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Local Visual detectors and descriptors have been studied for many years, but their applications 
(e.g. mobile visual search) in large volume, low-cost, low-power embedded systems have been limited or 
negligible to date. One reason is the lack of a worldwide industry standard. MPEG Compact Descriptors 
for Visual Search (CDVS) working group filled this gap by defining a high-performance extraction 
stage and the bitstream syntax at its output in order to achieve interoperability between different 
implementations of clients and servers. In a previous work, we presented an analysis of various gray-
level interest point detection and description algorithms, which was also contributed to CDVS. This 
work extends the previous analysis using the MPEG CDVS Test Model framework to consider additional 
detectors and the use of color descriptors.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Searching content among billions of images is a very complex 
task. Text-based, low-level and semantic approaches are widely 
used but have proven to be less than satisfactory when dealing 
with massive amount of data stored on the server side, that may 
be dynamically and frequently updated, which led to the process-
ing of queries by other means, such as the visual ones at the core 
of Content Based Image Recognition (CBIR). CBIR covers the con-
cept of object search which analyzes the visual content in the 
image, rather than relying on metadata. Many algorithms and tech-
niques from fields such as statistics, pattern recognition and com-
puter vision were incorporated into CBIR. CBIR has attracted a lot 
of attention after many years of research and is expanding into the 
marketplace. CBIR’s adaptation to smartphones and tablet context, 
named Mobile Visual Search (MVS) [1] presents a much more intu-
itive, seamless, direct way of retrieving information, thus acting as 
required technology to enable Augmented Reality (AR) with a com-
pletely new perspective: pixels are representing “a kind of natural 
marker”. The idea is to interact with the instance of an object itself 
without intermediation of explicit markers [2].

As a simple scenario, the user takes a photo of a rigid, man-
made object and retrieves content and information about it from 
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a remote server, in the form of audio, video, and 3D graphics aug-
mentations [3,4].

Many state-of-the-art algorithms are available to achieve the 
goal of local visual feature extraction and compression. However, 
in order to avoid confusing adopters and implementers of Mobile 
Visual Search client and server systems, and to enable interoper-
ability between them and visual search applications, given such 
a variety of methods, the Moving Picture Experts Group (MPEG) 
started in 2010 a standardization initiative called Compact De-
scriptors for Visual Search (CDVS) [5]. CDVS specifies two proce-
dures for descriptor comparison in visual search systems, pairwise 
matching and retrieval, that can be implemented as two pipelines 
in real systems. The pairwise matching pipeline automatically ver-
ifies whether two images depict the same objects or scene. The 
retrieval pipeline accomplishes the search and match of images 
contained in a large collection that depict the same objects or 
scenes as those depicted by a query image.

This paper investigates the use of different detectors and color 
descriptors in the CDVS framework. We demonstrate the advan-
tages of using color descriptors on both the five standard CDVS 
datasets and on a new dataset introduced here. The rest of the pa-
per is organized as follows: Section 3 presents the detectors and 
descriptors used for comparison, Section 4 describes the exper-
imental setup, while Section 5 introduces the six datasets used. 
Experimental results are reported in Section 6, and finally in Sec-
tion 7 conclusions are drawn.
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2. CDVS Test Model

CDVS [5] is a technology in the last phase of the ISO stan-
dardization process that will enable the design of efficient and 
interoperable visual search applications and in particular the de-
velopment of technologies for visual content matching from still 
images. Visual content matching includes matching of views of ob-
jects, landmarks, and printed documents that is robust to partial 
occlusions as well as changes in vantage point, camera parame-
ters, and lighting conditions. It has the goal of defining a standard 
bitstream, which encodes in compressed form the information re-
quired to perform a search on the server’s side. The information 
encoded consists of a global descriptor, which is a digest com-
puted from compact descriptors features extracted from the image, 
a compressed descriptor and the associated coordinates.

The CDVS Test Model (TM) [5] implements the required func-
tionality for the extraction and comparison of compact descriptors 
constrained to a set of predetermined descriptor lengths.

In particular, two procedures for descriptor comparison are im-
plemented in TM, aiming at reproducing two fundamental tasks 
for real visual search systems: pairwise matching and retrieval. The 
former regards automated verification of whether two images de-
pict the same objects or scene; in this case, descriptors extracted 
from a query image are matched against the descriptors of a ref-
erence image, in order to determine whether they match or not. 
The latter regards the search and discovery of images contained 
within a large collection that depict the same objects or scenes as 
those depicted by a query image; this requires the database im-
ages to be processed for the creation of a database which may be 
searched using the descriptors extracted from the query.

