
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 9, SEPTEMBER 2017 4347

Single and Multiple Illuminant Estimation
Using Convolutional Neural Networks

Simone Bianco, Member, IEEE, Claudio Cusano, Member, IEEE, and Raimondo Schettini, Member, IEEE

Abstract— In this paper, we present a three-stage method for
the estimation of the color of the illuminant in RAW images.
The first stage uses a convolutional neural network that has
been specially designed to produce multiple local estimates of
the illuminant. The second stage, given the local estimates,
determines the number of illuminants in the scene. Finally, local
illuminant estimates are refined by non-linear local aggregation,
resulting in a global estimate in case of single illuminant.
An extensive comparison with both local and global illuminant
estimation methods in the state of the art, on standard data sets
with single and multiple illuminants, proves the effectiveness of
our method.

Index Terms— Color constancy, illuminant estimation,
convolutional neural networks.

I. INTRODUCTION

THE observed color of the objects in the scene depends
on the surface spectral reflectance of the object, on the

illumination, and on their relative positions. Many computer
vision problems in both still images and videos can make use
of color constancy processing as a pre-processing step to make
sure that the recorded color of the objects in the scene does
not change under different illumination conditions.

In general there are two methodologies to obtain reliable
color description from image data: computational color con-
stancy and color invariance [1]. Computational color constancy
is a two-stage operation: the former is specialized on estimat-
ing the color of the scene illuminant from the image data,
the latter corrects the image on the basis of this estimate
to generate a new image of the scene as if it was taken
under a reference illuminant. Color invariance methods instead
represent images by features which remain unchanged with
respect to imaging conditions.

In this work we focus on illuminant estimation. Our method
is based on supervised learning and includes a Convolu-
tional Neural Network (CNN) specially designed for the
local estimation of the illuminant color. Recently, deep neural
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networks have gained the attention of numerous researchers
outperforming state-of-the-art approaches on various computer
vision tasks [2], [3]. One of CNNs advantages is that it
can take raw images as input and incorporate feature design
into the training process. With a deep structure, CNN can
learn complicated mappings while requiring minimal domain
knowledge. The main limitation of deep learning approaches is
the large amount of training data they need. This is a serious
drawback for those problems where the ground truth is not
easily available, as is the case of illuminant estimation that
requires training images having a known color target in the
scene. Since training images cannot be obtained from the
web or other common image sources, the datasets that can
be used to train and evaluate illuminant estimation methods
are orders of magnitude smaller than those commonly used for
deep learning. To deal with this problem we propose an hybrid
approach where a CNN provides a spatially varying estimate
of the illuminant that are then refined by a local regressor
based on non-linear Support Vector Regression (SVR) with
an adaptive support. Since the CNN performs a local analysis,
it can be trained on a large number of patches extracted from
a relatively small training set of images. The training of the
final regressor does not pose any problem, since it requires a
limited number of training samples. This approach has also the
advantage of allowing the estimation of multiple illuminants
for the same picture. To estimate the number of illuminants in
the scene we designed a multiple illuminant detector exploiting
a Kernel Density Estimator (KDE). The size of the support of
the local regressor is computed by assigning the local estimates
to the density peak(s), by back-projecting them on the original
image, and by computing the Distance Transform (DT). In case
of a single illuminant, the regressor support is thus the whole
image and its application produces a single global estimate.
Therefore our method can be considered general purpose one
that is able to deal with single and multiple illuminants in a
comprehensive way.

Preliminary findings reported in this paper appeared in [4],
where we presented the basic architecture of the CNN and
evaluated its performance in the single illuminant scenario.
This paper extends the previous one in several ways:

- since one of the assumptions that is often violated in color
constancy is the presence of a uniform illumination in the
scene, we have extended the applicability of the proposed
algorithm to the case of non-uniform illumination. The
method is adaptive, being able to distinguish and process
in different ways images of scenes taken under a uniform
and those acquired under non-uniform illumination.
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- In the case of uniform illumination, the multiple local
estimates must be aggregated in a single global estimate.
To do so we designed a new local regression method that
replaces the per-channel median operator used in [4] with
a non-linear mapping based on a RBF kernel over local
statistics of the CNN estimates. The mapping is optimized
by applying a regression procedure that minimizes the
median angular error on the training set.

- In case of non-uniform illumination, the local estimates
are refined using the same local regression method
applied for uniform illumination, changing its support
size on the basis of the spatial extent of the illuminants
in the scene.

