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Abstract. Hyperspectral cameras provide additional information in terms of multiple sampling of the visible spec-
trum, holding information that could be potentially useful for biometric applications. This paper investigates
whether the performance of hyperspectral face recognition algorithms can be improved by considering single
and multiple one-dimensional (1-D) projections of the whole spectral data along the spectral dimension. Three
different projections are investigated and found by optimization: single-spectral band selection, nonnegative
spectral band combination, and unbounded spectral band combination. Since 1-D projections can be performed
directly on the imaging device with color filters, projections are also restricted to be physically plausible. The
experiments are performed on a standard hyperspectral dataset and the obtained results outperform eight
existing hyperspectral face recognition algorithms. © 2016 SPIE and IS&T [DOI: 10.1117/1.JEI.25.6.063020]
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Since intraperson differences are often larger than interper-
sonal ones in the presence of variations in viewing point and
illumination conditions, face recognition is still a challenging
problem.

Most of the current research is based on features extracted
from grayscale or RGB images, which are usually acquired
in the visible spectrum.1,2

With the aim of increasing the dimensions in face images,
many researchers have considered the use of hyperspectral
imaging.3–7 Hyperspectral imaging can increase facial
discrimination by capturing more biometric measurements
such as the spectral response of faces. A hyperspectral
image is a data cube with two spatial dimensions and one
spectral dimension. It is captured by a hyperspectral camera
which operates in multiple narrow bands and densely sam-
ples the radiance information in both space and wavelength,
producing a radiance spectra at every pixel.

In addition to face appearance, spectral measurements in
multiple wavelengths can also measure subsurface tissue
features4 which may be significantly different for each
person.

Although the high dimensionality of hyperspectral data is
a desirable feature for separating the different identities,
at the same time it poses new challenges such as interband
misalignments and low signal-to-noise ratio (SNR) in certain
spectral bands.

Due to the high dimensionality of hyperspectral data, dis-
criminative feature extraction for face recognition is more
challenging than two-dimensional (2-D) images. The differ-
ent approaches for dimensionality reduction and feature
extraction range from the subsampling of the hyperspectral
data4,5,7 to the more promising approaches which use whole-
band features.3,8

Starting from the best hyperspectral method in the state-
of-the-art,8 this paper investigates whether the use of linear

projections along the spectral dimension can improve face
recognition performance with respect to the use of the full
hyperspectral data. Although applied in a different way,
the use of linear projections has already been shown to
improve classification accuracy in the 2-D domain when
applied to PCA,9,10 eigenfaces,11 and fisherfaces.11,12 The
experiments are performed on the PolyU hyperspectral3,13

standard hyperspectral face database. The results are com-
pared with eight existing hyperspectral face recognition
algorithms.

Preliminary findings reported in this paper appeared in
Ref. 14, where no constraints were given on the investigated
projections. This paper extends14 in several ways

• Since one-dimensional (1-D) projections can be per-
formed directly in the imaging device with the use
of color filters, additional experiments with physically
plausible filters (i.e., projections) are added.

• Two different face alignments are considered in the
experiments: a manual single-band alignment and an
automatic full-band one.

• Results are compared with a larger number of methods
in the state of the art.

1 Baseline Method
The proposed method builds on the method of Uzair et al.,8

which has three main steps that are respectively devoted to
the normalization of the variations in illumination, to the
extraction of the features, and to the classification.

In the first step, the individual bands are filtered with
a circular (8,1) neighborhood illumination variations step
(LBP)15 filter to normalize for the illumination variations.

The second step is the feature extraction step which is
based on a three-dimensional discrete cosine transform
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(3-D-DCT). The discrete cosine transform (DCT)16 decom-
poses a discrete signal into a linear combination of indepen-
dent cosine basis functions. DCT tends to generate a
representation in which most of the signal information is
encoded in the low-frequency coefficients. By selecting as
features only the low-frequency coefficients, a compact rep-
resentation can be obtained. The 3-D-DCTof a hyperspectral
cube Hðx; y; λÞ with size N1 × N2 × N3 is given by
EQ-TARGET;temp:intralink-;e001;63;476

Fðu;v;wÞ ¼Ω1ðuÞΩ2ðvÞΩ3ðwÞ
XN1−1

x¼0

XN2−1

y¼0

XN3−1

λ¼0

Hðx;y;λÞ

× cos
πð2xþ 1Þu

2N1

cos
πð2yþ 1Þv

2N2

cos
πð2λþ 1Þw

2N3

;

(1)

with u ¼ f0; : : : ; N1 − 1g, v ¼ f0; : : : ; N2 − 1g, w ¼
f0; : : : ; N3 − 1g, and Ωið·Þ is defined

ffiffiffiffiffiffiffiffiffiffi
1∕Ni

p
if its argument

is zero, and
ffiffiffiffiffiffiffiffiffiffi
2∕Ni

p
otherwise.

