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Abstract In digital cameras a color processing pipeline is
implemented to convert the RAW image acquired by the
camera sensor into a faithful representation of the origi-
nal scene. There are two main modules in this pipeline: the
former is the illuminant estimation and correction module,
the latter is the color matrix transformation. In this work
we design extended color correction pipelines which ex-
ploit the crosstalks between their modules to lead to a higher
color rendition accuracy. The effectiveness of the proposed
pipelines is shown on a publicly available dataset of RAW
images.

Keywords Image processing pipeline · Illuminant
estimation · Color correction · Color matrix
transformation · Digital camera

1 Introduction

The traditional color correction pipeline for digital cameras
is composed by two modules [1–3]: the former is an illumi-
nant estimation and correction module which aims to ren-
der the acquired image as close as possible to what a hu-
man observer would have perceived if placed in the origi-
nal scene, emulating the color constancy feature of the hu-
man visual system, i.e. the ability of perceiving relatively
constant colors when objects are lit by different illuminants
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[4–7]. The latter is a color matrix transformation, which is
needed for color space transformation as the spectral sen-
sitivity functions of the sensor color channels rarely match
those of the desired output color space [8–10].

Although it is known that processing pipelines amplify
the noise [11], the color correction modules have been stud-
ied and optimized separately, without considering the inter-
actions between them. We have recently shown [12] that the
color matrixing stage amplifies the error in the illuminant
estimation stage. We have also demonstrated on synthetic
data that incorporating knowledge about the illuminant esti-
mation behavior in the optimization of the color correction
matrix makes it possible to alleviate this error amplification.

In this work we design and test extended color correc-
tion pipelines for digital cameras able to obtain a higher
color rendering accuracy. The pipelines proposed in [12] are
here further improved in two ways: (i) in the illuminant esti-
mation and correction stage, the traditional diagonal model
of illuminant change is replaced by a generalized diagonal
transform found by optimization; (ii) the color matrixing
stage, usually performed using a linear transformation ma-
trix optimized assuming that the illuminant in the scene has
been successfully estimated and compensated for [8–10], is
extended exploiting polynomial color space conversions in-
corporating knowledge about illuminant estimation module
behavior.

Experimental results on a standard dataset of raw im-
ages show the feasibility of the proposed extended pipelines
whatever the illuminant estimation algorithm used here.

2 Image Formation and Color Correction Pipeline

An image acquired by a digital camera can be represented
as a function ρ mainly dependent on three physical factors:
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the illuminant spectral power distribution I (λ), the surface
spectral reflectance S(λ), and the sensor spectral sensitivi-
ties C(λ). Using this notation, the sensor responses at the
pixel with coordinates (x, y) can be thus described as:

ρ(x, y) =
∫

ω

I (x, y,λ)S(x, y,λ)C(λ)dλ, (1)

where ω is the wavelength range of the visible light spec-
trum, ρ and C(λ) are three-component vectors. Since the
three sensor spectral sensitivities are usually more sen-
sitive respectively to the low, medium and high wave-
lengths, the three-component vector of sensor responses
ρ = (ρ1, ρ2, ρ3) is also referred to as the sensor or cam-
era raw RGB = (R,G,B) triplet. In the following we adopt
the convention that RGB triplets are represented by column
vectors.

In order to render the acquired image as close as possible
to what a human observer would have perceived if placed
in the original scene, the first stage of the color correction
pipeline aims to emulate the color constancy feature of the
human visual system (HVS), i.e. the ability to perceive rel-
atively constant colors when objects are lit by different il-
luminants. The dedicated module is usually referred to as
automatic white balance (AWB), which aims to determine
from the image content the color of the ambient light and
compensate for its effects. Numerous methods exist in the
literature and Hordley [4], Ebner [5], Foster [6], and Gijsenij
et al. [7] give excellent reviews of them. Most of them are
based on the simplifying assumption that the illuminant in
the scene is uniform, with a few exceptions [41–45]. In the
following we assume uniform illuminant. Once the color of
the ambient light has been estimated, in general its com-
pensation is based on an independent regulation of the three
color signals through three different gain coefficients [13,
33]. This correction can be easily implemented on digital de-
vices as a diagonal matrix multiplication. The application of
non-diagonal illuminant compensation matrices could fur-
ther improve the results, but only in case of broad sensor
spectral sensitivities [40].