- Preliminary results reported in [4] included only images
having a single color target in the scene, thus allowing
only the comparisons with global illuminant estimation
methods. We present a much more detailed experimental
evaluation using both a multiple illuminant synthetic
dataset and a dataset of RAW images containing at least
two known color targets for benchmarking.

We show experimentally that the proposed method advances
the state-of-the-art on standard datasets of RAW images for
both the cases of single and multiple illuminants.

The rest of the paper is organized as follows: Section II
formalizes the problem of illuminant estimation and reviews
the main approaches in the state of the art. Section III
illustrates in detail the proposed method. Section IV describes
the data and the algorithms used in the experimentation, while
Section V discusses the results obtained. Section VI reviews
the architecture of the CNN on which our method is based, and
gives insights on the learned model from a computational color
constancy point of view. Finally, Section VII summarizes the
findings of our experimentation and proposes new directions
of research in this field.

II. PROBLEM FORMULATION AND RELATED WORKS

The image values for a Lambertian surface located at
the pixel with coordinates (x, y) can be seen as a function
ρ(x, y), mainly dependent on three physical factors: the
illuminant spectral power distribution I (x, y, λ), the surface
spectral reflectance S(x, y, λ) and the sensor spectral sensitiv-
ities C(λ). Using this notation ρ(x, y) can be expressed as

ρ(x, y) =
∫

I (x, y, λ)S(x, y, λ)C(λ)dλ, (1)

where λ is the wavelength, ρ and C(λ) are three-component
vectors and the integration is performed over the visible
spectrum. The goal of color constancy is to estimate the color
I(x, y) of the scene illuminant, i.e. the projection of I (x, y, λ)
on the sensor spectral sensitivities C(λ):

I(x, y) =
∫

I (x, y, λ)C(λ)dλ. (2)

Usually the illuminant color is estimated up to a scale factor as
it is more important to estimate the chromaticity of the scene
illuminant than its overall intensity [5]. Thus, the error metric
usually considered, as suggested by Hordley and Finlayson [5],
is the angle between the RGB triplet of estimated illuminant

(Î(x, y)) and the RGB triplet of the measured ground truth
illuminant (I(x, y)):

eANG(x, y) = arccos

(
I(x, y)t Î(x, y)

‖I(x, y)‖‖Î(x, y)‖

)
. (3)

Since the only information available are the sensor
responses ρ across the image, color constancy is an under-
determined problem [6] and thus further assumptions and/or
knowledge are needed to solve it. Several computational color
constancy algorithms have been proposed, each based on
different assumptions. The most common assumption is that
the color of the light source is uniform across the scene, i.e.
I(x, y) = I The next two sections review single and multiple
illuminant estimation algorithms in the state of the art.

A. Single Illuminant Estimation

Methods for single illuminant estimation can be divided
into two main classes: statistic approaches, and learning-
based approaches. Statistic approaches estimate the scene
illumination only on the base of the content in a single
image making assumptions about the nature of color images
exploiting statistical or physical properties; learning-based
approaches require training data in order to build a statistical
image model, before the estimation of the illumination.

1) Statistic-Based Algorithms: van de Weijer et al. [7] have
unified a variety of algorithms. These algorithms estimate
the illuminant color I by implementing instantiations of the
following equation:

I(n, p, σ ) = 1

k

(∫∫ ∣∣∇nρσ (x, y)
∣∣p dx dy

) 1
p

, (4)

where n is the order of the derivative, p is the Minkowski
norm, ρσ (x, y) = ρ(x, y) ⊗ Gσ (x, y) is the convolution of
the image with a Gaussian filter Gσ (x, y) with scale parameter
σ , and k is a constant to be chosen such that the illuminant
color I has unit length (using the 2−norm). The integration
is performed over all pixel coordinates. Different (n, p, σ )
combinations correspond to different illuminant estimation
algorithms. Are examples within this framework the Gray
World algorithm [8] (n = 0, p = 1, σ = 0), the White Patch
algorithm [9] (n = 0, p = ∞, σ = 0), and The Gray Edge
algorithm [7] (n = 1, p = 0, σ = 0).

Examples of statistic-based methods not following eq. (4)
are Gamut Mapping [10] and Color by Correlation [11].

2) Learning-Based Algorithms: The learning-based illumi-
nant estimation algorithms, that estimate the scene illuminant
using a model that is learned on training data, can be sub-
divided into two main categories: probabilistic methods and
fusion/selection based methods.