The low frequency coefficients near the origin of
Fðu; v; wÞ represent most of the energy of the hyperspectral
cube, therefore, the high-frequency coefficients can be
discarded. The feature vector is constructed by sampling
a frequency subcube Γðu; v; wÞ of dimensions ðα × β × γÞ
keeping only the low-frequency elements around the origin
of Fðu; v; wÞ. The subcube Γðu; v; wÞ is then vectorized
and normalized to unit magnitude to obtain the final feature
vector f ∈ Rd, where d ¼ αβγ, which is then used for
classification.

The third and last steps consist of the use of the partial
least squares (PLS) regression17 for the classification. PLS
models the relations between sets of observed variables
by means of latent variables. In its general form, PLS creates
orthogonal score vectors by maximizing the covariance
among different variable sets. The only parameter to be
set in PLS is the number of latent variables to use.

2 Linear Spectral Projection
The proposed method builds on top of the method of Uzair
et al.8 to understand whether the full hyperspectral informa-
tion is actually needed to improve face recognition accuracy
or if a projection of it suffices. The projection is applied
directly to the hyperspectral cube Hðx; y; λÞ (i.e., the radi-
ance data), before any step of the method in Ref. 8. The

projection is performed along the spectral dimension and
depends on the set of weights WðλiÞ ¼ wi, i ¼ 1; : : : ; N3

EQ-TARGET;temp:intralink-;e002;326;542Pðx; yÞ ¼
X

i¼1;: : : ;N3

Hðx; y; λiÞWðλiÞ: (2)

The projection Pðx; yÞ is thus a 2-D image, forcing γ ¼ 1 for
the subcube size. The entire processing chain of the proposed
method is reported in the flowchart in Fig. 1.

In this work, three different projections are considered.
The first one is

EQ-TARGET;temp:intralink-;e003;326;444W1ðλÞ ¼ δλ0ðλÞ ¼
�
1 if λ ¼ λ0
0 otherwise

; (3)

and can be seen as a band selection operator or a pass-band
optical filter.

The second projection is

EQ-TARGET;temp:intralink-;e004;326;366W2ðλiÞ ¼ wi; i ¼ 1; : : : ; L s:t: ∀ wi∶wi ∈ R; 0 ≤ wi ≤ 1;

(4)

which can be seen as a nonnegative linear combination of the
different hyperspectral bands. This is an operation analog to
what optical filters do in traditional imaging and could
be done using a monochrome digital camera coupled with
a custom designed filter.

The third projection is an unbounded linear combination
of the hyperspectral bands and can be defined as in Eq. (4)
removing the lower and upper bounds on the filter coeffi-
cients wi, i.e.,

EQ-TARGET;temp:intralink-;e005;326;223W3ðλiÞ ¼ wi; i ¼ 1; : : : ; L s:t: ∀ wi∶wi ∈ R: (5)

This is a generalization of the second one and is the only
one that cannot be realized through an optical filter since it
could have negative coefficients as well as jwij > 1. The
optimal W1ðλÞ projection is obtained by exhaustive search,
while for both W2ðλÞ and W3ðλÞ a particle swarm optimiza-
tion (PSO)18,19 is used. PSO is a population-based stochastic
optimization technique. A population of individuals is initial-
ized as random guesses to the problem solutions and a com-
munication structure is also defined, assigning neighbors for
each individual to interact with. These individuals are can-
didate solutions. The particles iteratively evaluate the fitness
of the candidate solutions and remember the location where

Fig. 1 Flowchart of the entire processing chain of the proposed method.
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they had their best success. The best solution of each indi-
vidual is called the particle best or the local best. Each
particle makes this information available to its neighbors.
Movements through the search space are guided by these
successes. The swarm is typically modeled by particles in
multidimensional space that have a position and a velocity.
These particles move into the search space and have two
essential reasoning capabilities: the memory of their own
best position and the knowledge of the global best position
(or the best position of their neighbors). Members of a swarm
communicate good positions to each other and adjust their
own position and velocity based on these good positions.
The reason for choosing the PSO algorithm is that PSO
makes no assumptions about the problem being optimized
and can search very large spaces of candidate solutions.
Furthermore, PSO is a derivative-free method and its popu-
lation-based nature permits an easy parallelization to speed
up optimization time.

