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Adaptive Skin Classification Using
Face and Body Detection

Simone Bianco, Member, IEEE, Francesca Gasparini, Member, IEEE, and Raimondo Schettini, Member, IEEE

Abstract— In this paper, we propose a skin classification
method exploiting faces and bodies automatically detected in the
image, to adaptively initialize individual ad hoc skin classifiers.
Each classifier is initialized by a face and body couple or by a
single face, if no reliable body is detected. Thus, the proposed
method builds an ad hoc skin classifier for each person in the
image, resulting in a classifier less dependent from changes in
skin color due to tan levels, races, genders, and illumination
conditions. The experimental results on a heterogeneous data
set of labeled images show that our proposal outperforms the
state-of-the-art methods, and that this improvement is statistically
significant.

Index Terms— Skin classification, face detection, body
detection.

I. INTRODUCTION

THE detection of skin regions in color images is a
preliminary step in many applications, such as image

and video classification and retrieval in multimedia databases,
semantic filtering of web contents (through the definition
of medium-level features), human motion detection, human
computer interaction and video-surveillance. It can also be
useful in image processing algorithms, as well as in intelligent
scanners, digital cameras, photocopiers, and printers.

Many different methods for discriminating between skin
and non-skin pixels are available in the literature [1].
Vezhnevets [2] identified three types of skin modeling on
which skin detection methods are mainly based: parametric,
nonparametric, and explicit skin cluster definition models. The
hypothesis underlying these methods is that skin pixels exhibit
similar color coordinates in an appropriately chosen color
space, and that lighting conditions do not vary too much across
the images in the training and test datasets. The simplest, and
often applied, methods build what is called an explicit skin
cluster classifier which expressly defines the boundaries of the
skin cluster in certain color spaces [3]–[10].

Parametric models [11]–[13] assume that skin color distribu-
tion can be modeled by an elliptical Gaussian joint probability
density function. These parametric methods have the useful
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ability of interpolating and generalizing incomplete training
data; they are expressed by a small number of parameters, and
require very little storage space. However their performance
depends strongly on the shape of skin color distribution of the
training images in the selected color space.

In non-parametric skin modeling methods the skin color dis-
tribution is estimated directly on the basis of the training data,
without deriving an explicit model of the skin color [14]–[16].
The result of these methods is sometimes referred to as a Skin
Probability Map (SPM) [17], [18]. Non-parametric methods
can be quickly trained and theoretically does not make any
assumption on the shape of the skin color distribution.

All the methods considered when applied in real applica-
tions, may degrade their performance due to changes in camera
settings, illumination, people tans, makeup, ethnic groups, etc.
with respect to the training images. To solve the problem
of different imaging conditions, a color constancy approach
can be applied as a pre-processing step [7], [19]–[21].
As an alternative, dynamic adaptation techniques can be used,
in which the existing skin color models are transformed to
cope with changes in illumination conditions [16], [22]–[24].
Kakumanu et al. [1] presented a review of skin classification
approaches based on color constancy and dynamic adaptation
techniques. Khan et al. [25] analyze the effect of color
constancy algorithms on several color based skin classifiers.

Adaptive approaches exploiting face detection have been
proposed to cope not only with illuminant and environmental
conditions but also with differences among acquired subjects.
These methods are based on the assumption that at least
one reliable face is present in the image and has been reliably
detected. They differentiate among each other mainly in the
way they select skin pixels from the detected face(s) to be used
to train ad-hoc skin classifiers [26]–[28]. Bianco et al. [20]
showed that skin classifiers initialized by reliable skin pixels
extracted from faces outperform traditional methods, even
when they are preceded by a color constancy pre-processing
step.

In this paper we present an adaptive skin classification
method where individual skin classifiers are initialized by a
face and body couple or by a single face, if no reliable body
is detected. The main contributions of this work are:
− The use of both face and body detection to provide

more reliable initialization for the ad-hoc individual skin
classifier with respect to that initialized using face detec-
tion alone. Different strategies for selecting skin pixels
from detected bodies to be used as training sets are
investigated.
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Fig. 1. Operation flowchart of our automatic adaptive skin classification method.

− The design of an adaptive computational method that
does not make any assumption about the presence of
reliable faces/bodies in the image. Given an input image
the proposed method adaptively chooses between an a
priori defined skin classifier and ad-hoc skin classifiers
based on face and body detection.

