-world
images. It is not trivial to extend the existing color con-
stancy algorithms to work locally instead that globally,
since the spatial support on which they accumulate the
statistics is reduced, and the final local estimate could be
biased by local image properties. One of the first color con-
stancy methods developed is Retinex [35] which is able to
deal with non-uniform illumination assuming that an
abrupt change in chromaticity is caused by a change in
reflectance properties. This implies that the illuminant
smoothly varies across the image and does not change
between adjacent or nearby locations. Ebner [34] proposed
a method that assumes that the illuminant transition is
smooth. The method uses the local space average color for
local estimation of the illuminant by convolving the image
with a Gaussian kernel function. Bleier et al. [39]

investigated whether existing color constancy methods,
originally developed assuming uniform illumination, can
be adapted to local illuminant color estimation using
image sub-regions. Multiple independent estimations are
then combined through regression to obtain a more robust
final estimate. Gijsenij et al. [36] proposed a method that
makes use of local image patches, which can be selected
by any sampling method. After sampling of the patches,
illuminant estimation techniques are applied to obtain
local illuminant estimates, and these estimates are com-
bined into more robust estimations, since it is assumed
that the number of different lights is less than the number
of patches. This combination of local estimates is done
with two different approaches: clustering if the number of
lights is known, segmentation otherwise. A different class
of algorithms is based on user guidance to deal with the
case of two [47] and multiple lights [48].

3 THE PROPOSED APPROACH

In this work we propose a global/local adaptive color con-
stancy method to estimate and correct the scene illuminant
using faces. The operation flowchart of the proposed adap-
tive method is reported in Fig. 1. The face detector module
is run on the input image to detect any faces. If no faces are
detected, the input image may be processed with any other
state-of-the-art illuminant estimation algorithm. If one or
more faces are detected, a skin detection module is run on
the detected faces to filter out any non-skin and unreliable
pixels. A local illuminant estimation is made on the detected
skin pixel of each face. If the maximum distance among the
estimations on the different faces is lower than a fixed
threshold, the local estimates are combined into a unique
global illuminant estimate; otherwise the single face esti-
mates are propagated to the rest of the image to give a local
illuminant estimate for each pixel of the image.

Our method is based on three assumptions:

� skin colors form a sufficiently compact cluster in the
color space in order to represent a valid clue for illu-
minant estimation [20];

Fig. 1. The operation flowchart of the proposed adaptive method.

BIANCO AND SCHETTINI: ADAPTIVE COLOR CONSTANCY USING FACES 1507



� the illumination on each face is uniform;

� the illumination estimated on the faces properly
sample the illumination distribution in the scene.

To have an idea of the applicability of the proposed
method, we have generated different queries on Flickr
(http://www.flickr.com/) using very generic tags such as
cameras and mobile phones manufacturers. We found that
among 30 and 60% of the returned images were portraits or
included faces. More specific queries such as party, family,
birthday, holiday, etc. usually contain a much higher num-
ber of faces. These results are consistent with a qualitative
analysis of the camera phone photospace distribution
reported by the International Imaging Industry Association
(I3A) [19].

3.1 Adaptive Skin Detection

Looping on all the faces detected, the first step is a prelimi-
nary adaptive skin detection aimed to discard pixels that
for sure are not skin pixels. Next the detected face pixels are
converted in the HSV color space. Then a technique based
on scale-space histogram filtering [33] is used to identify the
highest peak location and width of the histogram of the hue
component, within the hue interval corresponding to feasi-
ble skin colors. This involves generating a multi-scale
description of the histogram hðxÞ by convolving it with a
series of Gaussians of increasing scale:

Hðx; sÞ ¼ hðxÞ �GsðxÞ ¼
Z þ1

�1
hðtÞ 1

s
ffiffiffiffiffiffi
2p

p e
�ðx�tÞ2

2s2 dt : (4)

Hðx; sÞ forms a two-dimensional surface called the scale-
space image. The locations of valleys and peaks are easily
located in terms of zero-crossing in the scale-space image,
since at any value of s, the extrema in the nth derivative of
the smoothed histogram are given by the zero-crossing in
the ðnþ 1Þth derivative, computed using the relation

@nHðx; sÞ
@xn

¼ hðxÞ � @nGsðxÞ
@xn

; (5)

where the derivatives of the Gaussian are readily
obtained. Although this technique applies to zeros in
any derivative we will focus our attention on those in
the second derivative [33].