One of the first learning-based algorithms is [12], where
a Neural Network was trained on binarized chromaticity his-
tograms. In [13] a neural network is used to better understand
the color constancy in the human visual system, concluding
that the human visual system achieves color constancy by con-
currently calculating the difference between the test object and
the background color as well as determining the background
color.
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Bayesian approaches [14] model the variability of
reflectance and of illuminant as random variables, and then
estimate illuminant from the posterior distribution conditioned
on image intensity data.

Given a set illuminant estimation algorithms, in [15] an
image classifier is trained to classify the images as indoor
and outdoor, and different experimental frameworks are pro-
posed to exploit this information in order to select the best
performing algorithm on each class. In [16] it has been shown
how intrinsic, low level properties of the images can be
used to drive the selection of the best algorithm (or the best
combination of algorithms) for a given image. In [17] the
Weibull parametrization has been used to train a maximum
likelihood classifier based on mixture of Gaussians to select
the best performing illuminant estimation method for a certain
image.

In [18] a statistical model for the spatial distribution of
colors in white balanced images is developed, and then used
to infer illumination parameters as those being most likely
under their model. High level visual information has been used
to select the best illuminant out of a set of possible illumi-
nants [19]. In [20] and [21] the use of automatically detected
objects having intrinsic color is investigated. In particular, they
showed how illuminant estimation can be performed exploiting
the color statistics extracted from the faces automatically
detected in the image. When no faces are detected in the
image, any other algorithm in the state-of-the-art can be used.
In [22] and [23] the surfaces in the image are exploited and the
illuminant estimation problem is addresses by unsupervised
learning of an appropriate model for each training surface in
training images. The model for each surface is defined using
both texture features and color features.

In [24] it was showed how simple moment based algorithms
can, with the addition of a simple correction step deliver much
improved illuminant estimation performance. The approach
employs first, second and higher moments of color and color
derivatives and linearly corrects them to give an illuminant
estimate. In [25] four simple image features are used for
training an ensemble of decision trees. Each of these trees is
computed from samples in the training data that are biased to a
local region in chromaticity space of the ground truth illumina-
tions. The final estimate is made by finding consensus among
the different features trees estimations. In [26] illuminant color
is predicted from luminance-to-chromaticity based on a condi-
tional likelihood function for the true chromaticity of a pixel,
given its luminance. Two approaches have been proposed to
learn this function. The first was based purely on empirical
pixel statistics, while the second was based on maximizing
accuracy of the final illuminant estimate. In [27] the illuminant
estimation problem is reformulated as a 2D spatial localization
task in a log-chrominance space, applying techniques from
object detection and structured prediction. The method directly
learns how to discriminate between correctly white-balanced
images and poorly white-balanced ones scoring by convolution
each tinted image, and then returning the highest-scoring tint
as the estimated illumination of the input image.

3) CNN-Based Algorithms: In [4] two different approaches
using CNNs were investigated: in the first one an ad-hoc CNN

for the color constancy problem was trained; in the second one
a pre-trained one was used by extracting a 4096-dimensional
feature vector from each image using the Caffe [28] imple-
mentation of the deep CNN described by Krizhevsky et al. [3].
Features were computed by forward propagation of a mean-
subtracted 227 × 227 RGB RAW image through five convo-
lutional layers and two fully connected layers. More details
about the network architecture can be found in [3] and [28].
The CNN was discriminatively trained on a large dataset
(ILSVRC 2012) with image-level annotations to classify
images into 1000 different classes. Features are obtained by
extracting activation values of the last hidden layer. The
extracted features were then used as input to a linear Support
Vector Regression (SVR) [29] to estimate the illuminant color
for each image. In [30] a deep CNN inspired by [3] is
used. To overcome the lack of large scale training datasets,
a three-step learning strategy is proposed. First, the CNN
was discriminatively trained on ILSVRC; then, the CNN is
fine-tuned on the same dataset with generated light sources,
i.e. using labels coming from a color constancy algorithm
in the state of the art; finally, the CNN is fine-tuned on
datasets with real ground-truth labels. In [31] the illumination
estimation problem is cast as a classification problem. The
training images are first clustered according to the illumination
color assigned to each image and the images with the new
labels (i.e. the cluster ids) are used to train the CNN. The
CNN is designed to output the probabilities of the given image
belonging to each illumination cluster. The final estimate is
obtained by linear combination of the cluser probabilities and
the cluster centroids.