An extensive comparison of the proposed method with respect
to the state-of-the-art on a heterogeneous dataset containing
images acquired under uncontrolled lighting conditions has
been carried out. The statistical significance of the improve-
ments obtained by our proposal are assessed using a non-
parametric statistical test.

II. THE PROPOSED APPROACH

The proposed skin classification method builds an ad-hoc
skin classifier for each person automatically detected in the
image. It exploits faces to initialize the individual ad-hoc
skin classifiers, that are then reinitialized if related bodies
are detected. The output of the individual classifiers are then
combined to obtain the final skin mask. If the face detector
does not find any face, an a-priori defined skin classifier in
the state of the art is used. The flowchart of the proposed
method is shown in Figure 1. There are two main blocks: the
former concerning the detection of faces and bodies, the latter
devoted to the skin classification. The output of the individual
skin classifiers are pooled and refined to produce the final skin
mask. All the parameters that are used in the processing blocks
and that do not vary on the basis of the actual face and body
detected, are found by optimization on a labeled dataset of
training images. The list of symbols and functions used by
the proposed method is reported in Table I.

A. Face-Initialized Skin Classifier

A face detector [29] is run on the input image I . If no
faces are detected, an a-priori defined skin classifier is used.
Otherwise a loop on all the detected faces f = {1, . . . , F} is
started. Given the current face f , all its pixels x are converted

TABLE I

LIST OF SYMBOLS AND FUNCTIONS

into the HSV color space and their luminance is normalized so
that V (x) = 0.5. To select the reliable skin pixels, an explicit
skin cluster classifier is used. It filters out pixels that are too
dark or too bright, and thus potentially clipped, if they satisfy
the condition V (x) > t1 ∨ V (x) < t2. Any pixel not belonging
to the feasible saturation and hue region of skin colors,
i.e. satisfying S(x) > t3 ∨ S(x) < t4 or t5 < H (x) < t6 is
also filtered out.

For each face detected in the image the color distribution
of the reliable skin pixels is modeled with a single Gaussian
g([H (x) S(x)]|μ,�) in the HS plane of the HSV color
space, where μ is the mean vector and � is the covariance
matrix. This is an adaptive skin classifier which builds a
different model for each face, that we call Adaptive Single
Gaussian (ASG). Each model is applied independently to the
whole image I by computing the probability p([H (x) S(x)]|g)
∀x ∈ I and generating a binary mask M f such that M f (x) = 1
if p([H (x) S(x)]|g) > t7. The pseudo-code for the ASG
classifier is reported in Algorithm 1. The optimal thresh-
olds [t1, . . . , t7] for the ASG classifiers are found from the
training images. These thresholds are fixed for all the detected
faces. If the body detector does not find any body attached to
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Algorithm 1 Pseudo-Code of the Adaptive Single
Gaussian (ASG) Classifier

the current face, the obtained skin mask M f is pushed to the
skin mask stack S, i.e. S( f ) = M f , otherwise it is used for
the re-initialization of the skin classifier as described below.

B. Body-Reinitialized Skin Classifier

Given the skin mask M f generated from the current face f ,
and the body detection mask B f associated to it, the ASG skin
classifier g([H (xb) S(xb)]|μ,�) is re-initialized using pixels
xb = {x ∈ I : M f (x) = 1 ∧ B f (x) = 1}.

In this work two different body detectors have been used
to generate the body detection masks B f . The former [30]
outputs a stickman representation of the detected body, while
the latter [31] outputs a contour for the detected body.
However, the first detector could give a similar output to
that of the second one, since it is based on a prior soft-labeling
of pixels to body parts or background. Viceversa the output
of the second detector could be transformed into a stickman
representation by mapping labeled parts to detected contour.

The stickman representation needs to be converted into a
mask to be used in our framework. To this end, for each body
part type b ∈ {head, torso, arm, forearm, thigh, lower leg},
the corresponding mask is obtained by dilation with a rec-
tangular structuring element. The width and height of this
element are proportional to the length lb of the detected
body part b: [w, h] = [wblb, hblb]. Two example images are
reported in Figure 2 with the stickman detection overlaid and
the mask obtained from it after dilation.

The second body detector used [31] gives as output a list of
poselets for which the corresponding classifiers fired together
with their confidence. We apply a threshold tp to retain only
the most confident detections. The final detected body mask is
generated by summing all the retained detections, normalizing

Fig. 2. Two example images with the stickman detection overlaid and the
mask B f obtained from it after dilation.