The second stage of the color correction pipeline trans-
forms the image data into a standard RGB color space (e.g.
sRGB, ITU-R BT.709). This transformation, usually called
color matrixing, is needed because the spectral sensitivity
functions of the sensor color channels rarely match those of
the desired output color space. Typically this transformation
is a 3-by-3 matrix with 9 variables to be determined. There
are both algebraic [8, 9] and optimization-based methods
[10] to find them.

The traditional color correction pipeline [1–3], which as-
sumes a uniform illuminant across the scene, can be de-

Table 1 Notation adopted

Symbol Description

13 3 × 3 identity matrix

03,t−3 zero matrix with size 3 × (t − 3)

t number of terms of the transformation T used

m number of different matrices to use in the MILLWEB
strategy

s number of images used in the optimization

u weight distribution (assumed uniform in the experiments)

n number of colored patches of the color target used

rk color coordinates of the k-th patch in the chosen standard
color space

ck color coordinates of the k-th patch in the camera color
space

E chosen error metric

Gj diagonal illuminant correction matrix for the j -th image

T polynomial transformation chosen to be applied to the
illuminant-compensated RGB values

α exposure correction gain

scribed as follows:
⎡
⎣R

G

B

⎤
⎦

out

=
⎛
⎝α

⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦

×
⎡
⎣ rawb 0 0

0 gawb 0
0 0 bawb

⎤
⎦

⎡
⎣R

G

B

⎤
⎦

in

⎞
⎠

γ

(2)

where RGBin are the camera raw RGB values, α is an
exposure compensation common gain, the diagonal ma-
trix diag(rawb, gawb, bawb) is the channel-independent gain
compensation of the illuminant, the full 3-by-3 matrix a(i,j),
(i, j) = {1,2,3}2 is the color space conversion transform
from the device-dependent RGB to the sRGB color space,
γ is the gamma correction defined for the sRGB color space
and RGBout are the output sRGB values.

3 Pipeline Extension

In this section we describe how the traditional pipeline and
the pipelines originally proposed in [12] can be extended in
order to obtain an higher color accuracy. In the following a
more compact version of Eq. (2) is used:

RGBout = (αAIw · RGBin)
γ (3)

where α, Iw and A respectively represent the exposure com-
pensation gain, the diagonal matrix for the illuminant com-
pensation and the color matrix transformation. The notation
adopted is reported in Table 1.
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The pipeline in Eq. (3) exploits a diagonal model of illu-
minant change. However, it is known that this model does
not perform properly in the case the camera sensors are
broad functions [33], which is usually the case. We try to
convert the camera sensors into a set of more narrow ones,
for which the diagonal model holds. This approach falls un-
der the name of sensor sharpening and the resulting trans-
form is usually referred to as generalized diagonal transform
(GDT) [33]. The pipeline in Eq. (3) can be thus extended in:

RGBout = (
αA

(
C−1IwC

) · RGBin

)γ (4)

where C is the sensor sharpening transform, and C−1IwC is
the generalized diagonal transform.

Sensor sharpening is a common strategy when the source
and destination illuminants are perfectly known [35, 36]. We
propose here an operative method, based on optimization, to
find a generalized diagonal transform able to deal with the
case that the scene illuminant, that has to be estimated, is
affected of error.

In the pipelines of Eqs. (3) and (4) the color space con-
version is implemented by a 3 × 3 matrix (A), which works
on the linear sensor values. The pipeline is here extended to
incorporate polynomial color space conversions (and thus
rectangular matrices A) by defining a transformation T
which defines the polynomial transformation to be applied
to the illuminant-compensated RGB values:

RGBout = (
αAT

((
C−1IwC

) · RGBin

))γ (5)

Although polynomial color conversion is a common ap-
proach for the characterization of digital scanners [30] and
fixed camera/light setups [26, 37], it is unknown if it can be
effectively applied in the color correction pipeline of a digi-
tal camera as it is also unknown how polynomial color cor-
rections amplify the error in the illuminant estimation com-
pared with linear color correction.