The highest peak location Ph and width 2w are identi-
fied within the hue interval corresponding to feasible skin
colors, i.e., Ph 2 ½t0 t1�. Then only those pixels satisfying
the condition Ph � w < H < Ph þ w are selected. This
condition permits to implement a sort of adaptive skin
detector, since the selected hue interval depends on the
current peak location Ph. Any unreliable skin pixel as
being too dark or too bright, and thus potentially clipped,
is filtered out if it satisfies the condition V < t2 _ V > t3.
If the cardinality of the remaining skin pixels, normalized
for the total number of pixels in the detected face, is above
the threshold t4, they are converted into the YCbCr color
space where they are luminance normalized such that the
average luminance Y ¼ 0:5 and used to give an estimate
of the local illuminant, which is then added in an accumu-
lator; otherwise the current face is ignored. The thresholds

t0; . . . ; t4 could be either heuristically set or estimated from
the synthetic data. In this work we have used an optimiza-
tion procedure, described in the experimental section,
exploiting a suitable data set.

It should be noted that the proposed method in the pres-
ent form makes it possible to discard face regions with an
unnatural or unreliable skin colors. An example of the com-
bined effect of the implemented face and skin detector is
reported in Fig. 2.

3.2 Skin-Based Illuminant Estimation

3.2.1 Skin-Based Gamut Mapping

Our approach applies gamut mapping to skin pixels only:
the illuminant is estimated as the mapping that can be
applied to the gamut of the skin colors in the input image,
resulting in a gamut that lies completely within the skin
canonical gamut.

The first step is the computation of the skin canonical
gamut SC : this is the convex hull of the skin colors of differ-
ent people acquired under the chosen canonical illuminant.

Given an input image for which we want to estimate the
illuminant, in which F faces are present, the masks ufðx; yÞ,
f ¼ 1; . . . ; F , are obtained:

ufðx; yÞ ¼ 1 if ðx; yÞ 2 face no:f ^ is a skin pixel
0 otherwise;

�
(6)

i.e., ufðx; yÞ assumes the value 1 only on the pixels inside the
f�th detected face area, being classified as skin pixels. The
extracted skin colors skinskinskinf are then computed as

skinskinskinf ¼ rrrðx; yÞ : ufðx; yÞ ¼ 1
� �

: (7)

Once we have extracted the skin colors for each detected
face, these are converted into the YCbCr color space and
luminance normalized, such that the average luminance
Y ¼ 0:5. Given the face f , the skin gamut SI;f is then com-
puted as the convex hull of the converted values of the skin
pixels belonging to the current face, thus obtaining a

Fig. 2. An example of the combined effect of the implemented face and
skin detector. The original image (a); the histograms of the hue compo-
nent of the detected faces (b); the output of the adaptive skin detector (c).
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different gamut for each face in the image. The set of feasi-
ble mappings Mf for each face is then determined: it con-
sists of all mappings that can be applied to the skin gamut
SI;f that result in a gamut that lies completely within the
skin canonical gamut SC :

Mf ¼ fMf;i : Mf;iSI;f 2 SCg: (8)

In this work each transformation Mf;i is modeled by a diag-
onal mapping or von Kries Model [32]. The local illuminant
color If is then estimated as the inverse of the average of the
feasible set [1].

3.2.2 The Skin Patch (SP) Illuminant Estimation

We also experiment here the use of the mean values of the
extracted skin colors estimating the scene illuminant as the
ratio among the computed average skin color and the refer-
ence average skin color. Using the same formalism defined
in the previous section, the illuminant estimation on the
face f can be written as:

If ¼ skinf

rrrskin
¼

X
ðx;yÞ2f

rrrðx; yÞufðx; yÞ

rrrskin
X

ðx;yÞ2f
ufðx; yÞ

; (9)

where skinf is the computed average skin color over the
face f and rrrskin is the reference average skin color. Given the
analogy with the White Patch algorithm, we call this
method skin patch. The main advantage of the SP algorithm
with respect to the one described in Section 3.2.1 is its effi-
ciency, since the latter requires a convex optimization to be
solved and it is not guaranteed that such a solution exists.