Fig. 3. The images of Figure 2 with the poselet detection overlaid and the
mask B f obtained from it after thresholding.

it by its maximum value, and binarizing it with a threshold tb.
The same original images of Figure 2 are reported in Figure 3
with the poselet detection overlaid and the mask obtained from
it after thresholding.

Whatever is the body detector used, the skin mask obtained
applying the re-initialized ASG classifier is pushed to the skin
mask stack S.

C. Skin Mask Pooling and Refinement

When the loop on all the faces is complete, the final skin
mask P for image I is obtained by max-pooling skin mask
stack S:

P(x) = max
f =1...F

S( f )(x). (1)

The final step of our proposed approach is the refinement
of the max-pooled skin mask P using the cross-bilateral
filter [32], [33]. The filtering expands the detected skin regions
adding neighbor pixels in P which are not separated by strong
edges. For each pixel xp ∈ P the cross-bilateral filter output
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is computed as:

P(xp) = 1

k(xp)

∑

xp′∈�

gd(xp′ − xp)gr (I (xp) − I (xp′))P(xp′)

(2)

where k(xp) is a normalization term:

k(xp) =
∑

xp′∈�

gd(xp′ − xp)gr (I (xp) − I (xp′)) (3)

The function gd(·) sets the weight in the spatial domain based
on the distance between the pixels, while the edge-stopping
function gr (·) sets the weight on the range based on intensity
difference. Typically, both functions are Gaussians with widths
controlled by the standard deviation parameters σd and σr

respectively.
The difference with respect to standard bilateral filter [34]

is that the edge-stopping function gr is computed on a dif-
ferent image from the one that has actually to be filtered,
i.e. gr(I (xp) − I (xp′)) instead of gr (P(xp) − P(xp′)).

We apply cross-bilateral filter to each RGB color channel
separately. The outputs P(k), k ∈ {R, G, B} of the three dif-
ferent cross-bilateral filters are then summed and normalized
by its maximum value, i.e.:

R =

∑

k∈{R,G,B}
P(k)(x)

max
x

∑

k∈{R,G,B}
P(k)(x)

(4)

R can be seen as a skin probability map. To obtain the
final skin classification mask, this map is then binarized
using the threshold tA and isolated detections are discarded
by removing all connected components with area smaller
than tB Iw Ih .

The cross-bilateral filter parameters σr , σd and the thresh-
olds tA, tB are found by optimization on the training
images.

III. EXPERIMENTAL SETUP

All the experimental results here reported were obtained
using as training set the Compaq dataset [14], and as test set
the Test Database for Skin Detection (TDSD) [35]. TSDS has
been chosen as test set since containing more uncorrelated
images than those available in video datasets [16], [36], and
more full-body images than ECU [37] where most of the
images are head-and-shoulder shots. TSDS contains a total
of 554 images where skin pixels have been manually labeled.
Each image contains at least one person. Several ethnic groups
are considered in the dataset, and they can vary both intra- and
inter-image. There are no restrictions on both face orientation
and body pose. Moreover, the people in group shots may
partially occlude each other. The images have been acquired
under various lighting conditions in terms of both illuminant
color and intensity. These conditions, that are assumed to be
unknown, vary both across images and within a single image.
Some examples of images belonging to the TDSD are reported
in Figure 4.

Fig. 4. Examples of images within the TDSD dataset.

A. Evaluation Procedure

To quantify the performance of our adaptive skin classifica-
tion method and compare the results with those obtained by
other methods in the state of the art, the following statistics
are used:

recall = TP

TP + FN
(5)

precision = TP

TP + FP
(6)

accuracy = TP + TN

TP + TN + FP + FN
(7)

by assigning pixel-level classification results as true
positive (TP), false positive (FP), false negative (FN), and true
negative (TN). To summarize the performance of each method,
we used F1-measure, which is defined as the harmonic mean
of precision and recall.

To assess if the difference in performance among the
different algorithms considered are statistically significant, we
have used the paired Wilcoxon Signed-Rank Test (WST) [38].
This statistical test permits the comparison of the whole dis-
tributions of the performance measure. Given two algorithms,
the WST is run on the corresponding Precision, Recall, and
Accuracy distributions on the whole dataset. For each of the
three different performance measures considered, a score is
computed. This score counts the number of methods with
respect to which the corresponding method has been consid-
ered significantly better.



4760 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 12, DECEMBER 2015

B. Benchmarking Algorithms

To benchmark our method we have considered both
pixel-based and face-based skin classifiers available in the
literature. All the methods have been implemented by the
authors.

