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a b s t r a c t 

In this paper we propose a method for logo recognition using deep learning. Our recognition pipeline 

is composed of a logo region proposal followed by a Convolutional Neural Network (CNN) specifically 

trained for logo classification, even if they are not precisely localized. Experiments are carried out on 

the FlickrLogos-32 database, and we evaluate the effect on recognition performance of synthetic versus 

real data augmentation, and image pre-processing. Moreover, we systematically investigate the benefits 

of different training choices such as class-balancing, sample-weighting and explicit modeling the back- 

ground class (i.e. no-logo regions). Experimental results confirm the feasibility of the proposed method, 

that outperforms the methods in the state of the art. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Logo recognition in images and videos is the key problem in

 wide range of applications, such as copyright infringement de-

ection, contextual advertise placement, vehicle logo for intelli-

ent traffic-control systems [1] , automated computation of brand-

elated statistics on social media [2] , augmented reality [3] , etc. 

Traditionally, logo recognition has been addressed with

eypoint-based detectors and descriptors [4–7] . For example

omberg and Lienhart [8] presented a scalable logo recognition

echnique based on feature bundling, where individual local fea-

ures are aggregated with features from their spatial neighborhood

nto Bag of Words (BoW). Romberg et al. [9] exploited a method

or encoding and indexing the relative spatial layout of local fea-

ures detected in the logo images. Based on the analysis of the lo-

al features and the composition of basic spatial structures, such

s edges and triangles, they derived a quantized representation of

he regions in the logos. Revaud et al. [10] introduced a technique

o down-weight the score of those noisy logo detections by learn-

ng a dedicated burstiness model for the input logo. Boia et al.

11,12] proposed a smart method to perform both logo localiza-

ion and recognition using homographic class graphs. They also

xploited inverted secondary models to handle inverted colors in-

tances. Recently some works investigating the use of deep learn-

ng for logo recognition appeared [13–15] . Bianco et al. [13] and

ggert et al. [14] investigated the use of pretrained Convolutional
∗ Corresponding author. 
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eural Networks (CNN) and synthetically generated data for logo

ecognition, trying different techniques to deal with the limited

mount of training data. Also Iandola et al. [15] investigated a

imilar approach, proposing and evaluating several network archi-

ectures. Oliveira et al. [16] exploited pretrained CNN models and

sed them as part of a Fast Region-Based Convolutional Networks

ecognition pipeline. Given the limited amount of training data

vailable for the logo recognition task, all these methods work on

etworks pretrained on different tasks. 

In this paper we propose a method for logo recognition ex-

loiting deep learning. The recognition pipeline is composed by a

ecall-oriented logo region proposal [17] , followed by a Convolu-

ional Neural Network (CNN) specifically trained for logo classifica-

ion, even if they are not precisely localized. Within this pipeline,

e investigate the benefit on the recognition performance of the

pplication of different machine learning techniques in training,

uch as image pre-processing, class-balancing, sample weighting,

nd synthetic data augmentation. Furthermore we prove the ben-

fit of adding as positive examples candidate regions coming from

he object proposal to the ground truth logos, and the benefit of

nlarging the size of the actual dataset with real data augmen-

ation and the use of a background class (i.e. no-logo regions) in

raining. 

. Proposed method 

The proposed classification pipeline is illustrated in Fig. 1 . Since

ogos may appear in any image location with any orientation and

cale, and more logos can coexist in the same image, for each im-

ge we generate different object proposals, that are regions which

http://dx.doi.org/10.1016/j.neucom.2017.03.051
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.03.051&domain=pdf
mailto:simone.bianco@disco.unimib.it
http://dx.doi.org/10.1016/j.neucom.2017.03.051
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Fig. 1. Simplified logo classification pipeline. 

Fig. 2. Logo recognition training framework. 
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are more likely to contain a logo. These proposal are then cropped

to a common size to match the input dimensions of the neural

network and are propagated through a CNN specifically trained for

logo recognition. 

In order to have performance as high as possible within this

pipeline, we use an object proposal that is highly recall-oriented.

For this reason, the CNN classifier should be designed and trained

to take into account that the logo regions proposed may contain

many false positives or only parts of actual logos. To address these

problems we propose here a training framework and investigate

the influence on the final recognition performance of different im-

plementation choices. 

