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a b s t r a c t 

This paper introduces a new method for face verification across large age gaps and also a dataset contain- 

ing variations of age in the wild, the Large Age-Gap (LAG) dataset, with images ranging from child/young 

to adult/old. The proposed method exploits a deep convolutional neural network (DCNN) pre-trained for 

the face recognition task on a large dataset and then fine-tuned for the large age-gap face verification 

task. Fine-tuning is performed in a Siamese architecture using a contrastive loss function. A feature injec- 

tion layer is introduced to boost verification accuracy, showing the ability of the DCNN to learn a simi- 

larity metric leveraging external features. Experimental results on the LAG dataset show that our method 

is able to outperform the face verification solutions in the state of the art considered. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Face verification is an important topic in both computer vision,

imaging and multimedia. Verification accuracy mainly depends on

four elements: face pose, facial expression, illumination, and aging

[17] . The greatest part of the works in the state of the art studied

the face verification problem in constrained scenarios, controlling

and fixing one or more of these four elements. 

Recently many researchers achieved or even surpassed human-

level performance [9,35] on face verification benchmark taken in

unconstrained environments such as the Labeled Faces in the Wild

dataset (LFW) [16] . These results have been made possible thanks

to the improvement in facial landmark detection and to the in-

crease of the computational power available to train deep mod-

els. However, the LFW dataset fixes the aging element: it con-

tains large variations in pose, facial expression, and illumination,

but contains very little variation in aging. As people grow, face ap-

pearance can be very different, which makes it difficult to recog-

nize people across age. The problem is even harder when large age

gaps are considered. In this work large age gap is interpreted in

two ways: it refers both to the cases with extreme difference in

age (e.g. young vs old) and to the cases with large difference in

appearance due to the aging process (e.g. baby vs teenager/adult).

Being able to recognize people across large age gaps could be ben-

eficial in many applications: on photo sharing websites such as

Facebook and Flickr that are providing services for over ten years;

in all the personal photo management applications such as Google

Photos and Apple Photo where albums can likely span decades; for

the identification of long-lost and found persons. 
E-mail address: simone.bianco@disco.unimib.it 

p  

(  

S

http://dx.doi.org/10.1016/j.patrec.2017.03.006 

0167-8655/© 2017 Elsevier B.V. All rights reserved. 
To address the problem of face verification across large age

aps, in this work a new approach is proposed. Differently from

ther approaches in the state of the art, the proposed method

oes not rely on parametric models nor tries to model age pro-

ression. The idea is to use deep learning to jointly learn face fea-

ures that matching faces share, and a similarity metric on top of

hese features. This is done coupling two deep convolutional neu-

al networks (DCNN) with shared parameters in a Siamese network

4,10] ended with a contrastive loss function. The discriminative

ower of the network is further improved including a feature in-

ection layer, which fuses externally computed features with the

ctivations of the deepest layers of the DCNN. 

The contributions of this work are summarized as follows: 

– A new large-scale Large Age-Gap (LAG) dataset is collected, that

includes images in the wild of 1010 international celebrities

spanning large age gaps. 

– A new DCNN architecture is proposed, including a feature in-

jection layer that fuses external features with the activations of

the deepest DCNN layers. 

– Extensive experiments are conducted on LAG and show that

the proposed DCNN architecture can outperform state-of-the-

art methods. In particular, experimental results show that it is

possible to increase the performance of a DCNN by injecting

external features. 