Following Vezhnevets et al. [2] we group under the name
of pixel-based skin classifiers parametric, nonparametric, and
explicit skin cluster definition methods. As pixel-based skin
classifiers we here consider:− A parametric skin classification method based on a

Gaussian mixture model in the RGB color space [11].
− A non-parametric skin classification method introduced

by Chai and Bouzerdoum [39]. It uses the Bayes decision
rule for minimum cost to classify pixels into skin color
and non-skin color. Color statistics are collected from
YCbCr color space.

− An explicit skin cluster definition method originally intro-
duced by Tsekeridou and Pitias [6]. It works in the HSV
color space defining top and bottom boundaries of the
color skin cluster for each channel. In this work we use
the boundaries redefined in [10] which resulted in the
highest F1-measure.

As face-based skin classifiers we have here considered
four approaches: three of them are adaptive in the sense they
build a skin color model for each detected person; the fourth
one exploits faces to build an illuminant-invariant skin color
model. The face-based classifiers considered are:
− A dynamic skin color classifier presented by

Wimmer and Radig [26].
− An adaptive face-based classifier presented by

Liao and Chi [27].
− An enhanced face-based adaptive skin color model pre-

sented by Hsieh et al. [28].
− A skin classifier based on a Color Gamut Mapping [20],

hereafter called CGM. Similarly to [40] and [41], where
the accumulated skin pixels were used to estimate the
illuminant color with a gamut mapping approach, here
the accumulated skin pixels are mapped to generate an
illuminant-invariant skin gamut.

C. Investigated Instances of the Proposed Method

Four different instances of the proposed method are
compared:

BSR: implements the strategy described in Section II using
the skeleton representation [30] for the output of
the detected bodies. It relies on faces and bodies
automatically detected in the image, to adaptively
initialize individual ad-hoc skin classifiers. Each
classifier is initialized by a face and body couple or
by a single face, if no reliable bodies are detected.
If no faces are detected, the strategy uses the HSV
F1-measure pixel-based method.

BPR: differs from BSR by the body detector used: instead
of the skeleton representation, it uses the poselet
representation [31] for the output of the detected
bodies.

BS: differs from BSR by the edge-stopping function gr

used in the cross-bilateral filter (equation 2): the

bounding-boxes of the detected faces are converted
into masks which are max-pooled with the body
detection masks to give the joint face and body
detection mask J . The edge-stopping function gr

used is then gr (J (xp) − J (xp′)).
BP: is the same of BS but differs in the body detector

used: instead of the skeleton representation, it uses
the poselet representation [31] for the output of the
detected bodies.

D. Parameters Optimization

Both the proposed method and the benchmarking solutions
have been trained on an subset of 250 images taken from
an independent dataset of annotated images collected by
Jones and Rehg [14]. All the parameters of the proposed
method, the face-based methods and pixel-based methods have
been set to maximize the F1-measure. Parameters are found by
optimization using Particle Swarm Optimization (PSO) [42].
Given a skin classification method with a set of parameters
t1, . . . , tN to be optimized, each possible solution is seen as a
point p ∈ R

N . The skin classifier with parameters p is then run
on the whole training set, and the fitness function f computes
the median F1-measure. Since PSO is a population-based
stochastic optimization algorithm, its first step consists in a
random initialization of the particle position pi and velocity vi

for each particle i = 1, . . . , Np . The fitness function f is then
evaluated for each particle position pi to obtain f pi = f (pi).
The best known position of each particle pbi and the best
known position p� of the entire swarm are then initialized.
After the initialization, the iterative process is started and
repeated until the maximum number of iterations NI has been
reached. For each iteration j , particle positions are updated as

p( j )
i = p( j−1)

i + v
( j )
i (8)

with

v
( j )
i = w( j )v

( j−1)
i + c1U ( j )

1

(
pb( j−1)

i − p( j−1)
i

)

+ c2U ( j )
2

(
p� − p( j−1)

i

)
(9)

where [w( j ), c1, c2] are weights that respectively control the
importance of the inertia, the personal best influence, and the
global best influence terms; U ( j )

1 and U ( j )
2 are two random

numbers. The fitness function f is then evaluated for each
particle position p( j )

i to obtain f p( j )
i = f (p( j )

i ) and personal
best positions pbi are updated if f p( j )

i > f p( j−1)
i . Global

best position is also updated if ∃i such that f p( j )
i > p�.