We want now to understand if skin reflectances are
statistically equivalent to a neutral patch for the estima-
tion of the scene illuminant. To this end, the data set of
skin reflectances has been extracted from the ISO [23], for
a total of 697 heterogeneous samples. The same analysis
carried out in [6] is performed, where we have shown
that there is a subset of colors in the Macbeth Color-
Checker (MCC) DC and Munsell Atlas which are statisti-
cally equivalent to a neutral patch for the estimation of
the scene illuminant. The statistical equivalence is tested
under 321 different illuminants with a Correlated Color
Temperature (CCT) ranging from about 2,000 to 13,000 K.
Given a canonical illuminant Icð�Þ, for each illuminant
and for each skin reflectance, the cumulative histogram
of the normalized distance metric (ND) [43] is computed
with respect to the elements of the Munsell Atlas using
two different illuminant corrections. The first one is com-
puted as the element-wise ratio between the camera val-
ues of a neutral patch with reflectance nð�Þ under the
actual illuminant Iið�Þ and those of the same neutral
patch under the canonical illuminant Icð�Þ, i.e.:

rrrn;c

rrrn;i
¼

Z
v

Icð�Þnð�ÞCð�Þd�Z
v

Iið�Þnð�ÞCð�Þd�
; (10)

while the second one is computed as the element-wise ratio
between the camera values of the skin reflectance sjð�Þ

under the actual illuminant and those of the same skin
reflectance under the canonical illuminant, i.e.:

rrrj;c

rrrj;i
¼

Z
v

Icð�Þsjð�ÞCð�Þd�Z
v

Iið�Þsjð�ÞCð�Þd�
: (11)

The skin reflectance sjð�Þ is considered statistically
equivalent to a white surface under the illuminant Iið�Þ
if the respective ND cumulative histograms are statisti-
cally equivalent using the Wilcoxon Signed-Rank Test
(WST) [44]. A second statistical equivalence test is run
substituting the actual skin reflectance sjð�Þ in the
denominator of Eq. (11) with the average skin reflectance
sð�Þ of the whole data set. The results of the two statisti-
cal equivalence tests are reported in Fig. 3a. The lines
represent the ratio of skin reflectances judged statistically
equivalent to a white surface under a given number of
illuminants. The ratios of skin reflectances judged statis-
tically equivalent to a neutral patch for different illumi-
nants CCTs are reported in Fig. 3b.

Fig. 3. Results of the statistical equivalence tests using Eq. (11) (dashed
line) and using the average skin reflectance in the denominator of
Eq. (11) (solid line). Ratio of skin reflectances judged statistically equiva-
lent to a neutral patch under a given number of illuminants (a); ratios for
different illuminants CCT ranges (b).
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The plots reported in Fig. 3b reveal that almost all the
skin reflectances are equivalent to a neutral patch under
illuminants with a CCT above about 4,000 K, while this ratio
decreases for lower CCTs.

Proved that using the ratio among the extracted skin
color and the average skin color for estimating the illumi-
nant is not equivalent to a neutral patch under all the possi-
ble illuminants, we could still use it as long as its illuminant
estimate is good enough. To this end, the angular error [21]
among the actual and estimated illuminant is computed for
all the illuminants and skin reflectances used. Using the esti-
mator in Eq. (11) gives a median angular error of 1.06�. The
median error is of 1.70� when the ratio of the skin reflec-
tance under the actual illuminant and that of the average
skin reflectance under the canonical illuminant is used.
Since Hordley suggested that an angular error of less than
2� represents good enough color constancy performance on
complex images [22], we have decided to include the skin
patch algorithm in the experiments.

In order to use the proposed algorithms, we have to first
calculate the thresholds for the adaptive skin detector, the
convex hull of the skin colors under the canonical illumi-
nant for what concerns the skin-based gamut mapping, and
the reference skin rrrskin for the skin patch algorithm. The
thresholds, SC and rrrskin are obtained through an optimiza-
tion procedure aimed at minimizing the angular error on a
set of training images. The objective function adopted is
given as pseudocode in Algorithm 1, where gi and oi,
i ¼ 1; 2, are gain and offset terms.

