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Abstract. We present a fully automated approach for
smile detection. Faces are detected using a multiview
face detector and aligned and scaled using automatically
detected eye locations. Then, we use a convolutional
neural network (CNN) to determine whether it is a smiling
face or not. To this end, we investigate different shallow
CNN architectures that can be trained even when the
amount of learning data is limited. We evaluate our com-
plete processing pipeline on the largest publicly available
image database for smile detection in an uncontrolled
scenario. We investigate the robustness of the method
to different kinds of geometric transformations (rotation,
translation, and scaling) due to imprecise face localization,
and to several kinds of distortions (compression, noise,
and blur). To the best of our knowledge, this is the first
time that this type of investigation has been performed
for smile detection. Experimental results show that our
proposal outperforms state-of-the-art methods on both
high- and low-quality images. © 2016 SPIE and IS&T [DOI:
10.1117/1.JEI.25.6.063002]
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1 Introduction
Smiling is an expression denoting happiness, pleasure, sat-
isfaction, or amusement. It is characterized by the upward
movements of the lip corners and of the cheeks. In the frame-
work of the facial action coding system,1 smile can be seen as
the combination of the facial muscles corresponding to the
action unit 6 and 12 (AU6 and AU12).

The first works on smile detection used databases taken
under constrained laboratory environment; Shinohara and
Otsu2 used higher-order local autocorrelation features and
Fisher weight map and achieved good performance on their
own database consisting of only four people. Bai et al.3

extracted pyramid histogram of oriented gradients (HOGs)
features from the region of the mouth on the Cohn–
Kanade AU-Coded Facial Expression Database. The first
comprehensive work for smile detection in unconstrained
scenarios was proposed by Whitehill et al.4 At the same time,
they also made publicly available a new dataset (GENKI)
with content from the web for smile detection in the wild.
Using this dataset, Shan5,6 proposed a very efficient smile
detection approach by simply comparing intensities of a few

pixels in a face image.3 Zhang7 demonstrated the effective-
ness and efficiency of mouth features (MFs) for smile detec-
tion. More recently, An et al.8 proposed a fully automated
smile detection approach. They adopted three popular feature
descriptors (local binary patterns,9 local phase quantiza-
tion,10 and HOGs11) and achieved the best results on both
the GENKI-4K database and their own collected MIX data-
bases. Gao et al.12 proposed a semiautomated smile detector,
which achieved the best performance on the GENKI-4K
database using a combination of features [raw pixel values,
HOG, and self-similarity of gradients (GSS)] combining
multiple classifiers.

In this paper, we present a fully automated approach for
smile detection in digital images. According to our proposal,
the input image is processed in order to detect faces using a
face detector inspired by Farfade et al.13 The faces are then
aligned using an eye-based approach using a facial land-
marks detector14 that does not require any manual labeling.
Then a convolutional neural network (CNN) is exploited to
predict smiling of the detected faces. The CNN architecture
has been designed to be trained even when the amount of
learning data is limited. We evaluate the performance of
the proposed pipeline on the GENKI-4K database,15 the only
publicly available dataset in unconstrained scenarios. The
proposed pipeline achieves very good results in smile detec-
tion accuracy and is more robust to various image distortions
and transformations in comparison with the state of the art.

2 Proposed Approach
The main steps of the pipeline are shown in Fig. 1. Given an
image, we detect the faces and align them fixing the eyes
position. Then a CNN is used to understand whether it is
a smiling face or not.

Given an image, we detect the faces using a multiview
face detector inspired by Farfade et al.13 The detected
faces are aligned fixing the eyes position and then rescaled
to a common size. In more detail, we compute the ðx; yÞ
coordinates of 49 facial landmarks, obtained using the pub-
licly available implementation of Chehra.14 Among the
detected landmarks, we consider only the two landmarks cor-
responding to the eyes, corner locations. These are used in
our eye-based face alignment method, which consists of
fixing the eye corner distance to 85 pixels using an affine
transform matrix, which is composed only of rotation and
scaling. Facial images are then obtained by cropping and
scaling the transformed images to 36 × 36 pixels.