In this work three different kinds of transformation T
have been used. The first one is the identity, so that the color
correction is done with linear polynomial:

T1
([R G B]) = [R G B] (6)

The second one is the rooted polynomial (second degree)
[29]:

T2R

([R G B]) = [R G B
√

RG
√

RB
√

GB] (7)

The third one is the second order polynomial [32]:

T2
([R G B]) = [

R G B R2 G2 B2 RG RB GB
]

(8)

3.1 Single Illuminant Color Correction Pipeline

Given a transformation T , the first color correction pipeline
considered is named Single ILLuminant (SILL) since it is

based on a single matrix transform optimized for a single
illuminant. Given a set of n different patches whose sRGB
values r are known, and the corresponding camera raw val-
ues c measured by the sensor when the patches are lit by
the chosen illuminant, we want to find the optimal matrices
[A,C] and the optimal exposure value α, which we respec-
tively call [Â, Ĉ, α̂], that satisfy:

[Â, Ĉ, α̂] = argmin
A∈R3×t

C∈R3×3

n∑
k=1

E
(
rk,

(
αAT

(
C−1IwC

)
ck

)γ )
(9)

where E is the chosen error metric, and the subscript k in-
dicates the triplet in the kth column of the matrix, i.e. it in-
dicates the trichromatic values of the kth patch. The error
metric E adopted is the average �E94 colorimetric error be-
tween the reference and calculated sRGB values mapped in
the CIELab color space. The �E94 metric has been chosen
because of its perceptual uniformity in color imaging [1].
Given the importance of neutrals in the color reproduction,
the 3t degrees of freedom of the color matrix transformation
are usually reduced to 3(t − 1) by a white point preserving
constraint, i.e. a neutral color in the device dependent color
space should be mapped to a neutral color in the device in-
dependent color space. This can be easily obtained by con-
straining each row to sum to one.

3.2 Single Illuminant Color Correction Pipeline with
White Balance Error Buffer

The second color correction pipeline considered is named
Single ILLuminant with White balance Error Buffer (SILL-
WEB). It is based on a single matrix transform optimized for
a single illuminant, taking into account the behavior of the
AWB module used. Suppose that the ground truth gain coef-
ficients g0 = [r0, g0, b0] have been already determined and
reshaped in the diagonal transform G0 to compensate the
considered illuminant; we generate a set g = {g1, . . . ,gs}
of s gain coefficients with different distances along differ-
ent hue directions from g0, measured using the angular dis-
tance. These can be used to simulate errors that may occur
in the AWB process and are paired with a weights distribu-
tion u = {u0, . . . , us} reflecting the frequency of the consid-
ered errors. The ground truth gains g0 are computed from
the camera raw values measured by the sensor when a neu-
tral patch is lit by the chosen illuminant. The sets g and u
could be derived in two different ways:

– g could be generated by sampling uniformly the hue cir-
cle and for each sampled hue direction the desired gains
with given angular distances from g0 could be obtained
by brute force search; u can be then estimated from a set
of synthetic images generated according to Eq. (1).

– g could be directly obtained from a dataset of natural
RAW images, thus obtaining an entry gj for each image
in the dataset; in this case u can be set uniform.
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Algorithm 1 SILL-WEB(r,G, c)
A ← [13 03,t−3]
C ← 13

α = [α0, . . . , αs] ← [1, . . . ,1]
initialize u
repeat

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

find Â, Ĉ s.t. Eq. (10) is satisfied

A ← Â

C ← Ĉ

for image number j = 1 to s⎧⎪⎨
⎪⎩

find α s.t.

argminα

∑n
k=1 E(rk, (αAT (C−1Gj C)ck)

γ )

αj ← α

until convergence or stopping criteria are met
return (A,C,α)

In this work we have used the second approach for all the
color correction pipelines proposed. The optimization prob-
lem can be thus formulated as:

[Â, Ĉ, α̂]

= argmin
A∈R3×t

C∈R3×3
αj ∈R

s∑
j=0

uj

(
n∑

k=1

E
(
rk,

(
αj AT

(
C−1Gj C

)
ck

)γ ))

(10)

subject to
t∑

j=1

A(i,j) = 1, ∀i ∈ {1,2,3}

where Gj , j = {0, . . . , s} are the diagonal matrices obtained
respectively by reshaping the gain coefficients {g0, . . . ,gs}.
The pseudo-code for the SILL-WEB color correction strat-
egy is reported in Algorithm 1.