B. Multiple Illuminant Estimation

The great majority of state-of-the-art illuminant estimation
methods assumes that a uniform illumination is present in
the scene. This assumption is often violated in real-world
images. It is not trivial to extend the existing illuminant
estimation algorithms to work locally instead of globally, since
the spatial support on which they accumulate the statistics
is reduced, and the final local estimate could be biased by
local image properties. One of the first methods following this
strategy is Retinex [9], which is able to deal with non-uniform
illumination assuming that an abrupt change in pixel values
is caused by a change in reflectance properties. This implies
that the illuminant smoothly varies across the image and does
not change between adjacent or nearby locations. Ebner [32]
proposed a method that assumes that the illuminant transition
is smooth. The method uses the local space average color for
local estimation of the illuminant by convolving the image
with a Gaussian kernel function. Bleier et al. [33] investigated
whether existing color constancy methods, originally devel-
oped assuming uniform illumination, can be adapted to local
illuminant color estimation using image sub-regions. Multiple
independent estimations are then combined through regression
to obtain a more robust final estimate. Gijsenij et al. [34]
proposed a method that makes use of local image patches,
which can be selected by any sampling method. After sampling
of the patches, illuminant estimation techniques are applied to
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Fig. 1. Scheme of the proposed illuminant estimation method showing the connections among the modules during both training and test phases.

obtain local illuminant estimates, and these estimates are com-
bined into more robust estimations, since it is assumed that the
number of different lights is less than the number of patches.
This combination of local estimates is done with two different
approaches: clustering if the number of lights is known,
segmentation otherwise. Recently Bianco and Schettini [21],
and Joze and Drew [23] respectively extended the face-based
and exemplar-based color constancy algorithms to deal with
multiple illuminations. A different class of algorithms is based
on user guidance to deal with the case of two [35] and multiple
lights [36].

III. THE PROPOSED APPROACH

In the last years deep learning techniques have made it pos-
sible to achieve significant improvements in several computer
vision tasks. Their success often depends on the availability of
a large amount of annotated training data. Compared to other
image-related problems, in illuminant estimation annotated
data is scarce. Therefore, the straightforward procedure of
learning the most probable illuminant color directly from the
image pixels needs some major adjustments.

We propose a three-stage method: the first stage is patch
based, that is, a CNN is trained to predict the illuminant
color from a small square portion of the input image. A large
training set of patches can be obtained even from a relatively
small data set of images, making it possible the use of deep
learning techniques. This first stage allows to obtain multiple
local estimates of the illuminant across the input image.

The second stage determines the number of illuminants in
the scene. This decision is taken on the basis of a statistical
analysis of the local estimates produced by the first stage.

The third stage refines the illuminant estimates by non linear
local aggregation. In the case the second stage determines that
the scene has been taken under a single illuminant, it is better
to aggregate the local estimates into a single prediction. For
this purpose, in our previous work [4] we experimented with
the mean and the per-channel median operators. In this work
we propose a local aggregation procedure based on supervised
learning. More in detail, statistical features are extracted from
the local estimates, and then fed to a non-linear mapping

whose output is the final global estimate of the color of the
illuminant. The support of the local regression is thus the
whole image. Differently from the first stage, this stage is
image based. Therefore, its complexity is limited by the small
number of annotated images. For this reason, instead of using
a deep learning approach, we adopted a “shallow” non-linear
regression scheme.

In case of multiple illuminants, the support of the local
regression is smaller, thus performing a refinement of the local
illuminant estimates. Local illuminant estimates are grouped
together in the number of groups estimated in the second
stage, and the group assignments are by back-projected on
the original image. For each group the distance transform is
computed, and the local regression support size is computed
by calculating the minimum over all groups of the maximum
values of the distance transforms. Note that the procedure used
for the single illuminant is just a special case of this more
general strategy.

Figure 1 shows a schematic view of the proposed method.

A. Local Illuminant Estimation

In the first stage a convolutional neural network produces
local estimates of the illuminant. The network, described in
greater detail in Section VI, takes as input non-overlapping
patches that have been previously subjected to a stretching
of the histogram so that the output estimate is invariant with
respect to the local contrast. The network is composed by
the the following sequence of layers (see also Figure 2 for a
graphical representation):

• input RGB patches of size 32 × 32 × 3;
• a bank of 240 convolutional 1 × 1 × 3 filters producing

an output of size 32 × 32 × 240;
• downsampling via an 8 × 8 max pooling layer to a size

of 4 × 4 × 240;
• reshaping of the result of pooling into a 3840-dimensional

vector;
• a linear 3840 × 40 layer producing a 40-dimensional

feature vector;
• a ReLU activation function;
• a linear 40 ×3 layer producing the output RGB estimate.
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Fig. 2. The architecture of the CNN that produces the local estimates.