The Pairwise Matching Stage compares the query and reference 
image descriptors to determine if the images depict the same ob-
ject or scene. It uses first local descriptor matching and if the score 
is below a threshold, it performs global descriptor matching. If the 
final score is greater than a threshold, the images likely depict the 
same objects (a match), otherwise the object are different (a non-
match).

The Retrieval Stage searches and retrieves relevant images, be-
longing to a large collection, that depict the same object or scene 
represented in the query image. At first, an off-line step processes 
the collection to create a database of local and global visual de-
scriptors which can be matched against the descriptors extracted 
on the fly from the query. The retrieval stage performs a search 
in two steps, first using global descriptor to select a shortlist of 
matching images and then using the shortlist in the next step to 
compare encoded local descriptor using the Hamming distance. 
The final ranking score and inlier selection is computed by a 
geometric consistency check performed to determine the inliers 
among the interest point matches for the two images. The TM uses 
the histogram of logarithmic distance ratios (LDR) [6].

3. Algorithms considered for comparison

3.1. Gray-level algorithms

In this section we describe the set of gray-level algorithms 
evaluated in our previous work [7]. LoG (Laplacian of Gaussian) 
and SIFT (Scale-Invariant Feature Transform) [8,9] were the al-
gorithms adopted, respectively, for keypoint detection and local 
visual description in the CDVS Test Model ver. 10 [10]. The fol-
lowing implementations have been considered for testing: Origi-
nal Lowe’s binary code [8,9]; VLFeat [11] and the OpenCV library 
implementation [12]. Different affine-invariant keypoint detectors 
[13] were investigated together with the VLFeat SIFT descriptor: 
Hessian, Hessian Laplace, Multiscale Hessian, Harris–Laplace, Mul-
tiscale Harris and Difference of Gaussians (DoG). These detectors 
Table 1
Gray-levels algorithms investigated.

Name Patent Reference

SIFT detector and descriptor Patent US 6711293 B [9]
SURF detector and descriptor Patent US 8165401 B [14]
Harris detector Free [13]
Hessian detector Free [13]
FREAK descriptor Free [15]
KAZE detector and descriptor Free [16]
A-KAZE detector and descriptor Free [17]

Table 2
Evaluated color descriptors.

Name Dimension Fusion Reference

RGB SIFT 384 Early [18]
Opponent SIFT 384 Early [18]
Transformed Color SIFT 384 Early [18]
HSV SIFT 384 Early [18]
C-SIFT 384 Early [18,19]
rg SIFT 256 Early [18]
oRGB SIFT 384 Early [20]
Hue SIFT 164 Late [18]
Color Names 139 Late [21,22]
Fuzzy Sets Color Names 139 Late [23]
Discriminative Color 139, 153, 178 Late [24]

normalize the image patch around each detected interest point ac-
cording to the estimated affine transformation. They also differ in 
the strategy used to achieve scale-invariance: Laplace automatically 
selects a single characteristic scale of a keypoint, whereas Multi-
scale may associate multiple scales to the same keypoint.

The other gray-levels algorithms that were considered are: the 
OpenCV SURF (Speeded-Up Robust Features) [14] implementation; 
the OpenCV FREAK (Fast Retina Keypoint) [15] implementation 
which uses SURF as the keypoint detector, and the KAZE [16] and 
A-KAZE [17] original code.

All tests were made with the default parameters for each al-
gorithm with the exception of the response filter threshold. This 
parameter was set so each detector produced on average about 
1000 keypoints per VGA image, therefore controlling the num-
ber of interest points generated. Indeed the distinctiveness of the 
descriptors produced was analyzed instead of their quantity; there-
fore their quantity was limited to make fair comparisons. More-
over, in the CDVS processing pipeline the detected keypoints and 
their descriptors must be sent over the network to a server and, 
since the network is bandwidth constrained, it was reasonable to 
limit the maximum number of keypoints produced as an attempt 
to fit their binary representation into the network bitrate available. 
Table 1 lists the investigated gray-levels algorithms with their li-
censes and links to sources or binaries.

3.2. Color descriptors

As an extension to the quantitative comparison presented in the 
previous work [7], and to evaluate the impact on the accuracy of 
the visual descriptors when used on the color components, further 
experiments using color descriptors have been carried out. Table 2
lists all the algorithms considered for comparison.

Color descriptors can be classified in two classes depending on 
the approach used to combine the shape (luminance) and color 
information [18,25,26]. Some algorithms make use of an Early Fu-
sion approach and others adopt a Late Fusion approach. As defined 
by Khan et al. [26]: “Early fusion combines shape and color at 
the pixel level, which are then processed together throughout the 
rest of the description pipeline. In late fusion, shape and color are 
described separately from the beginning and the exact binding be-
tween the two features is lost.”
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Basically, every Early Fusion description pipeline considered 
consists of the following steps:

1. Transformation of the image channels into a specific color 
space.

2. Computation of SIFT descriptor on each color space channel.
3. Concatenation of descriptions computed over each channel.