3.3 Adaptive Illuminant Estimation and Image
Correction

Independently on which skin-based illuminant estimation is
used, when the looping on all the detected faces is finished,
the accumulator containing the local illuminant estimates is

analyzed. If it is empty, any other algorithm in the state-of-
the-art can be used to estimate the illuminant in the scene.
Otherwise, the angular distances among all the local esti-
mates in the accumulator are computed. If the maximum
distance is below a predefined threshold, the algorithm con-
siders the image as having a uniform illumination and the
estimates are combined to give a unique global illuminant
estimate. The final global estimate is obtained by averaging
the L1-normalized values of the local estimates. Once we
have estimated the global illuminant color I ¼ IR; IG; IB½ �,
given the choice of diagonal mappings, each pixel in
the image is color corrected using the von Kries model [32],
i.e.: rrroutðx; yÞ ¼ diagð1=IÞrrrinðx; yÞ.

If the maximum distance among the local estimates in the
accumulator is above the predefined threshold, the algo-
rithm considers the image as having non-uniform illumina-
tion and thus a spatially varying illuminant estimation and
correction is made. Since our local illuminant estimates are
localized on the detected faces, in order to obtain a per-pixel
illuminant estimate, the spatially varying illuminant esti-
mate Iðx; yÞ is obtained by taking the local estimates as
seeds and propagating them to the rest of the image with a
nearest neighbor diffusion scheme: given n local estimates
If , f ¼ 1; . . . ; n located at the corresponding centroids
cf ¼ ðxf ; yfÞ, f ¼ 1; . . . ; n of the corresponding detected
faces, the illuminant estimate at a generic pixel ðx; yÞ is com-
puted as:

Iðx; yÞ ¼ 1

k

Xk
i¼1

Iji s:t: cj � ðx; yÞ�� ���� ��
2
¼ min

f
cf � ðx; yÞ�� ���� ��

2
:

(12)

Finally, a Gaussian filter is applied to the spatially vary-
ing illuminant estimate to get a smooth illuminant esti-
mate. The spatially varying corrected image is then
obtained applying a different von Kries model to each
pixel, i.e.: rrroutðx; yÞ ¼ diagð1=Iðx; yÞÞrrrinðx; yÞ.

The threshold used to decide if the current scene is illu-
minated by a single light or by multiple light sources could
be heuristically set. Following [22] we set this threshold
equal to 3�, since it has been judged to be a noticeable but
acceptable difference.

4 EXPERIMENTAL SETUP

The aim of this section is to investigate if the proposed algo-
rithm can outperform state-of-the-art algorithms in the illu-
minant estimation on images containing at least one face.

4.1 Image Data Sets and Evaluation Procedure

To test the performance of the proposed algorithm, two data
sets of RAW camera images having a known color target are
used. Both data sets are captured using high-quality digital
SLR cameras in RAW format, and are therefore free of any
color correction. The first data set [14] was originally avail-
able in sRGB-format, but Shi and Funt [27] reprocessed the
raw data to obtain linear images with a higher dynamic
range (14 bits as opposed to standard 8 bits). The data set
has been acquired using a Canon 5D and a Canon 1D DSLR
cameras and consists of a total of 568 images, 95 of which
are portraits or include faces and constitute what we have
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called the Cambridge portrait data set. This portrait data set
contains people of different nationalities. The Macbeth Col-
orChecker chart is included in every scene acquired, and
this allows to accurately estimate the actual illuminant of
each acquired image. Examples of images within the Cam-
bridge portrait data set are reported in Fig. 4.

The Milan portrait data set has been acquired in order to
further evaluate the algorithms proposed on a larger num-
ber of images. It has been acquired in RAW format using
four different DSLR cameras: Canon 40D, Canon 350D,
Canon 400D, and Nikon D700. The data set is the union of
different subsets that have been acquired in three different
world locations: Italy, Taiwan, and Japan. The data set
includes portraits of a single person with a single MCC up
to multiple persons with multiple MCCs. The only differ-
ence among the subsets is that the Taiwan subset contains a
neutral-color reference card instead of the MCC. The Milan
data set composition is summarized in Table 1, while some
examples of images within the data set are reported in
Fig. 5.

For both the portrait data sets, during experiments the
MCC has been masked to avoid biasing the algorithms.