In more detail, the training framework is reported in Fig. 2 . The

training data preparation is composed by two main parts: 

• Precise ground-truth logo annotations : Given a set of train-

ing images and associated ground-truth specifying logo position

and class, we first crop logo regions and annotate them with

the ground-truth class. These regions are rectangular crops that

completely contain logos but, due to the prospective of the im-

age or the logo particular shape, may also contain part of the

background. 

• Object-proposal logo annotations : Since we must automati-

cally localize regions that may contain a logo, an object pro-

posal algorithm is employed in the whole pipeline as shown in

Fig. 1 . This algorithm is not applied only to the test images, but

it is also run on the training images to extract regions that are

more likely to contain a logo. Details about the particular algo-

rithm used are given in the next subsection. Each object pro-

posal in the training images is then labeled on the basis of its

content: if it overlaps with a ground-truth logo region, it is an-

notated with the corresponding class and with the Intersection-

over-Union (IoU) overlap ratio, otherwise it is labeled as back-
ground. 
Within our training framework we investigate both the use of

he precise ground-truth logo annotations alone or coupled with

he object-proposal logo annotations. All positive instances, i.e. la-

eled logos and eventually object proposals that overlap with them

y a significant amount (i.e. IoU ≥ 0.5), are used to train a Convolu-

ional Neural Network whose architecture is given below. Different

raining choices are investigated within our framework in Fig. 2 : 

• Class balancing : The logo classes are balanced by replicating

the examples of classes with lower cardinality. Two different

strategies are implemented: epoch-balancing, where classes are

balanced in each training epoch, and batch-balancing, where

classes are balanced in each training batch. The hypothesis is

that this should prevent a classification bias of the CNN. 

• Data augmentation : Training examples are augmented in num-

ber by generating random shifts of logo regions. The hypothe-

sis is that this should make the CNN more robust to inaccurate

logo localization at test time. 

• Contrast normalization : Images are contrast-normalized by

subtracting the mean and dividing by the standard deviation,

which are extracted from the whole training set. The hypothe-

sis is that this should make the CNN more robust to changes in

the lighting and imaging conditions. 

• Sample weighting : Positive instances are weighted on the basis

of their overlap with ground-truth logo regions. The hypothesis

is that this should make the CNN more confident on proposals

highly overlapping with the ground truth logos. 

• Background class : A background class is considered together

with the logo classes. Background examples are not randomly

selected, but are composed by the candidate regions generated

by the object proposal algorithm on training images and that

do not overlap with any logo. The hypothesis is that this should

make the CNN more precise in discriminating logos and back-
ground class. 
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Fig. 3. Logo recognition testing framework. 
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Table 1 

Neural network architecture. 

Layers 

1 Conv 32 filters of 5 × 5 

2 Pool (max) with stride 2 

3 Relu 

4 Conv 32 filters of 5 × 5 

5 Relu 

6 Pool (average) with stride 2 

7 Conv 64 filters of 5 × 5 

8 Relu 

9 Pool (average) with stride 2 

10 Fully Connected of size 64 

11 Fully Connected of size 33 

12 Softmax 
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The actual contribution to the performance of each training

hoice considered will be discussed in Section 4 . 

After the CNN is trained, a threshold is learned on top of the

NN predictions. If the CNN prediction with the highest confidence

s below this threshold, the candidate region is labeled as not be-

ng a logo, otherwise CNN prediction is left unchanged. 

The testing framework is reported in Fig. 3 . Given a test image,

e extract the object proposals with the same algorithm used for

raining. We then perform contrast-normalization over each pro-

osal (if enabled at training time), and feed them to the CNN. The

NN predictions on the proposals are max-pooled and the class

dentified with highest confidence (eventually including the back-

round class) is selected. If the CNN confidence for a logo class is

bove the threshold that has been learned in training, the corre-

ponding logo class is assigned to the image, otherwise the image

s labeled as not containing any logo. 

.1. Object proposal 

For object proposal we exploit a Selective Search algorithm

riginally introduced by van de Sande et al. [18,19] . 

The goal of Selective Search is to provide a set of regions likely

o contain an instance of the object of interest, i.e. logos in our

ase. They can appear in any position and scale, and may have

een acquired under different lighting conditions, and from slightly

ifferent point of views. The algorithm is designed to be highly

ecall-oriented; this implies that very few logos are not segmented,

ut also implies that a great number of false positive candidates

re generated. The proposed regions will be disambiguated by the

eural network that comes afterward. 