Specifically RGB SIFT [18] computes SIFT descriptors on the 
original red, green, and blue channels of the image and then con-
catenates them, thus keeping the image in its original color space. 
Opponent SIFT [18] instead applies the following transformation 
from RGB to opponent color space O 1 O 2 O 3:

⎛
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Transformed Color SIFT [18] normalizes the RGB channels indepen-
dently into zero-mean and unity-variance R ′G ′B ′ channels:
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where μC is the mean and σC the standard deviation of the dis-
tribution in channel C = {R, G, B}. HSV SIFT [18] computes SIFT 
descriptors over all three channels of the HSV color model:⎛
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where α = (2R − G − B)/2 and β = √
3(G − B)/2. C-SIFT [18,19]

applies the C-invariant [27] to the O 1 and O 2 channels of the 
opponent color space to eliminate the remaining intensity infor-
mation from these channels. This can be intuitively seen as the 
normalized opponent color space O 1/O 3 and O 2/O 3. The rg SIFT 
transforms the image in the normalized RGB color model, where 
the chromaticity components r and g describe the color informa-
tion (b is omitted since it is redundant as r + g + b = 1):⎛
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The last Early Fusion color descriptor considered, i.e. oRGB SIFT 
[20], maps the image into oRGB color space, which is an opponent 
color space that is ideal for RGB computation [28]. The mapping 
consists in two steps: the first one is a linear transformation from 
RGB to LC1C2:⎛
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The second one is the transformation from LC1C2 to oRGB, which 
consists in a compression or decompression of angles depending 
on which quadrant the linearly transformed point ends up in [28].

Conversely, every Late Fusion description pipeline extracts the 
shape information from the gray-level image. Then, the color de-
scriptor is computed directly from the original image. Finally, the 
shape and color descriptions are merged as follows:

1. Normalization of the two parts separately (color and shape de-
scriptions).
Fig. 1. Late Fusion vs Early Fusion. The Late Fusion approach computes the color 
descriptors from the original image and the shape descriptors from a gray-levels 
image; while the Early Fusion approach computes all the descriptors from every 
color channel (shape and color information are correlated) and then merges them.

2. Multiplication by a fusion factor depending on the specific de-
scriptor.

3. Concatenation (of the color and shape descriptors).
4. Normalization of the overall description.

Fig. 1 depicts the pipelines of the Early and Late Fusion ap-
proaches.

All the Late Fusion descriptors, with the exception of the Hue 
SIFT algorithm [18], require a prior training phase which deter-
mines a quantization function to map each RGB pixel value into 
a probability vector defining the likelihood of an RGB pixel value 
to represent a certain color. Every algorithm is characterized by a 
unique and specific methodology to build the map function. Hue 
SIFT introduces a concatenation of the robustified hue histogram 
with the SIFT descriptor. The hue histogram is made more robust 
by weighing each sample of the hue by its saturation, since the 
certainty of the hue is inversely proportional to the saturation. 
Color Names descriptor [22] is trained from weakly labeled im-
ages returned by Google Image search. Fuzzy Sets Color Names 
function [23] trains by using parametric membership functions 
defined on the basis of psychophysical data obtained from a color-
naming experiment. Both the methods based on Color Names are 
inspired from [26]. Each keypoint is described with a gray-scale 
SIFT concatenated with the Color Names descriptor computed as 
follows: the image patch centered on the keypoint (whose width 
depends on the keypoint scale) is scaled to a fixed size, and for 
each pixel the Color Name descriptor is computed. The descriptors 
are weighted by a Gaussian peaked on the center of the resized 
patch, and then normalized. The Discriminative Color Descriptor 
[24] performs its training phase by using a statistical method based 
on information theory: it learns color descriptors which have opti-
mal discriminative power for a specific classification problem. The 
problem of learning a color descriptor is solved by finding a par-
tition of the color space using the Divisive Information-Theoretic 
Clustering (DITC) [29].

The computational complexity of color descriptors strongly de-
pends on the fusion approach adopted. Every Early Fusion algo-
rithm reveals a complexity about three times higher than that 
of the SIFT descriptor computed on the same gray-levels image 
(except for the rg-SIFT which is about two times higher). The com-
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Fig. 2. Evaluation pipeline.

putational complexity of every Late Fusion algorithm is consists of 
the sum of the complexities of the following steps:

1. SIFT algorithm (computed on the gray-levels image).
2. Pyramid construction.
3. Color quantization by means of a lookup-table (with the com-

plexity depending on the number of keypoints and their size).