4.2 Benchmark Algorithms

Preliminary results on the Cambridge portrait data set
were reported in [5]. Different benchmarking algorithms
for color constancy were considered. Since each image of
the data set contains only one MCC, only global color con-
stancy algorithms based on the assumption of uniform
illumination can be compared. Six of them were generated
varying the three variables ðn; p; sÞ in Equation (3), and
correspond to well known and widely used color con-
stancy algorithms. The values chosen for ðn; p; sÞ are
reported in Table 2 and set as in [17]. The algorithms are
used in the original authors’ implementation which is

freely available online (http://lear.inrialpes.fr/people/
vandeweijer/code/ColorConstancy.zip). The seventh
algorithm is the pixel-based Gamut Mapping [16]. The
value chosen for s is also reported in Table 2. The other
algorithms considered were the Bayesian (BAY [14]); the
Natural Image Statistics (NIS [15]); the High Level Visual
Information [30]: bottom-up (HLVI BU), top-down (HLVI
TD), and their combination (HLVI BU&TD); the Spatio-
Spectral statistics [9]: with Maximum Likelihood estima-
tion (SS ML), and with General Priors (SS GP); the Auto-
matic color constancy Algorithm Selection (AAS) [3] and
the Automatic Algorithm Combination (AAC) [3].

The last algorithm considered was the Do Nothing (DN)
algorithm which gives the same estimation for the color of
the illuminant (I ¼ ½1 1 1�) for every image, i.e., it assumes
that the image is already correctly balanced.

For what concerns the color constancy algorithms able
to deal with non-uniform illumination, the algorithms con-
sidered are: the Retinex [35]; the Local Space Average
Color with Gaussian kernel function (LSAC) [34]; two
image sub-regions fusion schemes [39]: gradient tree
boosting (GTB) and random forest regression (RFR); multi-
ple light sources (MLS) [36] using White Point (WP) and
Gray World (GW) algorithms, grid based sampling, in the
clustering version, i.e., setting the number of lights equal
to the number of targets in the scene.

5 RESULTS AND DISCUSSION

The state-of-the-art algorithms considered are run on
both the portrait data sets. The error metric considered,

Fig. 4. Examples of images within the Cambridge portrait data set.

TABLE 1
Milan Portrait Data Set Composition

Fig. 5. Examples of images within the milan portrait data set.

TABLE 2
Values Chosen for ðn; p; sÞ for the State-of-the-Art

Algorithms Which Are Instantiations of Eq (3)
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as suggested by Hordley and Finlayson [21], is the
angle between the RGB triplet of estimated illuminant
(rw) and the RGB triplet of the measured ground truth
illuminant (r̂rrw):

eANG ¼ arccos
rrrTwr̂rrw

krrrwkkr̂rrwk
� �

: (13)

In order to apply the proposed algorithms, we have
to first calculate the thresholds for the adaptive skin
detector, the convex hull of the skin colors under the
canonical illuminant for what concerns the skin-based
gamut mapping, and the reference skin rrrrrrrrrskin for the skin
patch algorithm. Since we are considering RAW images,
free of color correction, it is impossible to use informa-
tion about skin clusters available in the state of the art
[13]. The thresholds, SC and rrrskin are obtained through
an optimization procedure aimed at minimizing the
angular error on a set of training images. The objective
function adopted is given as pseudocode in Algorithm
1, where gi and oi, i ¼ 1; 2, are gain and offset terms.
The results on the Cambridge portrait data set are
obtained using a leave-one-out cross validation. This
means that the skin canonical gamut SC ans reference
skin color rrrskin are recomputed for each image. When
calculating SC and rrrskin for each image, all the images
containing the same person were left out too. The results
on the Milan portrait data set use the Cambridge por-
trait data set as training set.

In Table 3 the minimum, the 10th-percentile, the median,
the average, the 90th-percentile, and the maximum of the
angular errors obtained by the considered state-of-the-art
algorithms and the global versions of proposed algorithms
on the Cambridge portrait data set are reported. For each of
the proposed methods two different results are reported:
the first one refers to the ideal results that would be
obtained using a perfect face detector (i.e., the faces are
manually detected), the second one refers to the results

obtained using a real face detector which is an implementa-
tion of the widely used Viola-Jones [31], trained on an inde-
pendent data set to detect frontal faces. The statistics using
the face detector are referred to only those images in which
it was able to detect at least one face (i.e., 82.11% of the
images of the Cambridge portrait data set).