3.3 Multiple Illuminant Color Correction Pipeline with
White Balance Error Buffer

The third color correction pipeline considered is named
Multiple ILLuminant with White balance Error Buffer
(MILL-WEB). It differs from the previous pipeline since
it is based on multiple matrix transforms, with each one
optimized for a different taking illuminant. For each im-
age different matrix transforms A and C are therefore used:
when the AWB algorithm is applied to estimate the illumi-
nant compensation gains ĝ, the two chosen taking illumi-
nants ILLi and ILLj with the most similar gains g0,i and
g0,j are identified, and the matrix transforms are calculated
as follows:

A = τAILLi
+ (1 − τ)AILLj

(11)

Algorithm 2 MILL-WEB(r,G, c,m)
cluster G to find m centroids
for i = 1 to m

⎧⎪⎨
⎪⎩

Ai ← [13 03,t−3]
Ci ← 13

initialize ui

α = [α0, . . . , αs] ← [1, . . . ,1]
repeat

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for i = 1 to m⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

find z1, . . . , zh s.t. ∀zi : Gzi
∈ centroid Ci

u ← ui

find Â, Ĉ s.t. Eq. (10) is satisfied

Ai ← Â

Ci ← Ĉ

for image number j = z1 to zh⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

compute A and C using Eqs. (11) and (12)

find α s.t.

argminα

∑n
k=1 E(rk, (αAT (C−1Gzj

C)ck)
γ )

αzj
← α

until convergence or stopping criteria are met
return ([A1, . . . ,Am], [C1, . . . ,Cm],α)

C = τCILLi
+ (1 − τ)CILLj

(12)

where

τ = D(ĝ,g0,j )

D(ĝ,g0,i ) + D(ĝ,g0,j )
(13)

and D is the angular error between the gains considered, i.e.

D(g1,g2) = arccos

(
gT

1 · g2

‖g1‖ · ‖g2‖
)

(14)

The pseudo-code for the MILL-WEB color correction
strategy is reported in Algorithm 2. Instead of deciding arbi-
trarily the m taking illuminants for which derive the matrix
transforms, the first step of the MILL-WEB pseudo-code
consists in the clustering of the ground-truth gains of the im-
ages in the dataset of natural RAW images used. Since they
are 3 × 3 diagonal matrices, this is achieved by applying the
k-means algorithm [25] to the diagonal of the matrices by
treating them as points in the R3 space.

4 Experimental Results

The aim of the designed experiments is to verify if the pro-
posed extended pipelines improve the color accuracy over
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the traditional pipeline and the strategies proposed in [12],
whatever the AWB algorithm adopted.

In our previous work [12], we used a digital camera
simulator for all the experiments. Here, to test the perfor-
mance of the investigated processing pipelines, a standard
dataset of RAW camera images having a known color target
is used [23, 28]. This dataset is captured using two high-
quality digital SLR cameras in RAW format (Canon 1D and
Canon 5D), and is therefore free of any color correction. The
dataset consists of a total of 568 images, both indoor (246)
and outdoor (322). The Canon 1D was used to acquire 86
images, the Canon 5D to acquire the remaining 482 images.
The Macbeth ColorChecker (MCC) chart is included in ev-
ery scene acquired, and this allows to accurately estimate
the scene illuminant. The MCC is composed by a total of 24
patches, 6 of which form a gray scale from white to black.
The ground truth gains g0 for each image are obtained from
the RAW values recorded by the sensor for the gray scale:
let us call RGBg1, . . . ,RGBg6 the average RGB values for
the central region of each acquired gray patch; g0 is then
computed as follows:

g0 =

⎛
⎜⎜⎜⎝median

⎡
⎢⎢⎢⎣

RGBg1/‖RGBg1‖∞
RGBg2/‖RGBg2‖∞

...

RGBg6/‖RGBg6‖∞

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

−1

(15)

where both the computation of the median value and the in-
verse are meant component-wise.

In the last years several algorithms have been proposed
with the aim of improving the accuracy of illuminant estima-
tion. A comparison of these algorithms is given for example
in [7, 34]. The automatic white balance modules considered
have been chosen to be representative of the state of the art
and range from low-level statistics based [17], gamut map-
ping based [14, 16, 27], and classification based [15, 22].

The first one is the ideal illuminant estimator, which uses
the ground truth illuminant for each scene.