Because the MPEG CDVS local visual descriptor is based on SIFT, 
and because added complexity and memory must be minimized 
to avoid increasing the cost of embedded systems, the Late Fu-
sion algorithms offer a much better opportunity to limit the extra 
complexity than the Early Fusion methods, since lookup tables are 
much cheaper to implement using Read Only Memories (ROMs).

In Table 2, for every color descriptor evaluated, the type of fu-
sion approach and the dimension (in bytes) of the color description 
produced is reported. To perform fair comparisons, every color de-
scriptor was associated with the same keypoints detector (i.e. the 
VLFeat implementation of SIFT). Detection phase was performed on 
the gray-levels image.

4. Experimental setup

A Pairwise Matching Experiment was performed on different 
datasets in the framework of the CDVS Test Model [10]. In this ex-
periment, a reference image was compared with an image describ-
ing the same object (or scene) taken under different illumination 
conditions, with different acquisition devices, and from different 
points of view. Fig. 2 shows the complete evaluation pipeline.

Descriptors matching was accomplished by Euclidean distance 
for integer descriptors (i.e. SIFT, SURF, KAZE, A-KAZE) and by Ham-
ming distance for binary descriptors (i.e. FREAK). The ratio test on 
candidate matches was the same proposed by Lowe [9]. Let a1 be 
a descriptor from image A, b1 and b2 the most and second most 
similar descriptors from image B , and dist(·, ·) the distance func-
tion between two descriptors. If:

dist(a1,b1)

dist(a1,b2)
< threshold (6)

then the candidate match (a1, b1) was accepted as the best match 
candidate, otherwise it was rejected. The value of threshold was 
empirically set. All the accepted matches were further evaluated 
Table 3
Datasets adopted in the MPEG CDVS test model.

Dataset MP NMP Origin

1. CDs, DVDs, books, 
business cards (Mixed 
text + graphics)

3000 29,903 Stanford Mobile 
Visual Search

2. Museum paintings 363 3639 Stanford MVS
3. Video frames 399 3999 Stanford MVS
4. Landmarks and buildings 

(Zurich, Turin)
1789 17,948 ZuBud, Telecom 

Italia
5. Common object or scenes 2549 21,307 University of 

Kentucky

by a geometric consistency check. This was done using the Loga-
rithmic Distance Ratio [6] algorithm.

The image pair scores were computed using all the geometric 
consistent matches. First, an image correspondence score based on 
all matches was computed as follows:

w =
∑

all matches

⎛
⎝cos

⎛
⎝π

2

√
dist1

dist2

⎞
⎠

⎞
⎠ (7)

where dist1 and dist2 are the best distance and the second best 
distance for each match. Then, the image correspondence score 
was transformed by mean of the following equation to obtain the 
final Image Pair Score (IPS):

IPS = w

w + wmThresh
(8)

where wmThresh is a threshold that was empirically found for each 
detector/descriptor couple. Image pairs with IPS > 0.5 were con-
sidered a match.

All images were resized to VGA resolution (i.e. minor and ma-
jor axis length equal to 480 and 640 pixels respectively). Results 
were reported in terms of True Positives Rate (TPR) at a given 
level of False Positives Rate (FPR) (also called False Accept Rate 
or FAR).

5. Datasets

For the gray-level descriptors comparison, the experiments 
were performed on five datasets of different objects, whereas for 
the color descriptors, the experiments were performed on the five 
datasets plus a recent additional dataset that we entitled “Super-
Market Milan”.

The CDVS standard datasets are listed in Table 3, together with 
the number of Matching Pairs (MP) and Non-Matching Pairs (NMP) 
provided as ground-truth.

The “Mixed-text + Graphics”, “Museum paintings”, and “Video 
frames” datasets were collected by the Stanford Mobile Visual 
Search research group. “Mixed-text + Graphics” consists of 2500 
images of five different categories of objects: CDs, DVDs, books, 
text documents and business cards. The “Video frames” dataset 
contains 500 images captured by a mobile phone camera shoot-
ing a TV screen. Pictures in these three datasets have been shot 
with different cameras and various different lighting conditions, 
rotations, scales, and viewpoints. Fig. 3 depicts an object from the 
“Mixed-text + Graphics” dataset.