It can be noticed from the comparison of the results in
Table 3 that the proposed skin-based Gamut Mapping—
in the instantiation with the manual face detector—is able
to estimate the illuminant in the scene with the highest
accuracy, reducing the median angular error by 30.12%
with respect to the HLVI BU&TD (which had the lowest
median error among the algorithms in the state of the
art). Furthermore the maximum angular error is reduced
by 25.83% with respect to the GE1 (which had the lowest
maximum error). The second best median error is
obtained by the proposed skin patch algorithm, again in
the instantiation with the manual face detector, which
improves over the HLVI BU&TD by 26.25%. The maxi-
mum error is reduced by 30.96%. Coupled with the real
face detector, the improvements in the median error are
of 25.48 and 21.24% respectively. In Fig. 6, three images
of the Milan portrait data set on which the proposed SP
algorithm makes an angular errors above the 95th-percen-
tile are reported.

In Table 4 the results obtained by the proposed algo-
rithms on the Milan portrait data set are reported. They are
relative to the images containing a single reference target.
The proposed skin-based methods, when no faces are
detected in the image by the face detector, estimate the illu-
minant in the scene using the GW algorithm. Experiments
have been run using also the other algorithms considered,
but the results obtained are substantially identical since
there are only few images on which the face detector was
unable to detect any face.

From the analysis of the results reported in Table 4 it is
possible to notice that the best median and maximum errors
are obtained by the proposed skin-based gamut mapping
(using a manual face detector), which improves by 17.81
and 27.11% respectively with respect to SS ML. The lowest
median and maximum errors obtained using a real face
detector improve by 16.19 and 7.36% respectively with
respect to SS ML.

Finally, in Table 5 the results obtained by proposed adap-
tive algorithms on the Milan portrait data set are reported
and compared with some spatially varying algorithms in
the state of the art. They are evaluated on the images of the
data set containing multiple targets. Also global color con-
stancy algorithms are reported in the comparison, together
with the global versions of the proposed algorithms. As for
the previous experiment, the proposed skin-based methods,
when no faces are detected in the image by the face detector,
estimate the illuminant in the scene using the GW algo-
rithm. Experiments have been run using also the other algo-
rithms considered, but the results obtained are substantially
identical since there are only few images on which the face
detector was unable to detect any face.

From the analysis of the results reported in Table 5 it is
possible to notice that the best median error is obtained by
the proposed adaptive skin patch algorithm using a real
face detector, which improves by 28.23% with respect to SS

TABLE 3
Angular Error Statistics Obtained by the State-of-the-Art

Algorithms Considered on the Cambridge Portrait Data Set
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ML. The improvement is even higher (i.e., 34.27%) with
respect to MLS+WP which is the best spatially varying algo-
rithm tested. The lowest maximum error is obtained by the
proposed skin patch algorithm (in the spatially varying ver-
sion) using the manual face detector, which is 32.29% lower
than that obtained by GE2.

In Fig. 7 an example image that the proposed adaptive SP
method considers having a non-uniform illumination is
reported. The maximum distance among the illuminant esti-
mations on the seven detected faces is 23.4� and thus the
local version of the algorithm is used. In Fig. 8 an example
image that the proposed adaptive SP method considers hav-
ing a uniform illumination is reported. The illuminant esti-
mations on the two detected faces differ by 1.1� and thus
the global version of the algorithm is used.

5.1 Statistical Significance

In order to assess if the difference in performance among
the different algorithms reported in Table 5 are statisti-
cally significant, we have used the Wilcoxon Signed-Rank
Test (WST) [44] as suggested in [21]. Given two algo-
rithms for which we want to test the statistical signifi-
cance, the WST is run on the corresponding angular error
distributions on the whole data set. The results of the sta-
tistical significance test for all the couples of algorithms
considered are reported in Table 6a for the single target
case, and in Table 6b for the multiple targets case. A

TABLE 4
Angular Error Statistics Obtained on the Milan Portrait

Data Set (Single Target)