.2. Network architecture 

The architecture used for the experiments in the following sec-

ions is a tiny deep neural network. We opted for a tiny network

ecause it is fast at test time and it can be trained on cheap GPUs

n very short time. It also allows us to train the network with-

ut using any form of regularization like dropout [20] , dropcon-

ect [21] , etc. decreasing even more the time needed for training

nd validating the network. 

The same network structure was used by Krizhevsky in [22] on

he CIFAR-10 dataset, where it was proven to be an high-

erformance network for the task of object recognition on tiny RGB

mages. It has three convolutional layers interleaved by ReLU non-

inearities and Pooling layers. All the pooling layers make the data

imensions halve after every Pooling block. The last part of the

etwork (farthest from the input) consists in two Fully-connected

ayers with a final Softmax classifier. The whole net structure is

resented in Table 1 . 

To give an idea of the network size, our network has 1.5 ×
0 5 parameters whereas AlexNet (used in [14] ) and GoogLeNet

a similar structure is used in [15] ) have respectively 6 × 10 7 
nd 1.3 × 10 7 parameters. Therefore our network is less likely to

verfit, even when the size of the training set is not large. 

. Logos datasets 

.1. FlickrLogos-32 dataset 

FlickrLogos-32 dataset [9] is a publicly-available collection of

hotos showing 32 different logo brands. It is meant for the eval-

ation of logo retrieval and multi-class logo detection/recognition

ystems on real-world images. All logos have an approximately

lanar or cylindrical surface. For each class, the dataset offers

0 training images, 30 validation images, and 30 test images. An

xample image for each of the 32 classes of the FlickrLogos-32

ataset is reported in Fig. 4 . 

.2. Logos-32plus dataset 

Logos-32plus dataset is an expansion of the trainset of

lickrLogos-32. It has the same classes of objects as its counter-

art but a larger cardinality (12,312 instances). We collected this

ew dataset for three main reasons: first, since we want to test

 deep learning approach, we needed a suitable dataset size. Sec-

nd, we believe that Logos-32 dataset is not very representative

f a data distribution for most real-world problems. Third, we hy-

othesize that synthetic data augmentation is not enough to model

ctual logo appearance variability. The Logos-32 dataset was col-

ected with the aim to train keypoint-based approaches. Therefore

he selection of images followed some implicit guidelines, such

s: most of the images are on focus, no blurry or noisy images,

nd usually images with highly saturated colors. As a result, the

ariability of this dataset mainly resides on the amount of intr-

class affine transformations which can be handled very well by

eypoint-based detection methods. We collected this new dataset

ith the aim of taking into account a larger set of real imaging
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Fig. 4. Example images for each of the 32 classes of the FlickrLogos-32 dataset. 

Fig. 5. Dendrogram representing the queries composition used to download the Logos-32plus dataset. To retrieve images of becks logos we used for instance: “logo Becks”, 

“merchandising Becks”, “drink Becks”, “bottle Becks”, “beer Becks” etc. 
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conditions and transformations that may occur in uncontrolled ac-

quisitions. 

We built the Logos-32plus dataset with images retrieved from

both Flickr and Google image search. In particular, to increase the

variability of data distribution we performed multiple queries for

each logo. The dendrogram scheme in Fig. 5 shows the tags used

to compose the search queries used. To compose a single query

we concatenate one leaf (a single logo) with a single tag of an

ancestor node. The whole set of queries for each logo can be ob-

tained by concatenating the logo name (leaf) with each tag con-

tained in all the ancestors nodes. For example, all the queries used

to search for the “Becks” logo are: “logo Becks”, “merchandising

Becks”, “events Becks”, “drink Becks”, “bottle Becks”, “can Becks”,

“beer Becks”, “bier Becks” etc. 
a  
The dataset contains on average 400 examples per class, with

ach image including one or multiple instances of the same

lass. The detailed distribution of classes is shown in Fig. 7 and

 comparison between the FlickrLogos-32 and the Logos-32plus

atasets is presented in Table 2 . The dataset is made available

or research purposes at http://www.ivl.disco.unimib.it/activities/

ogo-recognition . 