The “Landmarks and Buildings” dataset includes images from 
two different origins: “Zurich Buildings” dataset and “Turin” 
dataset. “Zurich Buildings” contains pictures of 200 buildings in 
Zurich, shot by two cameras under different viewing conditions 
whereas dataset “Turin” contains images of 180 landmarks/build-
ings in Turin, Italy. 1440 images are still images and 540 images 
were extracted from videos. Pictures in this datasets exhibit dif-
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Fig. 3. Images of a typical object (DVD) from the “Mixed-text + Graphics” dataset.

Fig. 4. Images of the same building from different views from the “Turin” dataset.

Fig. 5. Images of the same object from different views from the “Common objects 
and scenes” dataset by University of Kentucky.

ferent point of views of the same landmark/building, occlusions 
and strong light changes. Example images taken from the “Turin” 
dataset are depicted in Fig. 4.

The fifth dataset depicts “Common objects or Scenes” collected 
by University of Kentucky. It contains 10,200 images of 2550 differ-
ent objects/scenes, each shot from 4 different views. Typical image 
transformations include rotation, different scales, different points 
of view and slight changes in illumination. Fig. 5 shows different 
shots of a typical object from this dataset.

5.1. SuperMarket Milan dataset

“SuperMarket Milan” is a recent ad-hoc dataset composed of 
1686 photos of various supermarket products. This dataset was 
specifically created to test the CDVS Test Model [10] on a new 
use case and to report the ability of the model to recognize goods 
commonly available at supermarket premises.1 Photos were taken 
under different illumination conditions in different types of phys-
ical locations (e.g. home and supermarket shelves). Different cam-
era devices acquired the photos, i.e.: iPhone 4, iPhone 3, Samsung 
Next Turbo, Samsung S Advance, Samsung Galaxy S3, Lg Opti-
mus L5, and LG Nexus 4. Image resolution ranges from 0.1 to 
5.0 MegaPixels. An annotation file containing the coordinates of 
vertices of the bounding quadrilateral enclosing the object is asso-
ciated to each image.

The dataset is composed of reference and query images. The 
reference images are photos of objects taken with the iPhone 4 in 
the best environmental conditions, which means, for example: no 
objects in the background, no portions of the object are occluded, 
etc. The query images are photos of the object in its context, either 
on the supermarket shelf or at home. Fig. 6 shows an example of 

1 The “SuperMarket Milan” dataset was presented at the 105th MPEG Meeting 
(Vienna) and tested on the CDVS Test Model. The dataset is available by contacting 
the authors.
Fig. 6. Images of the same object from different points of view from “SuperMarket 
Milan” dataset.

Fig. 7. Examples of color significant products from the “SuperMarket Milan” dataset.

an object. The left photo represents the reference image and the 
others are examples of queries.

There are 1697 query images and 430 reference images (total 
2127). About four query images for each reference. Two different 
pairwise matching experiments were conducted with the “Super-
Market Milan” dataset. In the first experiment (noted as 6a in 
the rest of this paper) all the matching and non-matching pairs 
have been chosen randomly. In the second experiment (6b), the 
matching pairs were also chosen randomly, but the non-matching 
pairs were chosen randomly among the photos of so-called color 
significant products. In particular, this experiment measured the 
discriminative power of color descriptors. The phrase “color signif-
icant products” refers to products that differ from each other’s by 
color and not by shape. Fig. 7 shows examples of color significant 
products.

For the pairwise matching experiment 6a a total of 3350 MP 
and 33,506 NMP are provided; 250 MP and 2522 NMP are instead 
provided for the experiment 6b. For the retrieval experiment 1686 
queries are provided.
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Fig. 8. Plots of the TPR (a), FPR (b), MAP (c) and Top Match (d) with respect to descriptor length for all the datasets considered.
6. Experimental results

6.1. CDVS Test Model—SuperMarket Milan dataset

According to the MPEG CDVS Evaluation procedure protocol 
[30], a full characterization of the Test Model was performed on 
the “SuperMarket Milan” dataset. The results were evaluated using 
two types of experiments: retrieval and pairwise matching. Both 
experiments were done on the six different datasets described in 
the previous section. Results were reported for the following oper-
ating points (upper bounds on average descriptor lengths in each 
experiment): 512, 1K, 2K, 4K, 8K, 16K bytes as query length.

The results for the retrieval and pairwise matching were evalu-
ated using different sets of measures. Retrieval results were mea-
sured in terms of Mean Average Precision (MAP) and success rate 
for Top Match.