Given the cropped and aligned 36 × 36, a central 32 × 32
patch is extracted and given as input to a CNN to classify it as
smile or nonsmile. Different CNN configurations are tested
in this paper. They are designed to be trained even when the
amount of labeled data is limited. Their configurations are
summarized in Table 1. In the following, we will refer to
the CNNs by their names (A to C). The input to our CNNs
is a fixed-size 32 × 32 RGB image. The image is passed
through a stack of convolutional (conv) layers, where we
use filters with a variable number of 5 × 5 and 3 × 3 kernels.
The convolution stride is fixed to 1 pixel and the spatial pad-
ding is such that the spatial resolution is preserved after con-
volution, i.e., ðkernel size − 1Þ∕2. Spatial pooling is carried
out by a max-pooling (maxpool) layer, which follows the
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first convolutional layer, and two average-pooling (avgpool)
layers after the other convolutional layers (not all the convo-
lutional layers are followed by spatial pooling). All the spa-
tial pooling layers are performed over 3 × 3 pixel windows,
with stride 2. All hidden layers are equipped with the recti-
fied linear unit (ReLU).16,17 Local response normalization
(LRN) layers follow the maxpool layer and the first avgpool
layer. The LRN layer is applied on spatial regions of size
3 × 3 independently for each channel. The previous stack of
layers is followed by a fully connected (FC) layer performing
two-way classification, i.e., smile/nonsmile. The final layer
is the soft-max layer, which produces a probability distribu-
tion over the two class labels.

3 Experimental Setup
In the experiment, we use the GENKI-4K database.15 It is the
most challenging and largest available database for the smile
detection task in the unconstrained scenario. It contains 4000
facial images of a wide range of subjects with different
ethnicity, age, facial appearance, pose, illumination, and
imaging conditions. All the images are labeled by human
coders, 2162 images are labeled as smile and the remaining

1828 images are labeled as nonsmile. Although a few images
are, in our opinion, incorrectly labeled, we did not make any
change to the groundtruth labels.

We train our CNNs from scratch using data augmentation to
regularize our CNNs and reduce the risk of overfitting. It con-
sists of artificially enlarging the dataset using label-preserving
transformations. In this paper, data augmentation consists of
generating image translations and horizontal reflections. We
do this by randomly extracting five 32 × 32 patches as well
as their horizontal reflections from 36 × 36 facial images.
This increases the size of our training set by a factor of 10.

In our experiments, fourfold cross-validation is performed
on the GENKI-4K dataset, meaning that we randomly par-
titioned the dataset into four subsets. For each round of cross-
validation, we used a subset for testing and the other three
subsets as training. Results are reported in terms of average
accuracy over the four rounds of cross-validation.

The prediction made by the CNNs’s soft-max is com-
puted cropping the central 32 × 32 patch from the 36 × 36
facial image. In addition to this single patch prediction, we
compute the prediction by oversampling the facial image; in
this case, the prediction is made by considering five 32 × 32
patches (the four corner patches and the center patch) as well
as their horizontal reflections and averaging the predictions
made by the CNNs’s soft-max layer on the 10 patches. We also
investigate the performances obtained by combining the pre-
dictions of the three proposed CNN configurations and the
influence of the face alignment step on the overall accuracy.

The average accuracy of the different instantiations of the
proposed pipeline is reported in Table 2. From the results, it
is possible to notice that using a single CNN the best results
are obtained with CNN-A and using face alignment. It can be
seen that performance can be slightly improved by oversam-
pling the input image and combining the predictions of
different CNNs.