.3. Duplicates removal 

To ensure a high variability of the new dataset and to avoid

ny overlap with the existing one, we performed a semi-automatic

heck for duplicate images within the Logos-32plus dataset itself

nd with the FlickrLogos-32 dataset. The process has been carried

http://www.ivl.disco.unimib.it/activities/logo-recognition
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Table 2 

Comparison between FlickrLogos-32 and Logos-32plus datasets. 

FlicrkLogos-32 Logos-32plus 

Total images 8240 7830 

Images containing logo instances 2240 7830 

Train + Validation annotations 1803 12,302 

Average annotations for class 

(Train + Validation) 

40 400 

Total annotations 3405 12,302 

Fig. 6. Example of near duplicates. The two images depict the same scene from a 

similar point of view. The appearance of the Esso logo in the two images is basi- 

cally the same. We removed one of the two images from our Logos-32 plus dataset 

because the other one is included in the FlickrLogos-32 test set. 
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Fig. 7. Graphical comparison of the distribution of the 32 logo classes 
ut in two steps. First, we automatically found and discarded im-

ge duplicates using the SSIM measure [23] : we checked for sim-

larity every pair of images within the Logos-32plus dataset itself

nd with the FlickrLogos-32 dataset using the SSIM measure. Im-

ges with SSIM measure over 0.9 have been discarded. 

As a second step, we removed near duplicates in a semi-

utomatic manner. We say that two images are near duplicates if

hey depict the same scene with small differences in appearance

ith a particular focus on the portion of the image containing the

ogo. Examples of near duplicates are different overlapping crops

f the same photo or images of the same scene from a different

oint of view. An interesting example of near duplicates is shown

n Fig. 6 . The two images depict the same gas station from a very

imilar point of view. The girls in the photo are in different poses

ut the appearance of the Esso logo in the two images is basically

he same. In detail, to remove near duplicates we used the follow-

ng procedure: 

• we trained our CNN (structure in Table 1 ) from scratch on

Logos-32plus dataset. To accomplish this task we fed the net-

work with crops extracted from GT annotations and Object-

proposals regions. 

• We truncated the learned network leaving out the last two lay-

ers (softmax and last fully-connected). This network surgery

operation let us use our network as a feature extractor exploit-

ing the robust features learned by a deep neural network. We

used this truncated network to extract features from every im-

age crop that contains a tagged logo. 

• We trained a k-NN classifier on top of the extracted features

(using Logos-32plus as training set) and used it to retrieve from

Logos-32plus and FlickrLogos-32 the nearest five results. 

• Finally we manually checked for near duplicates among the five

nearest results retrieved by the classifier. All the near duplicates

have been discarded from the final dataset. 

. Experimental setup and results 

Experiments are performed considering the different training

hoices described in Section 2 . These include class balancing, data
between FlickLogos-32 and our augmented Logos-32plus dataset. 
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Table 3 

Experimental results showing the impact of the different training choices described in Section 2 on the final classification. Results are reported in terms of 

Precision, Recall, F1-measure and Accuracy. 

Train. Config. BG class BBs Data Augm. Class bal. Contr. norm. Sample weight Prec. Rec. F1 Acc. 

I No GT No No No No 0.370 0.370 0.370 0.096 

II Yes GT No No No No 0.713 0.665 0.688 0.620 

III Yes GT + OP No No No No 0.816 0.787 0.801 0.744 

IV Yes GT + OP Yes No No No 0.987 0.858 0.918 0.953 

V Yes GT + OP Yes Epoch No No 0.986 0.865 0.922 0.956 

VI Yes GT + OP Yes Batch No No 0.980 0.833 0.901 0.945 

VII Yes GT + OP Yes Epoch Yes No 0.989 0.906 0.946 0.958 

VIII Yes GT + OP Yes Epoch Yes Yes 0.984 0.875 0.926 0.951 

IX Yes GT + OP Yes Batch Yes No 0.984 0.887 0.933 0.955 

X Yes GT + OP Yes Batch Yes Yes 0.989 0.866 0.923 0.955 

Legend to Table 3 

Train. Config. Identifier of the configuration used for training 

BG class Background class (no-logo examples) included in training 

BBs Bounding Boxes used as training examples 

GT Precise ground-truth logo annotations 

GT + OP Precise ground-truth and Object-proposal logo annotations 

Data Augm. Data Augmentation (translation) 

Class bal. Class balancing to account for different cardinalities 

Epoch Classes are balanced in each epoch 

Batch Classes are balanced in each batch as well 

Contr. norm. Pre-processing of training examples with contrast normalization 

Sample weight Weighting examples based on overlap between OP and GT 

Table 4 

Comparison of the best configuration in Table 3 with the methods in the state of the art. 