Experiments are conducted using a 10-fold cross valida-
tion. For each split, let us call t ¼ ft1; : : : ; tng the random
indices of subjects used for training and T ¼ fT1; : : : ; Tmg
the random indices of subjects used for testing. For each sub-
ject j in t let ðgj;1; : : : ; gj;GÞ be the corresponding gallery
cubes and ðpj;1; : : : ; pj;PÞ the corresponding probes ones.
The fitness function corresponds to the average recognition
rate evaluated on the subjects in t using a leave-one-out
cross-validation procedure: in turn, each single gallery
cube H

gj;i
tj , i ¼ 1; : : : ; G, with tj ∈ t is excluded from train-

ing and its identity is predicted. Once the optimization of
weights is ended, the subjects in T are added to the gallery
and the identities of their probe cubes are predicted. In this
way, performances are always evaluated on identities not
used for weights optimization.

3 Experiments

3.1 Dataset
The hyperspectral face database used is the Hong Kong
Polytechnic University hyperspectral face database (PolyU-
HSFD).3,13 It consists of hyperspectral image cubes acquired
using a CRI’s VariSpec Liquid Crystal Tuneable Filter. Each
cube contains 33 bands acquired in the 400- to 720-nm spec-
tral range in 10-nm steps. The database has been collected
over a long period of time and shows significant appearance
variations of the subjects (e.g., changes of hair style and skin
conditions). SNR in bands near the blue wavelength is very

low, and the database contains interband misalignments due
to subject movements during the acquisition at the different
wavelengths.

The database contains a total of 48 different subjects, of
which 13 are females and 35 are males. For each of the first
25 subjects from four to seven cubes are available, while the
remaining 23 subjects have only one cube each. Following
the experimental protocol of Refs. 3 and 7, only the first 25
subjects are used in the experiments. For each subject, two
cubes are randomly selected for the gallery and the remain-
ing cubes are used as probes. The random selection is
repeated 10 times and the results are reported in terms of
average recognition rate over the 10 random splits. For
face alignment, as in Ref. 3, the eye, nose tip, and mouth
corners’ coordinates were manually located, and a subregion
containing the face was cropped from each band, normal-
ized, and scaled to one quarter size.

An example of the hyperspectral face cubes used is
reported in Fig. 2, while examples of appearance variations
are reported in Fig. 3.

3.2 Compared Hyperspectral Face Recognition
Algorithms

The eight existing hyperspectral face recognition algorithms
used for comparisons include spectral signature matching,4

spectral angle measurement,6 spectral eigenface,5 2-D PCA,3

3-D Gabor wavelets,7 2-D and 3-D-DCT with PLS regres-
sion,8 and spatiospectral information fusion with PLS
regression.20 The parameters of these algorithms are set as
follows. For the spectral signature matching algorithm,4 five
adjacent square regions of size 17 × 17 pixels arranged in
a cross pattern are used to represent hair, forehead, and
cheeks. For the lips, square regions of size 9 × 9 pixels
are used. For spectral eigenface,5 99% of the energy is pre-
served by retaining 48 PCA basis vectors. For 2-D PCA,3

99% of the energy is preserved by retaining 27 PCA basis
vectors. For the 3-D Gabor method, 52 Gabor wavelets
are used for feature generation as recommended by Ref. 7.
For the 2-D and 3-D-DCT8 methods, the parameters are
taken as suggested by the authors: α ¼ β ¼ γ ¼ 10 for the
subcube size to extract the features and 45 PLS basis.

3.3 Results
The results of the hyperspectral face recognition algorithms
compared are reported in terms of average recognition rate in

Fig. 2 A hyperspectral face cube from the PolyU-HSFD dataset.
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Table 1. The results of spectral signature matching,4 spectral
angle measurement,6 spectral eigenface,5 2-D PCA,3 3-D
Gabor wavelets,7 and 2-D and 3-D-DCT with PLS
regression8 are all taken from Ref. 8 with the only exception
being the 3-D-DCT method for which the results using our
implementation are also reported.