Pairwise matching results were measured in terms of Success 
Rate (i.e. TPR) at the average FPR of 1%. In fact, the CDVS Test 
Model is optimized to give an average FPR of 1% on the five stan-
dard CDVS datasets (i.e. dataset 1 to 5). The performances relative 
to the new datasets (i.e. 6a and 6b) have been obtained apply-
ing the Test Model as is. Results of the pairwise matching ex-
periment 6a were in line with those of the other datasets. The 
success rate varied between 76.60% for lower bitrate descriptors 
and 92.78% for higher bitrate descriptors (i.e. 8k) and the range of 
FPR was from 0.62% for the highest bitrate descriptor to 1.35% for 
the lower bitrate descriptors (i.e. 512–2k). The plot of the success 
rate and FPR with respect to descriptor length for all the datasets 
considered are respectively reported in Fig. 8(a) and Fig. 8(b).

For the pairwise matching experiment 6b, Success Rates val-
ues were similar to those of the experiment 6a (see Fig. 8(a)), but 
FPR showed important differences. The range was from 37.83% to 
65.94%. The highest level of FPR for this experiment was found in 
the highest bitrate descriptor, as can be seen in Fig. 8(b).

These levels showed a clear inability of the Test Model to dis-
criminate “color significant products” (as previously defined). In 
particular, high levels of Success Rate, demonstrated the ability of 
the Test Model to recognize the class of object of dataset 6 (i.e. 
“SuperMarket Milan” dataset) but high levels of FPR also revealed 
that the current Test Model was not able to differentiate between 
two similar objects. As a consequence, the average FPR levels were 
extremely high.

On the Retrieval experiment, MAP values of datasets 6a and 6b 
were similar to those of the datasets 4 and 5. While datasets 1, 
2 and 3 had high levels of MAP (i.e. from 76.56% to 95.78%), 
datasets 4 and 5 showed lower MAP levels (from 56.34% to 77.42%). 
The retrieval experiments 6a and 6b, concerning the “SuperMar-
ket Milan” dataset showed levels slightly lower than those of 
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datasets 4 and 5: from 53.34% to 75.06%. The Top Match suc-
cess ratios were very low with respect to those of the others 
datasets. The normal range for this value was between 72.78% and 
96.27% while the range of Top Match values of the retrieval exper-
iments 6a and 6b were from 55.52% to 75.33%. As expected, the 
Top Match values for the experiment on dataset 6b were slightly 
lower than those on dataset 6a. The plot of MAP and Top Match 
with respect to descriptor length for all the datasets considered 
are respectively reported in Fig. 8(c) and Fig. 8(d).

The retrieval data confirmed what could be deduced from the 
pairwise experiment results. Retrieval of SuperMarket Dataset ob-
jects was slightly more difficult compared to other kinds of objects 
of the CDVS Test Model dataset because of the shape of the su-
permarket objects themselves. Moreover the Top Match statistics 
showed that the current algorithms of the Test Model were not 
highly discriminative for this category of objects and in particular 
they were troubled by very similar “color significant products”.

Given the low performance of the CDVS Test Model on the 
datasets 4, 5, and 6, in the next subsections a set of gray-level and 
color descriptors will be tested. The experiment is aimed to see if 
there are alternative descriptors that can consistently improve the 
performance on all the datasets with respect to those obtained by 
the descriptor actually used in the CDVS Test Model.

6.2. Gray-level descriptors

To test detectors and descriptors, two different types of exper-
iments were conducted and reported for each dataset. In the first 
experiment, all the detected keypoints were used in the matching 
phase. This experiment aims to assess the upper bound perfor-
mance of the descriptors outside the CDVS Test Model framework. 
In the latter experiment, a selection of the most discriminant 1024 
detected keypoints was made on the basis of the strength of the 
filter response before the matching phase was performed. This ex-
periment follows the CDVS guidelines, and uses the Test Model 
disabling the descriptor compression step, which has to be de-
signed ad-hoc for each different descriptor.

True Positives Rates (TPR) were measured at two different levels 
of FPR: 10% and 1% (as MPEG CDVS requires). The obvious expecta-
tion is that the measured TPR should not be lower for any image at 
the higher FPR level. This expectation was confirmed by the exper-
iments reported in Figs. 9 and 10. Concerning gray-level detectors 
and descriptors, KAZE performed equal or better than SIFT on the 
third, fourth and fifth datasets. SURF obtained very good results on 
the first three datasets. FREAK performed worse than SURF on all 
the datasets. Performance of A-KAZE are always lower than those 
of KAZE.

Affine invariant detectors, as expected, worked well under 
viewpoint changes. Their overall results were poorer than the SIFT 
and KAZE algorithms for all datasets, except for the “Video Frames” 
dataset. Conversely, on the “Landmarks and Buildings” dataset, 
affine invariant detectors achieved the best performances among 
all the algorithms. Limiting the number of keypoints to 1024 par-
ticularly affects the performance of some descriptors: DoG, Harris 
Laplace, Hessian Laplace, Multiscale Harris, Multiscale Hessian, 
SURF-FREAK, and SURF. This is particularly evident on datasets 1 
to 5 where the loss in TPR shows a magnitude up to 0.20 (SURF-
FREAK on dataset 2). The loss in TPR is much lower on datasets 6a 
and 6b, where the magnitude is lower than 0.032.