Method Train data Precision Recall F1 Accuracy 

BoW SIFT [8] FL32 0.991 0.784 0.875 0.941 

BoW SIFT + SP + SynQE [8] FL32 0.994 0.826 0.902 N/A 

Romberg et al. [9] FL32 0.981 0.610 0.752 N/A 

Revaud et al. [10] FL32 ≥ 0.980 0.726 0.834 ÷0.841 N/A 

Romberg et al. [8] FL32 0.999 0.832 0.908 N/A 

Bianco et al. [13] FL32 0.909 0.845 0.876 0.884 

Bianco et al. + Q.Exp. [13] FL32 0.971 0.629 0.763 0.904 

Eggert et al. [14] FL32 0.996 0.786 0.879 0.846 

Oliveira et al. [16] FL32 0.955 0.908 0.931 N/A 

DeepLogo [15] FL32 N/A N/A N/A 0.896 

Ours ( TC -VII) FL32 0.976 0.676 0.799 0.910 

Ours ( TC -VII) FL32, L32 + 0.989 0.906 0.946 0.958 

Ours ( TC -VII, adding GT to the obj. prop.) FL32 0.968 0.755 0.848 0.917 

Ours ( TC -VII, adding GT to the obj. prop.) FL32, L32 + 0.989 0.917 0.952 0.960 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

augmentation, image contrast normalization, sample weighting,

addition of a background class, and addition of positive examples

actually generated by the object proposal algorithm. 

Each change to the training procedure is introduced one at a

time, in order to assess its individual contribution, and the corre-

sponding value is underlined in Table 3 for better readability. All

these configurations are trained using real data augmentation, i.e.

with our extended Logos-32plus dataset in addition to FlickrLogos-

32 training and validation sets. Results are reported in Table 3 in

terms of both F1-measure and Accuracy on FlickrLogos-32 test set.

With reference to Fig. 3 , the threshold on CNN predictions is auto-

matically chosen to maximize the accuracy on FlickrLogos-32 train-

ing and validation sets. The best configuration is then compared to

other state of the art methods in Table 4 . As further investigation

we quantify the contribution given from real data augmentation,

by training the same solution on the original FlickrLogos-32 train-

ing set only. Finally, we assess the impact of the object proposal

algorithm to the overall performance. To do this we add all the

ground truth locations to the test set, instead of relying on the ob-

ject proposal only. 

From the results reported in Table 3 it is possible to see that

with respect to a straightforward application of deep learning to

the logo recognition task (i.e. Training Configuration I, TC -I), the

different training choices considered are able to give a large in-

crease in performance: 
• The first jump in performance is obtained by including the

background (i.e. no-logo examples) as a new class in training.

Results are identified as TC -II and show an improvement in F1-

measure and accuracy of 31.8% and 52.4% with respect to TC -I. 

• A second jump is obtained by including object proposals com-

ing from Selective Search as additional training examples. This

configuration is named TC -III and improves the F1-measure and

accuracy by 11.3% and 12.4% with respect to TC -II. 

• A third jump in performance is obtained by augmenting the

cardinality of object proposals coming from Selective Search by

perturbing them with random translations (i.e. synthetic data

augmentation). This configuration is named TC -IV and improves

the F1-measure and accuracy by 11.7% and 20.9% with respect

to TC -III. 

• A further, smaller, improvement in performance is obtained

by considering class balancing to account for different car-

dinalities, with “Epoch” balancing giving consistently better

performance than the “Batch” counterpart (named TC -V and

TC -VI respectively). In particular, TC -V improves the F1-measure

and accuracy by 0.4% and 0.3% with respect to TC -IV. 

• Contrast normalization brings a further little but consistent im-

provement, with TC -VII improving the F1-measure and accuracy

by 2.4% and 0.2% with respect to TC -V. 

• Sample weighting instead (adopted in TC -VIII and TC -X), which

consists in weighting training examples according to the degree
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Fig. 8. Wrongly labeled logos ordered by confidence. Highest confidence prediction is top-left. Images resolution is 32 × 32 pixels, i.e. the same used to feed the CNN. The 

first and third rows are the wrong labeled logos, the second and the fourth rows represent the nearest example in the training set (using the last network layer activations 

before the softmax as feature vector). 
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Table 5 

Timings of the whole recognition pipeline. 