The remaining sections are organized as follows: Section 2 re-

iews the related works on face recognition, age-invariant face

ecognition and existing face datasets. Section 3 describes the

roposed method, while Section 4 introduces the Large Age-Gap

LAG) dataset. Experiments are presented in Section 5 . Finally,

ection 6 draws the conclusions and discusses future works. 

http://dx.doi.org/10.1016/j.patrec.2017.03.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2017.03.006&domain=pdf
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. Related works 

.1. Deep feature fusion 

The idea of deep feature fusion has been mainly explored in

he video categorization task. One of the earliest work is from Si-

onyan and Zisserman [32] where they proposed a two-stream

onvNet architecture which incorporated a spatial and a tempo-

al network. Perhaps the most similar work is [18] where multi-

odal video features are combined (e.g. frame-based features com-

uted by a convolutional neural network, trajectory-based motion

escriptors and audio descriptors). Wang et al. [38] integrate the

dvantages of hand-crafted and deep-learned features: they uti-

ize deep architectures to learn multi-scale convolutional feature

aps, and introduce the strategies of trajectory-constrained sam-

ling and pooling to encode deep features into effective descrip-

ors. Zha et al. [46] propose a late fusion approach between CNN

eatures (taken at different layers) and Fisher Vectors [29] . The fea-

ures are fused using an external classifier and thus not in an end-

o-end training, excluding the possibility of backward feedbacks on

eature extraction. Ng et al. [23] investigated the combination of

ong Short Term Memory (LSTM) networks [13] with optical flow.

ark et al. [26] propose a multiplicative fusion method for combin-

ng multiple CNNs trained on different sources. 

.2. Face recognition 

Face recognition has been investigated for a long time in many

ifferent works. One of the earliest works is that of Turk and Pent-

and where they introduced the idea of eigenface [36] . Ahonen

t al. [1] explored the use of a texture descriptor, i.e. local binary

attern (LBP), for the face recognition task. Wright et al. [42] cast

ace recognition problem as one of classifying among multiple lin-

ar regression models via sparse signal representation, showing

 high degree of robustness against face occlusions. Chen et al.

9] proposed a high dimensional version of LBP (HDLBP) and stud-

ed the performance of face feature as a function of dimension-

lity, showing that high dimensionality is critical to achieve high

erformance. 

Recently there have been many works exploiting deep learning

or face recognition. Results obtained by Taigman et al. [35] and

y Sun et al. [33,34] using deep convolutional neural networks

DCNNs) reach or even surpass human-level performance on the

idely used labeled face in the wild dataset (LFW) [16] . Their per-

ormance has been further improved by Schroff et al. [31] introduc-

ng FaceNet, that directly learns a mapping from face images to a

ompact Euclidean space where distances directly correspond to a

easure of face similarity. Very recently Parkhi et al. [28] achieved

ven higher performance by using a very deep network that learns

 face embedding using a triplet loss similar in spirit to that of

chroff et al. [31] . Although these methods achieve very high per-

ormance on face recognition, they do not work well when in pres-

nce of age variation, since this information is not used. 

.3. Age-Invariant face recognition 

The largest part of existing works related to age in face image

nalysis focus on age estimation and simulation. Only recently re-

earchers have started to work on cross age face recognition. Ex-

sting works can be grouped into generative and discriminative

ethods. Among the first group, some of the approaches build 2D

12] or 3D [27] aging models. These methods rely on parametric

odels and accurate age annotation or estimation, and thus do not

ork well in unconstrained scenarios. Wu et al. [43] propose a rel-

tive craniofacial growth model to model the facial shape change,

hich is based on the science of craniofacial anthropometry. Their
ethod needs age information to predict the new shapes, limiting

ts applicability since this information is not always available. 

Among the works based on a discriminative approach Li et al.

21] use multi-feature discriminant analysis (MFDA) to process in

 unified framework the two local feature spaces generated by the

wo different local descriptors used, i.e. SIFT and multi-scale LBP.

ong et al. [14] proposed a method separating the HOG local fea-

ure descriptor into two latent factors using hidden factor analysis:

n identity factor that is age-invariant and an age factor affected

y the aging process. Chen et al. [6,7] use a data-driven method

hat leveraging a large-scale image dataset freely available on the

nternet as a reference set, encodes the low-level feature of a face

mage with an age-invariant reference space. Liu et al. [22] pro-

ose a generative-discriminative approach based on two modules:

he aging pattern synthesis module and the aging face verification

odule. In the aging pattern synthesis module, an aging-aware de-

oising auto-encoder is used to synthesize the faces of all the four

ge groups considered. In the aging face verification module, par-

llel CNNs are trained based on the synthesized faces and the orig-

nal faces to predict the verification score. 