In this work PSO is run with standard settings, i.e.: Np = 24,
NI = 100, w(1) = 0.9 with linear decay to w(NI ) = 0.4,
c1 = c2 = 2, and U ( j )

1 = U ( j )
2 ∼ U(0, 1).

IV. EXPERIMENTAL RESULTS

In this section we compare the performance of the different
strategies withing the proposed adaptive method with those of
the benchmarking methods on the TDSD dataset. We report
in Table II their performance in terms of median precision,
recall, and accuracy. The results are grouped with respect to



BIANCO et al.: ADAPTIVE SKIN CLASSIFICATION USING FACE AND BODY DETECTION 4761

TABLE II

PERFORMANCE OF PIXEL-BASED, FACE-BASED, AND BOTH FACE- AND BODY-BASED SKIN CLASSIFIERS IN TERMS OF MEDIAN PRECISION, RECALL,

AND ACCURACY. THE WST SCORES COMPUTED INDIVIDUALLY FOR EACH MEASURE ARE ALSO REPORTED

the type of skin classifier used: pixel-based, face-based, and
both face- and body-based. For all the classifiers exploiting
faces, the same face detector is adopted [29]. For a fair
comparison, for all the face-based methods, when no faces
are detected, the HSV F1-measure pixel-based method [10]
is used as it is the same pixel-based method used in our
adaptive strategies. In Table II the WST scores are also
reported: they are computed individually for the precision,
recall, and accuracy measures. The values of precision, recall,
and accuracy measures are color coded on the basis of the
WST score: the more saturated the color, the higher the WST
score. It can be noticed that face-based and face- and body-
based classifiers obtain the highest WST scores. Furthermore,
concerning accuracy, face- and body-based classifiers clearly
outperform both face-based and pixel-based classifiers.

In Figure 5 we report in the precision-recall plane how the
performance of the best pixel-based skin classifier (BAY, black
circle) improves by using algorithms exploiting high-level
cues: firstly adding face information (CGM, black square),
and then adding body information. The two different body
detectors used are respectively plotted in different colors: the
red and blue triangles represent BPR and BSR, the red and
blue stars BP and BS respectively. On the same plot iso-F1
curves are also reported. From the plot it is possible to see
that the addition of face information is able to increase the
F1-measure by 3.6% (CGM) with respect to the best pixel-
based method (BAY). Adding body information always
improves the F1-measure for all the proposed strategies.
In particular BSR improves F1-measure by 7.2% with respect
to BAY, while BPR by 7.9%. Using body information as
done in BS and BP (red and blue stars) results in strate-
gies more precision-oriented, while BSR and BPR (red and
blue triangles) result in strategies more recall-oriented. The
body detector used in BS and BSR (stickman: red star and red
triangle) results in classifiers more recall-oriented, while the
one used in BP and BPR (poselet: blue star and blue triangle)
results in classifiers more precision-oriented.

Two example images taken from the TDSD dataset on
which the proposed strategies reach the highest and lowest
F1-measure values are respectively reported in Figure 6 and 7.

Fig. 5. Performance in terms of F1-measure of the following skin classifiers:
the best pixel-based skin classifier (BAY black circle); the best face-based
skin classifier (CGM black square); and our four body-based skin strategies
(BP blue star, BPR blue triangle, BS red star and BSR red triangle).

For each example we report the original image, the ground
truth skin mask, the skin probability map R (see equation 4)
for the proposed strategies BSR and BPR, and the correspond-
ing final skin masks obtained by thresholding R as described
in section II-C with the thresholds found by optimization on
the training set.

For the images in Figure 6 it is possible to see that both the
BSR and BPR strategies produce very good skin classification
results although some false positive and false negative regions
are present.

Concerning the worst results, a deeper analysis is needed.
In order to support the analysis of the results, the face and
body detections for both images of Figure 7 are reported in
Figure 8.

The low performance for both BSR and BPR in the
first image is caused by a low classification precision. In fact,
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Fig. 6. Images with the highest F1-measure for the BSR (first row), and BPR (second row).

Fig. 7. Images with the lowest F1-measure for the BSR (first row), and BPR (second row).

there are background pixels that are too similar to the skin tone
of the detected face (see the corresponding skin probability
maps reported in Fig. 7). For images where the background
color is similar to the skin tone, the precision of the classifier
can be increased by using BS or BP strategies, as can be seen
in Figure 9 where the output of BS is reported.