Taking into account all the linear coefficients and the
biases, the network include a total of 154,723 parameters that
have been learned by applying the standard back propagation
algorithm to minimize the average Euclidean squared differ-
ence between the estimated and the ground truth illuminant
colors (we also tried to minimize the cosine loss without
any improvement). Beside its size, compared to the networks
used for scene and object recognition we notice two major
differences: (i) 1 × 1 convolutional filters, and (ii) the large
8 × 8 pooling. These differences can be motivated by consid-
ering that with respect to object/scene recognition, illuminant
estimation is a dual problem: instead of trying to identify the
content of the image regardless the illuminant, here we need
to estimate the illuminant regardless the content of the image.
A detailed interpretation of the model from a color constancy
point of view is given in Section VI-A.

B. Detection of Multiple Illuminants

Since our CNN is applied to each patch independently,
it can be easily used to predict local illuminants. However,
local estimates tend to be noisy and sometimes (when there
is a single illuminant, or when the color of all the light
sources is very similar) it is better to replace them with a
single global estimate. What we need is an automatic rule
to switch between the two modalities. In order to decide if
the image contains single or multiple illuminants, the per
patch illuminant estimates are normalized and projected onto
the normalized chromaticity plane (rc = R/G, bc = B/G).
Then, an efficient 2D kernel density estimation (KDE) [37]
is applied. The modes (ri , bi ), i = 1, . . . , n, i.e. the red/blue
chromaticities with the highest densities are identified using a
scale-space filtering [38]. Only the modes with a value higher
than t times the maximum are retained:

J =
{

j ∈ {1, . . . , m} : densi ty(rc
j , bc

j )

maxi=1,...,n densi ty(rc
i , bc

i )
≥ t

}
.

(5)

The angular difference between each pair of the retained
modes ((rc

j , 1, bc
j ), j ∈ J ) is computed. If the maxi-

mum difference exceeds a set threshold then the scene is
considered as taken under multiple illuminants. Otherwise,
we proceed by assuming the presence of a single illuminant.

Fig. 3. The architecture of our local regressor.

Fig. 4. Example of the use of the local regressor with a support L = 5 and
two modes. Left: back-projected illuminants, where each estimate is assigned
to the closest mode. Middle: pooling regions with size L × L and a stride
of (r − 1)/2. Right: for each pooling region, the locations of the estimates
assigned to the same mode of the central patch are indicated with black dots.

Following [21] and [39] we set the threshold to 3◦, since it
has been judged to be a noticeable but acceptable difference.

C. Local Aggregation of the Estimates

In our previous work [4] we generated a single illuminant
estimation per image by pooling the predicted illuminants on
the image patches. By taking image patches as input, we have
a much larger number of training samples compared to using
the whole image on a given dataset, which particularly meets
the needs of CNNs, but we loose the information that certain
patches belong to the same image. Thus, we fine-tuned the
learned net by adding knowledge about the way local estimates
are pooled to generate a single global estimate for each image.

In this work we extend the per-channel average and median
pooling operators used in [4] with a non-linear mapping based
on a RBF kernel over local statistics of the CNN estimates.
The parameters of the mapping are obtained by applying a
regression procedure that minimizes the median angular error
on the training set. Given as input the map of the per-patch
illuminant estimates having a size of w × h, the first step in
this module is the smoothing via convolution with a 5 × 5
Gaussian filter. The response is then independently pooled in
three different ways: average pooling and standard deviation
pooling both with size w/3 × h/3 (i.e. on a subdivision in
nine rectangular regions), and median pooling with size w × h
(i.e. on the whole image). These values are reshaped and
given as input to a SVR (with RBF kernel) which predicts the
global illuminant by minimizing the median angular error over
the training set. The architecture of this module is reported
in Figure 3.
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Fig. 5. Output of each stage of the proposed illuminant estimation method in the case of multiple (top row) and single illuminants (bottom row). From left
to right: input image, subdivision in patches, local illuminant estimate, output of KDE where it is possible to see the peaks of the different illuminants found;
illuminant back-projection with overlaid regressor support size; refined illuminant estimate; corrected images.