.4. Face datasets 

Existing face datasets can be divided into two main groups: the

ormer consists of datasets acquired in controlled environments,

he latter datasets in unconstrained environments. Most of the

lder datasets belong to the first group, such as FERET [30], Yale,

nd CMU PIE. The most popular dataset in uncontrolled environ-

ent is the LFW [16] , with a total of 13,233 images of 5749 people

xtracted from news programs. Pubfig [20] has been collected with

he aim of providing a larger number of images for each individual,

nd it contains 58,797 images of 200 identities. The largest dataset

vailable is the CasiaWebFace dataset [44] with a total of 986,912

mages of 10,575 people. All the above datasets can be used only

or face recognition and verification tasks, since there is almost

o age variation. Concerning age estimation and face recognition

cross age, the most used datasets are FGNet [11] and MORPH

30] . The former is composed of a total of 1002 images of 82 peo-

le with age range from 0 to 69 and an age gap up to 45 years.

he latter contains 55,134 images of 13,618 people with age range

rom 16 to 77 and an age gap up to 5 years. Recently the CACD

ataset has been collected [6,7] crawling the web suing as query

0 0 0 celebrities names for a total of 163,446 images. For a subset

f 200 identities images are manually checked and the noisy ones

ave been removed. Age ranges from 14 to 62 and age gap is up to

0 years. Very recently the CAFE dataset has been collected [22] .

t is the first permitting a study on face verification with large age

aps. It is composed of 4659 images of 901 people and, due to the

ay images are collected it does not contain precise age informa-

ion. A summary of the comparison between existing datasets is

eported in Table 1 . 

. The proposed method 

Fig. 1 gives an overview of the proposed method. First face and

andmark detection are performed on CASIA-WebFace and Large

ge-Gap (LAG) database to localize and align each face to a ref-

rence position. Next, a DCNN is trained on the CASIAWebFace

44] for the face recognition task. The knowledge learned by the

CNN is then transferred [25] from the source task of face recog-

ition to the target task of large age gap face verification. Knowl-

dge transfer is performed by fine-tuning [2,45] the DCNN using a

ontrastive loss in a Siamese architecture in which pre-computed

xternal features are injected in the fully connected layer. 
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Table 1 

The comparison between existing datasets for face verification/recognition. 

Dataset name Year # of images # of people # images/person Age info. Age gap Publicly available 

LFW [16] 2007 13,233 5749 2.3 No – Yes 

Pubfig [20] 2009 58,797 200 293.9 No – Yes 

Casia [44] 2014 986,912 10,575 93.3 No – Yes 

FGNet [11] 2008 1002 82 12.2 Yes 0–45 Yes 

MORPH [30] 2006 55,134 13,618 4.1 Yes 0–5 Yes 

CACD [6,7] 2015 163,446 20 0 0 81.7 Yes 0–10 Yes 

CAFE [22] 2016 4,659 901 5.2 No Large Not yet 

Ours (LAG) this paper 3828 1010 3.8 No Large Yes ∗

∗ http://www.ivl.disco.unimib.it/activities/large- age- gap- face- verification/ . 

Fig. 1. Overview of the proposed method for large age-gap face verification. 
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3.1. Image preprocessing 

For each image in the database, we first apply the widely used

Viola–Jones face detector [37] to find the face region in the image.

For each face, we then locate 68 different facial landmarks using

a face alignment algorithm [19] . After landmark detection, we use

the eye locations to align the face images. Images are first rotated

so that the eyes are horizontally aligned, then scaled so that the

distance between eyes is fixed, and finally cropped to a common

size of 200 × 200 pixels. 