TABLE 5
Angular Error Statistics Obtained on the Milan Portrait

Data Set (Multiple Targets)

Fig. 6. Example of images in the Milan portrait data set on which the proposed SP algorithm makes an angular errors above the 95th-percentile. Left
to right: original image; ideal correction based on the MCC; correction with the proposed algorithm; correction with the best algorithm in the state-of-
the-art among the ones considered, i.e., SS ML.
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positive sign (+) at location ði; jÞ indicates that the median
of the method i is significantly lower than that of method
j at the 95% confidence level. A negative sign (-) indicates
the opposite, and an equal sign (=) indicates that there is
no significant difference between the two methods. In the
last column of Table 6 the score indicating the number of
methods with respect to which the corresponding method
has been considered significantly better is reported.

5.2 Perceptual Significance

In addition to the statistical significance test, the percep-
tual significance is also investigated here. In fact, the fact
that the difference between two algorithms is statistically
significant might not always justify the conclusion that
one algorithm is better than another [45]. The statistical
significance test reported in Table 6 permits in fact to con-
clude that the error of one algorithm is often lower than
that of another algorithm, but it does not tell if this differ-
ence is noticeable to a human observer. In [45] the just
noticeable difference (JND) formula for the angular error
between methods i and j with corresponding angular
errors eANGi

and eANGj
is derived as JNDangular ¼

0:06 �maxfeANGi
; eANGj

g. Following [45] and using this
JND definition, a perceptual significance test on the results
reported in Tables 4 and 5 is run by computing the quan-
tity pi;j ¼ ðeANGi

� eANGj
Þ=maxfeANGi

; eANGj
g . The results

are reported in Table 7a for the single target case, and in
Table 7b for the multiple targets case. A positive sign (þ)
at location ði; jÞ indicates that the method i is perceptually
better than the method j (i.e., pi;j � �0:06). A negative sign
(�) indicates the opposite (i.e., pi;j 	 0:06), and an equal
sign (¼) indicates that there is no perceptual difference
between the two methods (i.e., �0:06 < pi;j < 0:06). The
score in the last column indicates the number of methods
with respect to which the corresponding method has been
considered perceptually better.

The results of the statistical and perceptual significance
tests on the Milan portrait data set containing a single tar-
get (Tables 6a and 7a) show that the proposed skin-based

gamut mapping using a manual face detector is both statis-
tically and perceptually the best algorithm. The second sta-
tistically best algorithm is the instantiation of the skin-
based gamut mapping using a real face detector, followed
by the skin patch algorithm. The perceptual significance
test shows that this difference is not significant. From the
results of the statistical and perceptual significance tests

Fig. 7. Example image identified as having non-uniform illumination by the adaptive SP method. Original image (a); ideal corrections using from left to
right: the first target (b), the second one (c), the third one (d), and the fourth one (e); ideal spatially varying correction using all the four targets (f); local
correction using the adaptive SP method (g); estimated illuminant color map (h) corrected with the camera daylight multipliers for better visualization.

Fig. 8. Example image identified as having uniform illumination by the
adaptive SP method. Original image (a); ideal corrections using: the tar-
get on the left (b), and the one on the right (c); correction using the illumi-
nant estimated on the face on the left (d), and the face on the right (e);
global correction using the adaptive SP method (f).
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on the Milan portrait data set containing multiple targets
respectively reported in (Tables 6b and 7b) it is possible to
see that the highest scores are clustered in the lower part
of the tables. The proposed adaptive skin patch using a
real face detector is statistically the best algorithm fol-
lowed by the proposed skin patch independently from the
face detector used (in both global and spatially varying
versions). The differences among all these algorithms are
not perceptually significant and all rank at the first place
on a tie.

5.3 Examples

Finally, some results are shown on several images taken
from both personal archives and from the web. Since these
images come without ground truth, the comparison
between the algorithms can be only done qualitatively.
The first example reported in Fig. 9 is a group photo taken
at the Computational Color Imaging Workshop (CCIW’13)
in Japan, with a full-frame Nikon D800 (36.3MP), of which
we have the RAW file. The image has been acquired in an
auditorium and has a non-uniform illumination since the

TABLE 6
Results of the Statistical Significance Test on the Milan Portrait

Data Set: Single Target (a), Multiple Targets (b)

TABLE 7
Results of the Perceptual Significance Test on the Milan Portrait

Data Set: Single Target (a), Multiple Targets (b)
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flash was able to light only the first rows of seats. The first
row of images reported represents the original RAW
image, the ideal correction for the first rows, and the ideal
correction for the furthest rows respectively. The second
row of images represents the correction with the LSAC
algorithm, the correction with the adaptive skin patch
algorithm, and the estimated illuminant color map (which
has been corrected with the camera daylight multipliers
for better visualization).