Device Proposal Preproc. Classif. Overall 

CPU 1.24 s 0.93 s 0.71 s 2.91 s 

GPU 1.24 s 2.12 s 0.36 s 3.74 s 
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of overlap between the object proposal and ground truth re-

gions, results in lowering the final performance of the method. 

The best configuration (i.e. TC -VII) trained on our extended

raining set is highlighted in bold in Table 3 and compared with

he state of the art in Table 4 . Performances of the other methods

re taken from the respective papers and thus for some of them

ome performance measures are missing. From the results reported

t is possible to see that the proposed solution is able to improve

he F1-measure with respect to the best method in the state of

he art by 3.8%, and the accuracy by 1.7%. It is worth to underline

hat the best results for the two metrics were obtained by differ-

nt methods in the state of the art, i.e. by Romberg et al. [8] and

oW SIFT [8] respectively. 

As a further comparison, we report the results obtained by our

olution using only FlickrLogos-32 for training and keeping all the

ther training choices unchanged. This results in a drop in F1-

easure by 14.7% and by 4.8% in accuracy, giving an idea of the

enefit of real data augmentation with respect to a purely syn-

hetic one [14] . As a final analysis, to understand if the major

ource of error in our method is the Selective Search module that

s unable to have a high recall or if its the CNN itself that mis-

redicts the logo class, we perform an additional test by adding

he actual logo ground truth region to the object proposals. This

ncreases the F1-measure by 0.6% and the accuracy by 0.2% indi-

ating that its the major source of error in our method is the CNN

tself. Some examples of wrongly labeled candidate logo regions

re reported in Fig. 8 . Candidates are generated by the object pro-

osal and they have a IoU larger than 0.5 with the corresponding

round truth. The first and the third row depict the wrongly recog-

ized regions labeled with their actual class, while the second and

ourth one depict the nearest example in the training set using as

eatures the activations of the last network layer before the soft-

ax. Images are reported with the same resolution used to feed

he CNN, i.e. 32 × 32 pixels. 

.1. Timings 

Table 5 shows the timings for the whole recognition procedure

t test time. Experiments are performed on the same computer

Intel i7 3.40 GHz - 16 GB RAM) averaging the timings of 100 runs

n different images. 
Two different solutions are compared: the use of CPU or GPU

GeForce GTX 650) for the classification step. 

The proposals extraction step runs always on CPU. The pre-

ocessing time include the resize of every patch to match the CNN

nput size, the contrast normalization (negligible processing time)

nd eventually the time to copy the data from CPU to GPU mem-

ry. In Table 5 it is possible to notice that the overhead caused

y the CPU–GPU memory transfer makes the overall time of the

PU solution higher than that of the CPU solution. To this extent,

n the future it might be interesting to evaluate a fully GPU-based

ipeline, for example generating and pre-processing proposals ac-

ording to [24] . 

. Conclusions 

Logo recognition is fundamental in many application domains.

he problem is that logos may appear in any position, scale and

nder any point of view in an image. Moreover, the images may

e corrupted by many image artifacts and distortions. 

The traditional approaches to logo recognition involve keypoint-

ased detectors and descriptors, or the use of CNNs pretrained on

ifferent tasks. Our solution employs a CNN specifically trained for

he task of logo classification, even if they are not perfectly lo-

alized. We designed a complete recognition pipeline including a

ecall-oriented candidate logo region proposal that feeds our CNN. 

Experiments are carried out on the FlickrLogos-32 database

nd on its enlarged version, Logos-32plus, collected by the au-

hors. We systematically investigated the effect on recognition per-

ormance of synthetic versus real data augmentation, image pre-

rocessing, and the benefits of different training choices such as

lass-balancing, sample-weighting and explicit modeling the back-

round class (i.e. no-logo regions). Our best solution outperforms

he methods in the state of the art and makes use of an explicit

odeling of the background class, both precise and actual object-

roposal logo annotations during training, synthetic data augmen-
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tation, epoch-based class balancing, and image contrast normaliza-

tion as pre-processing, while sample weighting is disabled. Both

the newly collected Logos-32plus and the trained CNN are made

available for research purposes 1 . 
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