Table 4 shows the average computational time required by each 
algorithm to detect the keypoints and extract the features. Indeed 
a point of focused attention was not only the accuracy aspect of 
these algorithms but also their complexity as a measure of the 
computational burden on the implementation. For each detector 
the filter response threshold value, the average number of key-
points detected, and the average overall time spent for detection 
Table 4
Filter response threshold value, average number of keypoints detected, and average 
overall time spent for detection and description. Timings have been taken on the 
images belonging to the “Mixed text + graphics” dataset (scaled at VGA resolution).

Algorithm Peak 
threshold

Number 
of points

Comput. 
time (s)

DoG 3.0e2 869.6 0.981
Hessian (VLFeat) 3.0e2 1061.7 1.074
Hessian Laplace (VLFeat) 3.5e2 1138.2 0.940
Harris Laplace (VLFeat) 1.0e4 1068.3 1.797
Multiscale Hessian (VLFeat) 4.0e2 1565.1 0.908
Multiscale Harris (VLFeat) 2.0e4 1150.4 1.681
SIFT (VLFeat) 0.1e-2 1374.0 0.346
SIFT (OpenCV) 0.1e-2 1374.0 0.164
SURF (OpenCV) 3.0e2 987.5 0.169
SURF-FREAK (OpenCV) 0.1e-2 1321.0 0.483
Opponent SIFT (OpenCV) 0.1e-2 1374.0 0.480
KAZE (original v.1.3) 0.1e-3 1184.6 1.204
A-KAZE (original v.1) 1.0e-3 1271.3 0.112

and description were reported. Timings have been taken on the 
images belonging to the “Mixed text + graphics” dataset (scaled at 
VGA resolution) with an x86 2.4 GHz single processor with 3 MB 
of Cache L2 and 8 GB of RAM. As expected, A-KAZE confirms to be 
the algorithm showing the lowest average computational time [17]. 
Quite remarkably, the SIFT (OpenCV) implementation is the second 
among the lowest complexity methods, which is contrary to the 
common belief, and it was not only the most accurate on average, 
but also the one showing the best trade-off between performance 
and speed, making it the most likely candidate for embedded sys-
tem mapping.

6.3. Color descriptors

Comparisons of color descriptors are shown with respect to a 
baseline algorithm. The chosen baseline was the VLFeat implemen-
tation of SIFT (gray-levels). The different color descriptors tested 
correspond to Early or Late fusion of this baseline with the cor-
responding color information (see Table 2). On most of datasets 
color descriptors added a little improvement in the discrimina-
tive power over the gray-levels descriptor or they performed even 
worse compared to the baseline. Results are reported in Figs. 11
and 12, where a dashed line represents the TPR of the baseline 
descriptor at a FPR of 1%. It is possible to notice that on dataset 3 
(“Video Frames”) no descriptor achieved better results than the 
baseline. This is due to a lack of invariance of the color descriptors 
with respect to noise, blurriness, and other kinds of image trans-
formations heavily present in this dataset. On dataset 1 (“Mixed 
text + graphics”) and 4 (“Buildings”) only a few color descriptors 
show better results with respect to the baseline. This is due to 
the fact that in some images from these datasets, color descriptors 
are misled by wrong white-balance correction, different lighting 
conditions and presence of shadows. Fig. 13 shows some exam-
ples of image pairs having large difference in color appearance due 
to imaging conditions. Very good results were obtained by some 
color descriptors on datasets 5, 6a and 6b. Dataset 5 (“Common 
objects and scenes”) was composed of very colored objects, thus, 
the color information become highly discriminant. On this dataset, 
the algorithms achieving the best performances were those using 
a Late Fusion approach, which have a lower complexity than the 
Early fusion ones. On dataset 6b (“SuperMarket Milan” with color 
significant objects), as expected, the gray-levels SIFT baseline per-
formed very low because different objects with different color but 
the same shape were recognized to be the same object. All color 
descriptors algorithms achieved better results for the highest level 
of FPR. Limiting the number of keypoints to 1024 has almost no 
effect on all datasets with the exception of dataset 1 on which 
however the loss in TPR is always lower than 0.03.
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Fig. 9. TPR levels of all the gray-scale algorithms at a FPR of 10% and 1%. No limit on keypoints number. Top to bottom: dataset 1 (mixed text + graphics) and 2 (museum 
paintings), dataset 3 (video frames) and 4 (buildings and landscapes), dataset 5 (common objects and scenes) and 6a (SuperMarket Milan), dataset 6b (SuperMarket Milan: 
color significant objects).
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Fig. 10. TPR levels of all the gray-scale algorithms at a FPR of 10% and 1%. Keypoints number limited to 1024. Top to bottom: dataset 1 (mixed text + graphics) and 2 (museum 
paintings), dataset 3 (video frames) and 4 (buildings and landscapes), dataset 5 (common objects and scenes) and 6a (SuperMarket Milan), dataset 6b (SuperMarket Milan: 
color significant objects).
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Fig. 11. TPR levels of all the color algorithms at a FPR of 10% and 1%. No limit on keypoints. Top to bottom: dataset 1 (mixed text + graphics) and 2 (museum paintings), 
dataset 3 (video frames) and 4 (buildings and landscapes), dataset 5 (common objects and scenes) and 6a (SuperMarket Milan), dataset 6b (SuperMarket Milan: color 
significant objects).
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Fig. 12. TPR levels of all the color algorithms at a FPR of 10% and 1%. Keypoints number limited to 1024. Top to bottom: dataset 1 (mixed text + graphics) and 2 (museum 
paintings), dataset 3 (video frames) and 4 (buildings and landscapes), dataset 5 (common objects and scenes) and 6a (SuperMarket Milan), dataset 6b (SuperMarket Milan: 
color significant objects).
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Fig. 13. Examples of images where color information can be misleading. In each 
image pair the reference image is shown on the left whereas the query image is 
shown on the right.