3.2. Deep face feature representation 

A DCNN is trained to learn a discriminative representation of

faces. The chosen architecture is the AlexNet [47] , but others could

be used. The choice of this architecture was made since it has

shown strong results in the literature and permits ease of com-

parison to other works. The DCNN is trained on the face recog-

nition task on the CASIAWebFace. The dimensionality of the in-

put layer is 200 × 200 × 1 gray-scale images. The network in-

cludes 5 convolutional layers, 3 pooling layers and 3 fully con-

nected layers. Each convolutional layer is followed by a rectified

linear unit (ReLU). Two local normalization layers are added af-

ter each of the first two convolutional layers to mitigate the ef-
ect of illumination variations. Dropout is used to regularize all

he fully connected layers due to the large number of parameters

 f c6 = 4096 , f c7 = 4097 , and f c8 = 10575 equal to the number of

ifferent identities in CASIAWebFace). The features extracted from

he second to last fully connected layer, i.e. fc 7, are used for face

epresentation after an L 2 -normalization step. 

.3. Feature injection 

The L 2 -normalized fc 7 features are given as input to a set of n

ace verification methods in the state of the art. Each of them pro-

ides as output a distance or confidence score that a pair of im-

ges belong to the same identity or not d i , i = 1 , . . . , n, which are

tacked to form the vector d = { d i } n i =1 
. A Siamese DCNN [4,10] is

hen fine-tuned on the LAG database starting from the net in

ection 3.2 using a contrastive loss function. In addition to the

CNN features, a feature injection layer is added to fuse exter-

ally computed features with the activations of the deepest layers

f the DCNN. In more details, the features d are injected in the first

ully connected layer. i.e. fc 6. The feature injection is performed in

he form of concatenation of the external features d with the fc 6’s

ctivations, as represented in Fig. 2 for one side of the Siamese

CNN. The idea is that the DCNN jointly learns face features that

atching faces share, and a similarity metric on top of these

http://www.ivl.disco.unimib.it/activities/large-age-gap-face-verification/
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Fig. 2. Graphical representation of feature injection in the fully connected layer. 

Fig. 3. Examples of face crops for matching pairs in the Large Age-Gap (LAG) dataset. 
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eatures also leveraging external features. At test time, the fc 7’s ac-

ivations with injected features are computed for the pair of input

mages, then they are L 2 −normalized, and their Euclidean distance

s thresholded to classify them as matching pairs or not. 

. Large Age-Gap dataset (LAG) 

In order to be able to collect images from a large number of

eople, the Large Age-Gap dataset (LAG) is constructed with pho-

os of celebrities. The meaning of large gap is twofold: from one

ide it refers to images with extreme difference in age, e.g. 0 to 80

ears old; on the other side it refers to large difference in appear-

nce due to the aging process: for example, 0 to 15 years old is a

elatively small difference in age but has a large change in appear-

nce. The LAG dataset covers both aspect. 

Google Image Search is used to collect images by specifying to

earch face images. In order to collect celebrities images across

ifferent ages, we augment the celebrity name with adjectives

uch as “baby”, “childhood”, “adult”, “now”, “today” as keywords.

earches with celebrity names followed by the string “then and

ow” are also used. YouTube videos of collections of “then and

ow” celebrities have also been downloaded. Since the videos

hare a common and very simple structure, i.e. short sequences of

he two still images (the younger and the older version) one next

o the other, all the video frames are extracted and a simple shot

etection algorithm is used to detect the duration of the different

equences. Then, the central frame of each shot is collected. 

The next step is the duplicate image removal. To this end, a

tructural similarity measure [39] is used to compare all the pos-

ible couples of images from the same identity. Only the couples

ith a very high similarity are inspected, and if they are actually

uplicates only the higher quality version is maintained. After re-

oving duplicate images, we manually check the images and re-

ove the noisy images in the dataset. The dataset contains 3828

mages of 1010 celebrities after removing the noisy images. For
ach identity at least one child/young image and one adult/old

mage are present. Starting from the collected images, a total of

051 matching pairs has been generated. The same number of

on matching pairs has been randomly generated. Table 1 shows

he statistics of the dataset and comparison to other existing face

atasets. Some examples of the face crops of the collected images

re reported in Fig. 3 . 