It is possible to notice that the proposed method outper-
forms the best algorithm in the state of the art by 2% (for
the single-band selection) up to 4% (for the unbounded
band combination). The best projections found for W1ðλÞ,

W2ðλÞ, and W3ðλÞ are shown in Fig. 4. Interestingly, the
band selected by W1ðλÞ and the bands receiving higher
weights by W2ðλÞ and W3ðλÞ are localized at the oxyhemo-
globin peak absorption valley.3,21

As already stated in Sec. 2, the projections W1ðλÞ and
W2ðλÞ could both be realized through an optical filter
since they do not have negative coefficients. The projection
W3ðλÞ, instead can not be realized through a single-optical
filter, but by exploiting the linearity of Eq. (2) it could be
realized by subtracting two different optical filters Wþ

3 ðλiÞ
and W−

3 ðλiÞ
EQ-TARGET;temp:intralink-;e006;326;386

Pðx; yÞ ¼
X

i¼1;: : : ;N3

Hðx; y; λiÞWþ
3 ðλiÞ

−
X

i¼1;: : : ;N3

Hðx; y; λiÞW−
3 ðλiÞ; (6)

where

EQ-TARGET;temp:intralink-;e007;326;303Wþ
3 ðλiÞ ¼

�
W3ðλiÞ if wi > 0

0 otherwise
; (7)

and

EQ-TARGET;temp:intralink-;e008;326;252W−
3 ðλiÞ ¼

�
−W3ðλiÞ if wi < 0

0 otherwise
: (8)

Some examples of the projected output given by applying
Eq. (2) with the optimal W1ðλÞ, W2ðλÞ, and W3ðλÞ projec-
tions found, are shown in Fig. 5.

From the images reported, it is possible to see that using
theW1ðλÞ projection results in sharper images, due to the fact
that only one spectral band is used. On the contrary, since
W2ðλÞ andW3ðλÞ use the whole spectra, they make interband
misalignments evident resulting in more blurred images.

In Fig. 6, some examples of errors across the 10-fold
experiments when using the W3ðλÞ projection are reported.
The two gallery images are reported for each example
together with the probe image and the gallery images of
the incorrectly assigned identity.

Fig. 3 Examples of appearance variations. The same hyperspectral band corresponding to
λ15 ¼ 540 nm is selected for all subjects.

Table 1 Average recognition rates and standard deviations (%) for
10-fold experiments on the PolyU-HSFD database.

Algorithm

Average
recognition
rate� std

Spectral signature4 24.63� 3.87

Spectral angle6 25.49� 4.36

Spectral eigenface5 70.30� 3.61

D PCA3 71.11� 3.16

D Gabor wavelets7 90.19� 2.09

D-DCT + PLS8 91.43� 2.10

D-DCT + PLS8 93.00� 2.27

D-DCT + PLS (author’s implementation) 93.32� 3.13

Spatiospectral information fusion + PLS20 95.20� 1.60

Proposed [W 1ðλÞ, single-band selection] 97.20� 1.66

Proposed [W 2ðλÞ, nonnegative band combination] 98.34� 1.83

Proposed [W 3ðλÞ, unbounded band combination] 99.11� 1.21
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The sensitivity of the proposed method is analyzed in
Fig. 7 by plotting equal recognition rate curves as a function
of the number of PLS basis and subcube size (α ¼ β and
γ ¼ 1, due to the effect of the projection).

3.4 Physically Plausible Projections
All the experiments in the previous section were performed
without considering the physical plausibility of the projec-
tions. Since the projections can be performed with optical
filters, in this section we perform additional experiments
considering real filters. To this end, a set of 500 color filters
have been downloaded from the Rosco website.22 In addition
to these filters, the spectral sensitivity functions of 28
different cameras, including professional DSLRs, point-
and-shoot, industrial, and mobile cameras have been
obtained.23 The spectral sensitivity functions of the cameras

and the filters are reported in Fig. 8. For visualization pur-
poses, a k-means with k ¼ 25 has been run on the 500 color
filters and only the centroids obtained are plotted. Three
different experiments have been carried out, obtained by
coupling the color filters with the camera sensitivities:

I. Selection of the best color filter without considering the
camera sensitivities. This is equivalent to placing the color
filter on a gray-level camera.

II. Selection of the best color filter coupled with the cam-
era sensitivity of one-color channel. This is equivalent to
placing the color filter on a color camera and considering
just the recording of a single-color channel.

III. Selection of the best color filter coupled with the full
camera sensitivities. This is equivalent to placing the color
filter on a color camera and considering the recording of
all the color channels.

Fig. 4 Best projections found: (a) W 1ðλÞ, (b) W 2ðλÞ, and (c) W 3ðλÞ.