To the best of our knowledge, the best performance on
GENKI-4K database is obtained by Gao et al.,12 who,
exploiting a semiautomatic procedure (i.e., manual face
alignment), report an average accuracy of 94.61%. For sake
of comparison, we have therefore reimplemented their
method within our processing pipeline. The comparison with
other fully automatic smile detection methods in the state of
the art6–8,12 is reported in Table 3. It is possible to see that the
proposed method is able to outperform the best method in the
state of the art, i.e., the reimplementation of Gao et al.12 in

Input image Detected face Aligned face CNN

Smile?
Yes/no

Fig. 1 Outline of the proposed method for smile detection.

Table 1 CNN configurations investigated (shown in columns). The
ReLU activation function is not shown for brevity.

CNN Configuration

A B C

Four weight layers Five weight layers Five weight layers

input (32 × 32 RGB image)

conv3-32 conv3-32 conv3-32

Maxpool

LRN

conv5-32 conv3-32
conv5-32

conv5-32

Avgpool

LRN

conv5-64 conv5-64 conv3-64

Avgpool

FC-1024

FC-2

Soft-max

Table 2 Smile detection accuracy results using the proposed CNN
configurations.

CNN configuration
(see Table 1)

Accuracy (%)

Without face
alignment

With face
alignment

A 92.60 93.13

B 92.18 92.80

C 92.70 92.75

A (oversampled) 90.45 93.35

A+B+C (oversampled) 92.53 93.77
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our pipeline, by 2.15%. Some examples of misclassified
images are reported in additional material.18 Since one of
the sources of error is the facial landmarks localization,
we now investigate the robustness of the CNN to bad face
alignment and image distortions.

3.1 Classification Robustness to Face Alignment
Imprecise face alignment can be caused both by inaccurate
face detection and bad facial landmarks localization. As seen
in Table 2, the removal of the face alignment step causes a
drop in performance for all the CNN configurations inves-
tigated in this paper. The same is true also for the best algo-
rithm in the state of the art, i.e., Gao et al.,12 whose average
accuracy without face alignment drops to 87.78%. To
investigate this issue, given the aligned cropped faces of
the GENKI-4k database, we create a dataset applying some
geometric transformations on the 36 × 36 facial images.
Specifically, we use rotation of the face around its center
with different angles ð−30 deg;−20 deg; : : : ; 30 degÞ,
scaling with different scale factors ð0.80; 0.90; : : : ; 1.20Þ,
and translation with various pixel ofsets ð−8;−6; : : : ; 8Þ.
For all the transformations, zero-padding is used for pixels
falling outside the image window.

We run a set of three experiments considering a single
geometric transformation at a time. The transformed images
are classified using the (transformation-free) trained CNN-A.
The results of the performed experiments are reported in
Fig. 2. In the same plots, we also report the results obtained
by our implementation of the method by Gao et al.12 From
the plots, it is possible to notice that CNN-A shows a very
high level of robustness against scaling. The performance
remains almost unaltered except when the object of interest
is small. Regarding translation and rotation, the CNN shows
a lower level of robustness, with performance significantly

decreasing, respectively, for offsets larger than 5 to 10 pixels
and for a rotation angle larger than 10 deg to 20 deg.
Comparing our results to those by Gao et al.,12 we notice
that both methods show a similar trend for the robustness
to scale changes, while our method results in more robust-
ness to rotations and translations.