. Experimental results 

In this section we evaluate the performance of large age-gap

ace verification. We compare our method with current state-of-

he-art features and classifiers for general face verification, such as

igh dimensional local binary feature (HDLBP) [9] , Other similarity

etric learning approaches, such as sub-SML [5] , One Shot Sim-

larity Kernel [40] , Cosine Similarity [24] and Joint Bayesian [8] .

ll the similarity learning methods have been trained using the

 2 −normalized fc 7 features (extracted with the DCNN trained for

he face recognition task on CASIAWebFace). We also compare our

ethod with the Cross Age Reference Coding (CARC) [6,7] method,

hich is designed specifically for cross-age face verification. Since

AG dataset does not provide exact age information, the version

ithout the temporal constraint is used here, i.e. CARC-NT. 

To understand the contribution of the feature injection, a

iamese DCNN is fine-tuned on the LAG dataset excluding the in-

ection layer. This also permits a direct comparison of the Siamese

CNN with the other similarity metric learning approaches consid-

red. Besides feature injection, to have a benchmark, external fea-

ures are also fused stacking [41] linear SVM classifiers as in Hass-

er et al. [15] . 

Experiments are made using a two-fold cross validation: the

AG dataset has been alphabetically sorted and subjects have been

ssigned alternately to the first or to the second fold. For each fold,

he training set is augmented by considering the four combinations

f horizontal flips and original images, as well as tiny amounts of
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Table 2 

Average recognition accuracy comparison of our method and other baselines on the LAG dataset. 

ID Method Features Accuracy Improvement 

1. Euclidean distance DCNN 0,5917 −0,1565 

2. L2-norm & Euclidean Distance DCNN 0,6498 −0,0984 

3. L2-norm & Hellinger Distance DCNN 0,6688 −0,0794 

4. Similarity Metric Learning (sub-SML) [5] DCNN 0,7243 −0,0239 

5. OSS (one shot similarity) [40] DCNN 0,6642 −0,0840 

6. Cosine Similarity [24] DCNN 0,6508 −0,0974 

7. Joint Bayesian [8] DCNN 0,6633 −0,0848 

8. CARC-NT [6,7] DCNN 0,7482 -,—- 

9. HDLBP [9] LBP 0,7153 −0,0329 

10. Stacking (1 representation: DCNN) 1 + 2 + 3 0,6781 −0,0701 

11. Stacking (1 representation: DCNN) 1 + 2 + 3 + 4 0,7441 −0,0041 

12. Stacking (1 representation: DCNN) 1 + 2 + 3 + 4 + 5 0,7874 0,0392 

13. Stacking (1 representation: DCNN) 1 + 2 + 3 + 4 + 5 + 7 0,7712 0,0231 

14. Stacking (1 representation: DCNN) 1 + 2 + 3 + 4 + 5 + 8 0,7921 0,0439 

15. Siamese DCNN DCNN 0,7734 0,0252 

16. Stacking (1 representation: DCNN) 1 + 2 + 3 + 4 + 5 + 8 + 15 0,8010 0,0528 

17. Siamese DCNN + feature injection DCNN with injected 1 + 2 + 3 + 4 + 5 + 8 + 15 0,8277 0,0795 

18. Stacking (2 representations: DCNN + LBP) 1 + 2 + 3 + 4 + 5 + 8 + 9 + 15 0,8263 0,0781 

19. Siamese DCNN + feaure injection DCNN with injected 1 + 2 + 3 + 4 + 5 + 8 + 9 + 15 0,8495 0,1014 

Fig. 4. ROC curves of the proposed method and other baselines on the LAG dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Confusion matrix of our method on the LAG 

dataset. 

non-matching matching 

non-matching 0.8575 0.1425 

matching 0.1584 0.8416 
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jittering. Performance are reported as the verification accuracy in

Table 2 , and plotted as ROC curves in Fig. 4 . 