The next four algorithms correspond to different in-
stances of the general equation derived in [17]:

I(d,p,σ ) = 1

k

(∫∫ ∣∣∇dρσ (x, y)
∣∣pdx dy

) 1
p

, (16)

and correspond to the Gray World (GW) [18], White Patch
(WP) [19], Shades of Gray (SOG) [20], and General Gray
World (GGW) [17]. The parameter d is the order of the
spatial derivative, p is the Minkowski norm, ρσ (x, y) =
ρ(x, y) ⊗ Gσ (x, y) is the convolution of the image with a
Gaussian filter Gσ (x, y) with scale parameter σ , and k is a
constant to be chosen such that the illuminant color I has
unit length (using the 2-norm). The parameters (d,p,σ ) for
the algorithms considered are set as in [7].

Table 2 AWB performance: median angular errors between estimated
and ground truth illuminants for the whole image dataset, and for each
camera separately

Algorithm Whole DB Canon 1D Canon 5D

ID 0.0◦ 0.0◦ 0.0◦

GW 6.3◦ 4.7◦ 6.6◦

WP 7.5◦ 8.4◦ 7.3◦

SOG 4.9◦ 4.9◦ 4.8◦

GGW 4.6◦ 4.8◦ 4.6◦

GM 4.1◦ 5.2◦ 3.9◦

FB 2.9◦ 4.0◦ 2.8◦

The sixth algorithm considered is the Gamut Mapping
(GM), which assumes that for a given illuminant, one ob-
serves only a limited gamut of colors [27]. It has a train-
ing phase in which a canonical illuminant is chosen and
the canonical gamut is computed observing as many sur-
faces under the canonical illuminant as possible. Given an
input image with an unknown illuminant, its gamut is com-
puted and the illuminant is estimated as the mapping that
can be applied to the gamut of the input image, resulting in
a gamut that lies completely within the canonical gamut and
produces the most colorful scene.

The seventh algorithm considered is the Feature Based
(FB) algorithm described in [22]. It is based on five indepen-
dent AWB algorithms [21] and a classification step which
automatically selects, which AWB algorithm to use for each
image. The classifier is trained on low level features auto-
matically extracted from the images.

The AWB performance are measured with the angular
error between the estimated and the ground truth illuminant.
The median angular error for each investigated algorithm on
the whole image dataset, and for each camera separately, are
reported in Table 2. It is possible to note that no algorithm is
error free, and that the more complex ones outperform those
based on low-level statistics.

The evaluation procedure adopted for a generic color cor-
rection pipeline is the following: each AWB algorithm is ap-
plied to the image under consideration, excluding the MCC
chart region. For each algorithm estimation, the color cor-
rection pipelines described in Sect. 3 are then applied to
the whole image. For each color corrected image, the MCC
chart is extracted [31] and the average sRGB values of the
central area of each patch are calculated and mapped in
CIELab using standard equations [12]. The color accuracy
of the pipeline under consideration is measured in terms of
the average �E94 error between the CIELab color coordi-
nates of the color corrected MCC patches and their theoret-
ical CIELab values given in [24].

For the single illuminant color correction pipelines
(SILL), the taking illuminant is chosen to be the one in the
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Fig. 1 Average percentage (a) and absolute (b) improvement of the
colorimetric error by the different extended pipelines on the whole im-
age dataset

image with the lowest angular distance from the camera day-
light multipliers. For the single and multiple illuminant color
correction pipelines with white balance error buffer (SILL-
WEB and MILL-WEB), the matrices and taking illuminants
are computed exploiting the whole dataset using a leave-
one-out cross validation scheme: at turn each image is left
out and the rest of the images taken with the same camera are
used for the optimization. For the multiple illuminant color
correction pipeline (MILL-WEB) the number of taking illu-
minants is set to m = 7 as in [12]. For all the color correction
pipelines compared, the best matrices satisfying Eqs. (9)
and (10) are found by optimization using as ck all the 24
patches of the MCC. The Pattern Search Method (PSM) is
here used as optimization algorithm. PSMs are a class of
direct search methods for nonlinear optimization [38, 39]
that do not require any explicit estimate of derivatives. The
termination condition used is the one that occurred first be-
tween the convergence criteria and the stopping criteria. The
former consists in a reduction of the current best solution
below 1 · 10−14, the latter in the reaching of the maximum
number of iterations set to 1 · 104.