Note that in all datasets the Transformed Color algorithm and 
the RGB algorithm achieved the same results. That is because all 
the invariance properties of the Transformed Color space are im-
plicitly included in the SIFT algorithm itself as Van de Sande et 
al. claimed [18]. Differently from other domains where Opponent 
SIFT obtained the best results [18,31], on CDVS datasets this is 
not always true, especially for the dataset 3 (“Video Frames”). We 
speculate that this difference in performance can be explained by 
the fact that the acquired images are affected by distortions that 
cannot be completely modeled by the diagonal-offset model con-
sidered in [18].

7. Conclusion

A detailed analysis of thirteen gray-level interest point detectors 
and descriptors available in the state of art has been performed 
on six heterogeneous datasets using a pairwise matching proce-
dure similar to the one adopted by the MPEG CDVS Test Model 
[10]. Lowe’s SIFT [11] was confirmed, without a-priori knowledge 
of the dataset, as the best performing method on average in terms 
of TPR levels (average TPR: 0.91) among gray-level descriptors. Re-
markably, KAZE and SURF performed well on some datasets. For 
example on “Landmarks and Buildings” dataset KAZE achieved an 
average TPR of 0.815 whereas Lowe’s SIFT attains a TPR of 0.8. 
Also the affine-invariant detectors achieved good results on the 
“Landmarks and Buildings” dataset but their results decreased if 
the number of keypoints detected is limited.

The measured computational times showed that the algorithm 
with the best trade-off between performance and speed was SIFT, 
in particular the OpenCV implementation. This was the base com-
plexity adopted by MPEG CDVS against which any color descriptor 
algorithm has to be measured in terms of extra computational 
burden added. The use of color information did not achieve in-
teresting performances on all CDVS datasets. This was proven by 
the fact that the average TPR value of RGB SIFT which was the 
best performing algorithm showed on average a 1% improvement 
with respect to the gray-level baseline. This gain was too lim-
ited to justify the extra complexity added by the Early Fusion 
methods. Color descriptors proven to bring some improvements 
on datasets 5 (“Common objects and scenes”) and 6 (“SuperMar-
ket Milan”) where color information was certainly more relevant. 
On dataset 5, Late Fusion algorithms achieved the best TPR val-
ues while on dataset 6 the best performing algorithms were some 
Early Fusion approaches: RGB, Transformed Color, and Opponent. 
The concern for extra complexity mainly due to look-up handling 
justified their usage on top of the SIFT complexity baseline.

Results of the current CDVS Test Model on the “SuperMarket 
Milan” dataset showed that the algorithms were able to recognize 
the class of objects depicted in the dataset itself, but the algo-
rithms exhibited a difficulty to distinguish what we have called 
“color significant products”. Future works will focus on in-depth 
studies to understand if the use of color descriptors will be ef-
fective to overcome the limited performances on “color significant 
products” and also investigating more advanced color descriptor 
algorithms. We also plan to investigate different fusion approaches 
other than early and late fusion between shape and color infor-
mation, and the combination of local and global descriptors which 
might be useful in case of textureless surfaces.
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