Fig. 5 Examples of the projections obtained by applying the optimal projections found. (a)W 1ðλÞ, single-
band selection; (b)W 2ðλÞ, nonnegative linear combination; (c)W 3ðλÞ and unbounded linear combination.
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Furthermore, in addition to the single-band manual align-
ment performed in Sec. 3.1, we perform a fully automatic
alignment using congealing.24 This permits to align all the
spectral bands, removing the interband misalignments vis-
ible in Fig. 5. A comparison of the average face across all
bands and all the dataset using the manual alignment and
congealing is reported in Fig. 9.

For all the experiments, the number of PLS basis and
subcube sizes are kept fixed and equal to the optimal ones

found for W3ðλÞ in the previous section. For all the experi-
ments, the best filter or combination of filter and camera
sensitivities are obtained by exhaustive search.

The results of the three experiments with both alignments
are reported in Table 2. From the results, it is possible to see
that using the same face alignment used in the previous sec-
tion, the recognition accuracy using a physically plausible
1-D projection (i.e., experiments I and II) is worse than
that obtained by the W2ðλÞ. Using a 3-D projection (i.e.,

Fig. 6 Examples of errors for the 10-fold experiment using the W 3ðλÞ projection: (a) gallery cubes,
(b) probes, (c) gallery cubes for the predicted identity.

Fig. 7 Equal recognition rate curves as a function of subcube size (y -axis) and number of PLS basis
(x -axis): (a) single-band selection, (b) nonnegative linear combination, and (c) unbounded linear
combination.
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experiment III) permits to obtain identical results with
respect to W2ðλÞ, but still lower than those of W3ðλÞ.
Using congealing instead, the accuracy obtained in experi-
ments I and II is already higher than that obtained by
W3ðλÞ. Furthermore, all the results obtained are outper-
formed by those obtained in experiment III.

The plots of the selected filters and camera sensitivities
selected for each experiment are shown in Fig. 10. Using

the single-band manual alignment, the best color filter
selected in experiment I is 263, while experiments II and
III selected the same color filter (251) coupled with the spec-
tral sensitivities of the same camera (Point Grey Grasshopper
50S5C), with experiment II using just the green channel.
A similar behavior can also be seen using the congealed
images. In this case, the best color filter selected in experi-
ment I is 201, while experiments II and III selected the same
color filter (194) coupled with the spectral sensitivities of
the same camera (Canon 5D Mark II), with experiment II
using just the blue channel.

As a further analysis of the performance, the receiver
operating characteristic (ROC) curve is shown in Fig. 11.
Four different curves are reported that are relative to four
different algorithms: 3-D-DCTwith PLS regression,8 spatio-
spectral information fusion with PLS regression,20 the pro-
posed method using the W3ðλÞ projection (i.e., last line in
Table 1), and the proposed method using a color filter on
multiple color channels (i.e., experiment III, last line in
Table 2). From the plots, it is possible to see that the curves
relative to the proposed method have a larger area, thus
further confirming the results reported in Tables 1 and 2.

Finally, in Fig. 12 the execution time of the proposed
method is reported. Two different instances are considered:
in the first one the spectral projection is mathematically

Fig. 8 Spectral sensitivity functions of (a) the 28 cameras and (b) of the 25 centroids obtained by
k -means from the 500 filters.

Fig. 9 Average face across all bands and all the dataset using (a) the
single-band manual alignment and (b) congealing.

Table 2 Average recognition rates and standard deviations (%) for 10-fold experiments on the PolyU-HSFD database.

Experiment Alignment type Average recognition rate� std

I (color filter on gray-level camera) Single-band (manual) 98.12� 0.02

II (color filter on single-color channel) Single-band (manual) 98.25� 0.01

III (color filter on multiple color channels) Single-band (manual) 98.34� 0.02

I (color filter on gray-level camera) Congealing 99.66� 0.01

II (color filter on single-color channel) Congealing 99.69� 0.01

III (color filter on multiple color channels) Congealing 99.79� 0.01
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performed using the optimized W3ðλÞ projection (and thus
impacts on execution time), while in the second one it is per-
formed by placing a color filter on a color camera (and thus
does not impact on execution time). Since the proposed
method builds on top of Ref. 8, its execution time is reported
as a comparison. Execution times are subdivided to see the
time-impact of the different modules that the considered
algorithms share. Times are measured on a machine with
Windows 7, 16 GB of RAM, i5-2500K processor, using

pure MATLAB® code (MATLAB® version R2014b). From
the plots, it can be noticed that the most expensive operations
in Ref. 8 are the normalization for the LBP and the feature
extraction step (3-D-DCT). These operations are expensive
mostly because they are performed on all the spectral bands.
The proposed method, by reducing the spectral dimension
through linear spectral projections, is able to reduce the
computational time from 43.4 ms to 3.9 to 5.9 ms.