In Fig. 1, taking the traditional pipeline (SILL strategy
with the 3 × 3 color correction matrix) as baseline, the aver-
age percentage and absolute improvements of the color ac-
curacy of the different pipelines are reported. They are aver-
aged over all the images composing the dataset, and the dif-
ferent AWB algorithms considered. The marks on the left-
hand side axis are relative to the different color correction
strategies, the marks on the right-hand side axis to the differ-
ent extensions here proposed; the points at the intersections
represent the 18 different pipelines tested.

Fig. 2 Percentage improvement of the colorimetric error by the different extended pipelines on the images acquired with the Canon 1D

Fig. 3 Absolute improvement of the colorimetric error by the different extended pipelines on the images acquired with the Canon 1D
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Table 3 Color correction pipeline accuracy comparison on the images acquired with the Canon 1D

T
avg. �E94

T2
avg. �E94

T2R

avg. �E94

T + GDT
avg. �E94

T2 + GDT
avg. �E94

T2R +GDT
avg. �E94

SILL ID 4.93 4.71 4.92 4.02 3.97 3.94

SILL GW 8.11 6.88 7.28 6.80 6.57 6.54

SILL WP 10.22 11.35 10.81 8.79 9.86 8.70

SILL SOG 7.41 7.21 7.24 6.64 6.61 6.50

SILL GGW 7.40 7.15 7.21 6.54 6.50 6.40

SILL GM 7.61 7.53 7.44 6.98 6.92 6.83

SILL FB 5.79 5.39 5.63 4.91 4.85 4.81

SILLWEB ID 4.83 4.39 4.71 3.97 3.77 3.86

SILLWEB GW 7.75 5.83 6.79 5.85 5.25 5.58

SILLWEB WP 9.86 10.02 9.43 8.50 8.98 9.03

SILLWEB SOG 7.27 6.47 6.97 6.45 5.89 6.25

SILLWEB GGW 7.26 6.53 6.98 6.32 5.81 6.12

SILLWEB GM 7.50 6.93 7.23 6.75 6.24 7.03

SILLWEB FB 5.67 5.09 5.46 4.80 4.48 4.69

MILLWEB ID 4.07 3.47 3.79 3.69 3.35 3.46

MILLWEB GW 7.37 5.23 6.19 5.51 5.00 5.31

MILLWEB WP 8.44 8.66 8.02 7.80 8.16 7.45

MILLWEB SOG 6.86 5.80 6.37 6.17 5.58 5.95

MILLWEB GGW 6.73 5.79 6.28 6.05 5.58 5.72

MILLWEB GM 6.87 6.18 6.57 6.40 5.77 6.13

MILLWEB FB 5.13 4.36 4.72 4.40 4.11 4.23

Table 4 Color correction pipeline accuracy comparison on the images acquired with the Canon 5D

T
avg. �E94

T2
avg. �E94

T2R

avg. �E94

T + GDT
avg. �E94

T2 + GDT
avg. �E94

T2R +GDT
avg. �E94

SILL ID 5.18 5.20 4.98 4.74 4.52 4.71

SILL GW 10.21 9.47 10.18 9.54 9.06 9.47

SILL WP 9.48 9.05 9.69 8.88 8.26 8.94

SILL SOG 8.05 7.09 7.95 6.27 5.99 6.30

SILL GGW 7.51 6.99 7.39 6.01 5.73 6.22

SILL GM 6.84 6.58 6.71 5.57 5.68 5.83

SILL FB 6.23 5.88 6.12 4.60 4.57 4.47

SILLWEB ID 4.99 4.31 4.68 3.66 3.83 3.51

SILLWEB GW 8.99 6.56 7.94 6.78 6.32 6.87

SILLWEB WP 9.02 7.82 8.61 8.31 6.99 8.07

SILLWEB SOG 7.66 5.96 7.06 5.93 5.62 5.58

SILLWEB GGW 7.22 5.84 6.71 5.61 5.45 5.34

SILLWEB GM 6.63 5.86 6.28 5.36 5.33 5.12

SILLWEB FB 5.99 5.05 5.63 4.52 4.48 4.33

MILLWEB ID 4.75 3.80 4.38 3.37 3.26 3.03

MILLWEB GW 8.59 6.84 7.60 6.37 6.41 6.58

MILLWEB WP 7.80 6.62 6.80 6.41 6.55 6.23

MILLWEB SOG 7.29 5.19 6.61 5.39 5.02 5.02

MILLWEB GGW 6.90 5.26 6.29 5.14 5.06 4.83

MILLWEB GM 6.32 5.20 5.86 5.12 4.83 4.81

MILLWEB FB 5.72 4.22 5.23 4.20 4.02 3.84
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Fig. 4 Percentage improvement of the colorimetric error by the different extended pipelines on the images acquired with the Canon 5D