In order to be able to correct the images for which we do
not have the RAW camera file of the images, as for example
for the images that we could find on the web, we could pro-
ceed in two different ways. On one side we could estimate

the RAW image from its sRGB version by knowing the cam-
era model and using the method described in [42]. On the
other side we could re-train our method to work directly in
sRGB. The latter approach has been used here. The results on
a couple of images taken from the web are reported in
Fig. 10. In the first column the original image is reported, fol-
lowed by the image corrected with the adaptive skin patch
algorithm and by the estimated illuminant color map. Both
the images are considered having a non-uniform illumina-
tion by our adaptive method (the maximum distance among
the local illuminant estimates are about 7.3 and 30.4� within
each image respectively) and thus the local illuminant esti-
mation and correction are applied. As a comparison, the

Fig. 9. Example on real-world RAW image. First row: original RAW image, correction balanced for the first rows, correction balanced for the furthest
rows. Second row: correction with LSAC, local correction with the adaptive skin patch algorithm and its estimated illuminant color map (balanced
with the camera daylight multipliers for better visualization).

(a) (b) (c)

Fig. 10. Examples on real-world sRGB images taken from the web. Original image (left), local correction with adaptive skin patch algorithm (middle),
and estimated illuminant color maps (right).
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images corrected with the LSAC and the corresponding esti-
mated illuminant color maps are reported in Fig. 11.
Although the color appearance of the examples images
reported in Figs. 9 and 10 could be question of debate, it can
be observed that the effects of the different light sources are
less visible in the images correctedwith ourmethod.

6 CONCLUSION

In this paper we have designed an adaptive color constancy
algorithm that exploiting the skin regions found in faces is
able to estimate and correct the scene illumination. The
algorithm automatically switches from global to spatially
varying color correction on the basis of the illuminant esti-
mations on the different faces detected in the image. When
no faces are detected any other algorithm in the state of the
art can be applied. An extensive comparison with both
global and local color constancy algorithms has proved the
effectiveness of the proposed algorithm in terms of both sta-
tistical and perceptual significance on a large heterogeneous
data set of RAW images. To the best of our knowledge this
is the first algorithm that automatically modifies its behav-
ior from global to local on the basis of the image content.
The proposed method can also be applied to sRGB images.

The integration of our algorithm in actual digital still
camera processing pipelines is straightforward since many
cameras have already embedded a face detector working on
gray level images. With respect to our preliminary work
that exploited skin-based gamut mapping, we have also
designed a new illuminant estimation algorithm, also based
on skin, that is more efficient and therefore more suitable
for resource-limited camera devices, such as consumer digi-
tal cameras and camera phones.

Our method could be easily extended to also use refer-
ence objects that have intrinsic colors. In fact, the computa-
tional procedure adopted here to investigate if skin color is
a valid cue for color constancy could be applied to any sin-
gle color or colors combination.

Our spatially varying color correction assumes that the
illumination on each face is constant and that the illuminants
estimated on the faces properly sample the illumination dis-
tribution in the acquired scene. In fact, the illuminant esti-
mated on each face is propagated to the rest of the image.
There are therefore cases in which our algorithm can fail. For
example, if some areas are not properly sampled or there is a
light source behind a subject, the resulting image could be
miscorrected. To deal with this types of situations, we plan
to investigate the integration of our algorithmwith other spa-
tially varying algorithms orwith algorithms that estimate the
scene geometry, e.g., [46]. To relax the assumption of uni-
form illumination on each face it could be investigated if a
generic or specific [49] 3D face shape prior can be used in the

shape-from-shading framework proposed by Huang and
Smith [50]. A further hint for having information about light-
ing conditions could be obtained by eye reflections [51], [52],
[53] as suggested by a reviewer.
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