The low performance in the second image is due to a low
classification recall caused by the reddish tone of the skin.
The most part of the face pixels are judged to not belong to
the feasible hue region of skin colors. This can be seen in

the corresponding skin probability maps reported in Figure 7,
where probability on the right-side of the face is almost zero
and on the left-side is very low. For this particular image,
the exclusion of the constraint on the feasible hue region
of skin colors (found by the optimization procedure on the
training set) would generate much better results, as can be
seen in Figure 10.

At first, such a constraint could seem a limitation. However,
it has been designed to discard false positive face detections
with unfeasible color that should not be used to initialize
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Fig. 8. Faces and bodies detections for the two images on which the proposed
strategies reach the lowest F1-measure values. Face and body detections used
by BSR (a and c), and BPR (b and d).

Fig. 9. Output of the BS skin classifier applied to the image of the first row
of Figure 7.

the ASG. An example of the usefulness of this feature can be
seen in Figure 7 (first row), where the skin probability map
in the region of the false positive face detection (i.e. Face #3
in Figure 8.a) is almost zero. Another illustrative example is
shown in Figure 11, where an input image with girls with
painted faces is reported. The top left image contains the
bounding boxes of the detected faces overlaid on the original
image; the others contain the output of all the face-based skin
classifiers considered in this paper. Comparing the outputs of
the different face-based skin classifiers it is possible to see
that CGM and ASG are the only ones which reach the highest
precision by discarding red, white, and blue pixels as they not
belong to the feasible hue region of skin colors.

Two additional examples in which more than a person
is present are reported in Figure 12. They are relative to
the BPR method, whose optimal parameters are reported
in Table III. This has been chosen among the four proposals

Fig. 10. Output of the BSR skin classifier applied to the image of the
second row of Figure 7 excluding the constraint on the feasible hue region of
skin colors.

Fig. 11. Original image with detected faces (top left). Skin classification
output: Wimmer [26] (top right); Liao [27] (center left); Hsieh [28] (center
right); CGM [20] (bottom left); ASG [20] (bottom right).

as being the one with the highest F1−measure. For each
example we report: a) the original image with the detected
faces overlaid; each face region is used to initialize an ad-hoc
individual skin classifier; b) a visualization of the detected
bodies using poselets; c) the binarized body masks, where
for better visualization color contours are used to identify
each different body region. Each of these masks is used to
reinitialize the ad-hoc individual skin classifier; d) the result
obtained using the proposed BPR method; e) the ground truth;
f) the result obtained by HSV F1−measure method, which is
the pixel-based method that is used in our proposals when
no faces and bodies are detected. In the first example it is
possible to see that a false positive face is detected (i.e. Face #4
in Fig. 12.a). This face is filtered out by the ASG skin classifier
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Fig. 12. Original image with detected faces (a); detected bodies using poselets (b); binary masks used to reinitialize the ad-hoc individual classifiers (for
visualization color contours are used to identify the different body regions) (c); skin classification output of the proposed BPR method (d); ground truth (e);
output of HSV F1−measure [10] (f).

TABLE III

OPTIMAL PARAMETERS FOUND BY PSO FOR BPR

and thus it is not used to reinitialize ASG (see Fig. 12.c).
In the second example we can notice that four bodies are
detected (Fig. 12.b). The left-most one is not a false positive
detection, but it is not used to reinitialize ASG (see Fig. 12.c)
since no corresponding face was detected (Fig. 12.a). The
examples confirm that the performance of pixel-based skin
classifiers can be improved by exploiting high-level cues,
especially in the presence of skin-like backgrounds.

V. CONCLUSIONS

In this paper we have presented a fully automatic adap-
tive skin classification method that outperforms existing skin
classifiers in case of images with a great variability in
terms of illumination conditions, tan levels and races. Our
method builds an ad-hoc skin classifier for each person in
the image. The proposed method adaptively chooses between
pixel-based, face-based, and both face- and body-based skin
classifiers, on the basis of the detection results of both face
and body detectors. In the experimental results we have shown
that the performance of pixel-based skin classifiers improves
incrementally by adding firstly face information and then
body information. Four different strategies of our proposed
method have been evaluated showing that skin classification
methods that rely on body information outperform existing
methods, whatever the body model adopted (BSR and BS
versus BPR and BP) and the way to integrate body information
(BSR and BPR versus BS and BP). Different body models and

way to integrate body information result in skin classifiers
more precision or recall oriented. Our experimental results
report the performance of our proposals taking into account all
the eventual face and body detector errors and the statistical
significance of the improvements.
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