Fig. 5 Absolute improvement of the colorimetric error by the different extended pipelines on the images acquired with the Canon 5D

The points at the intersection of the left axis with the first
mark on the right axis, represent the strategies proposed in
[12], where 3 × 3 color correction matrices were used. The
ranking on real data of these pipelines proposed in [12] is
here confirmed. In particular, the SILL-WEB strategy im-
proves the colorimetric accuracy over the SILL strategy by
3.8 % (0.31 �E94 units), and the MILL-WEB by 11.2 %
(0.87 �E94 units). Taking the traditional SILL strategy as
baseline, the extended SILL strategy improves the results up
to 15.7 % (1.13 �E94 units). It is worth noting that this im-
provement is larger than that obtained by the original SILL-
WEB and MILL-WEB color correction pipelines. Our pro-
posals get better results: the extended SILL-WEB pipeline
improves over the baseline up to 25.1 % (1.90 �E94 units),
which is a 21.3 % improvement over the original SILL-
WEB; the extended MILL-WEB pipeline improves over the
baseline up to 31.0 % (2.31 �E94 units), which is a 19.75 %
improvement over the original MILL-WEB.

A more detailed analysis is given in Figs. 2–5 and Ta-
bles 3 and 4 considering separately the two cameras in
the dataset and the AWB algorithms considered. The plots
are relative to AWB algorithms belonging to three differ-
ent classes: low-level statistics based (GW), gamut mapping
based (GM), and classification based (FB). In the last col-
umn, the average gain over the 7 AWB algorithms consid-
ered is plotted. In Fig. 3 the absolute colorimetric accuracy
gain are plotted. In Fig. 4 and 5 the percentage and abso-
lute colorimetric accuracy gain for the Canon 5D are respec-
tively plotted. The complete numerical values are respective
reported in Tables 3 and 4.

It is worth noting that even very simple AWB algorithms
like the Gray World, used within the proposed extended

Fig. 6 The red dots identify the different pipelines compared in Fig. 7

pipelines, have similar color rendition accuracy to more
complex AWB algorithms requiring a feature extraction and
classification stages, used within the traditional pipeline.

An example image is reported in Fig. 7: it belongs to the
subset acquired by the Canon 5D and the AWB algorithm
used is the GW. The different pipelines compared are re-
ported as red dots in Fig. 6. The average sRGB values of
the MCC of each image are extracted and reported in Fig. 8.
Each patch is made of two triangles: the upper one repre-
sents the ground truth values of the MCC [24], the lower
one the values extracted from the image on which the �E94

colorimetric error between them is overlayed.
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Fig. 7 Example image processed with different color correction pipelines

Fig. 8 Comparison between the average sRGB values of the MCC of
each image reported in this figure and its ground truth values. Each
patch is made of two triangles: the upper one represents the ground

truth values of the MCC [24], the lower one the values extracted from
the image on which the �E94 colorimetric error between them is over-
layed

5 Conclusion

In this work we have investigated possible extensions of the
color correction pipeline for digital photography which ex-
ploit the crosstalks between the illuminant estimation and
color matrix transformation modules to lead to a higher

color rendition accuracy. The terms of the extended color
correction pipelines are found by optimization. Experimen-
tal results on a standard dataset of RAW images show the
feasibility of the proposed extended pipelines whatever the
illuminant estimation algorithm used. Averaging over the
different illuminant estimation algorithms tested, the color
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correction pipelines proposed in [12] were able to improve
the color accuracy with respect to the standard color pro-
cessing pipeline up to 11.2 %. This improvement can be
raised up to 31.0 % using the most performing extended
pipeline proposed here.

As a future work, we plan to investigate the applicabil-
ity of the proposed pipelines to multispectral imaging and to
extend the methods to render scenes having multiple illumi-
nants.
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