3.2 Classification Robustness to Image Artifacts
Images available to consumers usually undergo several
stages, namely acquisition, compression, transmission, and
reception, and they may suffer multiple distortions.19 In this
set of experiments, we test the robustness of the proposed
CNN with respect to four of the most common image arti-
facts in real-world digital photos: JPEG compression at dif-
ferent quality indexes, Gaussian noise, Gaussian blur varying
the filter size and variance, and motion blur with fixed angle
and different pixel lengths. We run two different experi-
ments: in the first one, we consider a single artifact at a
time and in the second one, images are corrupted by multiple
artifacts together. In both cases, artifacts are applied on the
detected faces after the alignment step. Faces are classified at
the increase of the strength of the artifacts using the (distor-
tion-free) trained CNN-A. The results of the single-artifact
experiment are reported in additional material. In the multi-
ple-artifacts experiment, we evaluate the robustness of the
proposed pipeline at six different distortion levels obtained
by combining blur, noise, and JPEG compression. We run an
experiment considering a single distortion level at a time for
each face. Specifically, artifacts are applied in the same order
they generate in typical imaging pipelines20: motion blur
varying pixel lengths (5, 10, 15, 20, 25, and 30) and
fixed angle 45 deg, Gaussian noise with zero-mean and dif-
ferent variances (σ2 ¼ 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06),
and JPEG compression at different quality indexes (95%,
75%, 60%, 40%, 20%, and 0%). In total, we consider six
different distortion levels that can be divided into three dis-
tortion groups: low distortion (levels 1 and 2), medium dis-
tortion (levels 3 and 4), and high distortion (levels 5 and 6).
Figure 3 shows the results of the performed experiment both
on our pipeline and our implementation of the method by
Gao et al.12 From the plots, it is possible to see that our
method has a higher robustness for all distortion levels
except for the highest one, where the difference between
our method and that by Gao et al.12 is less than 1%. For inter-
mediate distortion levels, the accuracy of our method is
higher than that achieved by Gao et al.,12 with an improve-
ment higher than 9% for distortion levels from 1 to 5 (with
a peak 13.6% improvement for distortion level 3).

Table 3 Comparison with state-of-the-art methods on the GENKI-4K
database.

Method Features Classifier Accuracy (%)

An et al.8 HOG ELM 88.50

Zhang7 MFs AdaBoost 89.21

Shan6 Pixel difference AdaBoost 89.70

Gao et al.12 Raw pixels+HOG+GSS Linear SVM 91.20

Proposed CNN CNN 93.35

Fig. 2 Rates varying (a) the rotation angle, (b) the scaling factor, and (c) the translation offset.
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3.3 Training Adding Artifact-Affected Images
In this section, we add to the distortion-free training set the
artifact-affected images belonging to one of the three afore-
mentioned distortion groups at a time and measure classifica-
tion robustness across all six distortion levels considered. As
for the previous experiments, we use the CNN-A architecture.
Two different training setups are considered: in the first one,
the already trained CNN-A is fine-tuned,21 while in the second
one, the CNN is trained from scratch. We fine-tune the CNN-
A by chopping and retraining from scratch the FC-2 layer.

Results are reported in Fig. 3. From the plots, we want to
highlight that: (i) adding images with artifacts does not affect
the performance on distortion-free images and on images
with low distortion levels, showing the robustness of the
CNN to such training data; (ii) adding distorted images in
the training set is able to increase robustness with respect
to low distortion levels up to 2.7% for both fine-tuned and
trained CNNs; and (iii) robustness increases up to 7.3% and
8.3% for medium level distortion levels for fine-tuned and
trained CNN, respectively.

4 Conclusion
In this work, we proposed a robust processing pipeline for
smile detection in face images acquired in unconstrained sce-
narios. The proposed pipeline involved detecting faces using
a multiview face detector, aligning facial image using an eye-
based approach, and predicting whether it is a smiling face or
not using an ad hoc designed CNN. We investigated the
robustness of the method to different kinds of geometric
transformations (rotation, translation, and scaling) and to
several kinds of distortions (JPEG compression, Gaussian
noise, Gaussian blur, and motion blur). On the basis of this
evaluation, we foresee several ways for further improvement.
Concerning face detection and alignment, we plan to test
different face alignment approaches such as from Ref. 22,
including also color information.23 Concerning classifica-
tion, we would like to refine the GENKI-4k database and
investigate a fusion approach with the method by Gao et al.12

Starting from Ref. 24, we will also consider the simultaneous
classification of smile and subject identity.
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