From the results reported in Table 2 it is possible to see that the

use of the Siamese DCNN fine-tuned on the LAG dataset to learn

a similarity metric is able to outperform all the single methods in

the state of the art, outperforming the best one by almost 2.5%.

Enabling the feature injection in the fine-tuning step permits an

improvement over the best method in the state of the art of more

than 10%. Feature combination stacking linear SVM classifiers per-

forms 2.3% worse than our method. The experimental results show

the effectiveness of both the use of a Siamese DCNN for similarity

metric learning and the usefulness of the feature injection. An in-

direct comparison with the method by Liu et al. [22] can be done

by using HDLBP [9] as a reference: on their CAFE dataset they re-

ported an improvement over HDLBP of 2.5%. On our LAG dataset

our methods outperforms HDLBP by 13.4%. 
In the following we examine more in details the results of the

est performing Siamese DCNN with feature injection reported in

able 2 (i.e. ID. 19): its confusion matrix is reported in Table 3 .

rom the confusion matrix we can evince that our solution is al-

ost equally able to identify non-matching pairs and matching

airs. 

In Fig. 5 some examples of correctly identified matches among

hose on which our solution is very confident are reported. Some

xamples of correctly identified matches on which our solution is

ot so confident are reported in Fig. 6 . Some examples of false pos-

tives, i.e. non-matching pairs classified as matching ones are re-

orted in Fig. 7 , while examples of misclassified matching pairs are

eported in Fig. 8 . From the examples reported it is possible to see

hat matching pairs on which our solution is very confident tend to

ave the same pose and expression, suggesting that more powerful

ose-normalization methods could further improve the verification

ccuracy. A similar behavior can be observed on the false positives,

here the similarity between specific facial features led the sys-

em to wrongly classify them as matching pairs (see for example

he pointed chin in the 8th and 10th column, the eye expression

n the 9th column, the expression and pose in the 7th column, or

he expression and face shape in the 2nd column). For what con-

erns the examples of correctly identified matches on which our

olution is not so confident, we can observe that in some cases

here is a large change in appearance also due to a change in facial

eatures e.g. the beard in the example in the 1st, 3rd and 9th col-

mn or eyeglasses in the 8th column. Some of the false negative

xamples are instead very difficult to classify since the subjects

ave had some sort of plastic surgery procedures (e.g. see Michael

ackson). 

. Conclusions 

In this paper a new method for face verification across large

ge gaps is introduced along with a dataset containing varia-

ions of age in the wild. The proposed method exploits a deep
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Fig. 5. Examples of correctly classified matching pairs on which our approach is very confident. 

Fig. 6. Examples of correctly classified matching pairs on which our approach is not very confident. 

Fig. 7. Examples of errors of our approach: non-matching pairs classified as matching ones (i.e. false positives). 

Fig. 8. Examples of errors of our approach: matching pairs classified as non-matching ones (i.e. false negatives). 
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onvolutional neural network (DCNN) trained in a Siamese archi-

ecture ended with a contrastive loss function. The network dis-

riminative power is further improved including a feature injection

ayer, which injects externally computed features into the deepest

ayers of the DCNN. Experimental results on the Large Age-Gap

LAG) dataset show that the proposed approach is able to outper-

orm the face verification methods in the state of the art consid-

red. 

As future work we plan to extend this research in different di-

ections: 

– Integration of the LAG dataset with the CAFE dataset [22] when

it will be released, and further extension of the LAG dataset col-

lecting more images for each identity. 
– Investigation of the use of different face alignment algorithms

such as Hassner et al. [15] . 

– Comparison and integration with face aging models [12] . 

– Addition of pre-processing steps such as illuminant compensa-

tion [3] . 

– Use of pre-classifiers to make verification task easier, e.g.

age/gender/race classifier, expression classifier, etc. 
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