3.5 Cross-Database Experiments
In order to investigate the generalization ability of the pro-
posed method, experiments on two further standard datasets

Fig. 10 Optimal filters and camera sensitivities found for experiments (a) I, (b) II, and (c) III varying
the alignment method: single-band manual alignment (top) and congealing (bottom).

Fig. 11 ROC curve of the best proposed methods in Tables 1 and 2
with those of the best methods in the state of the art.

Fig. 12 Execution time of two variants of the proposed method and
the baseline method8 divided into the different common modules they
are composed of.
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are carried out. The first dataset is the CMU hyperspectral
face database (CMU-HSFD),25 that consists of 4 to 20
cubes of 48 subjects with each cube containing 65 bands
covering the spectral range of 450 to 1090 nm in steps of
10 nm. The second dataset is the UWA-hyperspectral face
database (UWA-HSFD)20 that consists of 120 hyperspectral
image cubes of 70 subjects with each cube containing 33
bands covering the spectral range of 400 to 720 nm in
steps of 10 nm. Following Ref. 20, faces are cropped and
resized to 40 × 40 and 30 × 30 pixels for CMU and
UWA-HSFD, respectively. For both the databases, 10-fold
cross validation is performed by randomly selecting gal-
lery/probe combinations in each fold. Two variants of the
proposed method are evaluated: the proposed method using
the W3ðλÞ projection and the proposed method using a color
filter on multiple color channels. In both cases, the same
parameters used on the PolyU-HSFD dataset are used. To
this end, the spectral dimensions of the cubes in the CMU
dataset have been downsampled to match that of both
PolyU-HSFD and UWA-HSFD datasets. The two variants
are compared with the best methods in the state of the
art, i.e., 3-D-DCT with PLS regression8 and spatiospectral

information fusion with PLS regression.20 Numerical results
in terms of recognition accuracy are reported in Table 3,
while ROCs are shown in Fig. 13. From both the numerical
results and the plots, it is possible to see that the two variants
of the proposed method are able to outperform the best
methods in the state on both datasets, even if not specifically
optimized on these unseen datasets.

4 Conclusion
In this paper, it is shown that the performance of hyperspec-
tral face recognition algorithms can be improved by just
considering single and multiple 1-D projections along the
spectral dimension of the full spectral cube. Three different
projections have been investigated: single-spectral band
selection, nonnegative spectral band combination, and
unbounded spectral band combination.

Experiments were performed on a standard hyperspectral
dataset and the results of the proposed algorithm were com-
pared with eight existing hyperspectral face recognition
algorithms. Experimental results showed that the application
of the optimal linear projections can improve the perfor-
mance of the best hyperspectral face recognition algorithm
in the state of the art by almost 4%, reaching an average
recognition rate on a 10-fold experiment of 99.11%. Since
the linear projections considered in this paper can be
directly performed on the acquisition device with a proper
transmission filter, we also investigated the use of linear
projections compatible with physically plausible optical
filters. Experimental results showed that the recognition
rate using physically plausible filters is less than 1% lower
than that of using optimized projections. The use of an auto-
matic full-band face alignment algorithm permits to further
improve the recognition accuracy to 99.79% using physi-
cally plausible filters. Cross-database experiments further
confirmed the effectiveness and robustness of the proposed
method.

Possible future works involve the evaluation of the perfor-
mance of the proposed method at the different stages of a
typical imaging processing pipeline26 with particular interest
on illuminant estimation and removal.27

Table 3 Average recognition rates and standard deviations (%) for
10-fold experiments on the CMU-HSFD and UWA-HSFD databases.

Algorithm

Average recognition
rate� std

CMU-HSFD UWA-HSFD

3-D-DCT + PLS8 97.21� 1.54 96.26� 1.96

Spatiospectral information
fusion + PLS20

99.10� 0.57 98.20� 1.21

Proposed W 3ðλÞ (unbounded
band combination with congealing)

99.47� 0.31 99.32� 0.87

Proposed physically plausible
projection (Exp. III with congealing)

99.94� 0.01 99.86� 0.01

Fig. 13 ROC curves of the best proposed methods in Tables 1 and 2 with those of the best methods in
the state of the art (a) on the CMU-HSFD database and (b) on the UWA-HSFD database.
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