In case of multiple detected illuminants, the non-linear
mapping described above for the single illuminant case is
applied to refine the local patch-by-patch estimates. First,
the estimates are assigned to the closest retained modes M j =
(rc

j , 1, bc
j ), j ∈ J representing the detected illuminants. Then,

for each local estimate, a neighborhood of L × L estimates is
considered, where L is adaptively determined on the basis of
the spatial distribution of the illuminants. The median of the
estimates in the neighborhood is computed together with the
average and the standard deviation computed on nine square
pooling regions, forming a vector of 3 + 9 × 3 + 9 × 3 = 57
components. These statistics are computed by considering
only the estimates assigned to the same illuminant of the
central one. The sizes L of the neighborhood and r of the
pooling regions are determined on the basis of the Distance
Transform (DT) [40] of the back projection of each mode M j

as follows:

s = max

{⌊
1

2
min
j∈J

(
max DT

(
M j

))⌉
, 3

}
, (6)

r = s + 1 − (s mod 2), (7)

L = 2r − 1. (8)

Note that in this way the size r of the pooling regions is
ensured to be an odd number, greater than two. By taking the
regions with a stride of (r −1)/2 estimates, we also obtain that
the central estimate belongs to all the nine regions, making
it sure that at least one estimate contributes to the statistics
computed in the pooling regions, allowing us to deal with
complicated cases such as the one in which all the surrounding
estimates are assigned to a different illuminant than that of the
central one. Figure 4 shows an example of local estimation in
the case L = 5, r = 3.

In Figure 5 the output of each stage of the proposed
illuminant estimation method is showed in the case of multiple
and single illuminants.

IV. EXPERIMENTAL SETUP

A. Image Datasets and Evaluation Procedure

To test the performance of the proposed algorithm for the
global illuminant estimation, two standard datasets of RAW
camera images having a known color target are used. In the
first dataset, images have been captured using high-quality

digital SLR cameras in RAW format, and are therefore free of
any color correction. The dataset [14] was originally available
in sRGB-format, but Shi and Funt [41] reprocessed the raw
data to obtain linear images with a higher dynamic range
(14 bits as opposed to standard 8 bits). The dataset has
been acquired using a Canon 5D and a Canon 1D DSLR
cameras and consists of a total of 568 images. The Macbeth
ColorChecker (MCC) chart is included in every scene, and
this allows to accurately estimate the actual illuminant of each
acquired image. As suggested [41], the camera’s black level
offset is removed before any processing. The second dataset
is the NUS dataset [42]. The dataset is similar to the previous
one: it has been captured using digital SLR cameras in RAW
format with a MCC included in every scene. The differences
with the previous dataset are that it has been captured by
9 different cameras and that there is a larger number of images,
i.e. 1853 with around 200 images for each camera.

To test the performance of the proposed algorithm for the
multiple illuminant estimation, three different datasets have
been used. The first one is synthetically generated from the
Gehler-Shi dataset: each image is relighted using two, three
and four random illuminants taken from the same datasets.
This synthetic dataset thus contains a total of 1704 images.
The second dataset used is a subset of the Milan portrait
dataset [21]. It has been acquired in RAW format using
four different DSLR cameras. The dataset is the union of
different subsets that have been acquired in three different
world locations: Italy, Taiwan, and Japan. The dataset includes
portraits of a single person with a single MCC up to multiple
persons with multiple MCCs. In this work we used the
subset containing multiple MCCs, for a total of 197 images.
Finally, the third one is the multiple illuminant dataset by
Beigpour et al. [43]. It has been acquired using a Sigma
SD10 single-lens reflex (SLR) digital camera which uses a
Foveon X3 sensor and is available in linear RAW format.
The dataset consist of two parts: the first one is taken in
controlled laboratory setting for a total of 10 scenes taken
under six distinct illumination conditions; the second one is
taken in uncontrolled setting for a total of 20 indoor and
outdoor scenes. The datasets comes with pixel-wise ground
truth information.

The network has been trained on the Gehler-Shi dataset and
adapted to the other datasets by re-training each time the local
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Fig. 6. Examples of images within the image datasets considered. Top to
bottom: Gehler-Shi, NUS, Milan portrait and Beigpour et al. datasets.

regressor to cope with the different cameras and sensor type
used. Examples of images within the datasets considered are
reported in Figure 6.

Relighted Gehler-Shi Dataset: We synthetically generated
a relighted version of the Gehler-Shi dataset: each image is
balanced using the corresponding ground truth illuminant and
relighted using two, three and four random illuminants taken
from the original dataset. Their position in the image was set
randomly with the constraint of being at least min{w, h}/3
apart, with w and h being image width and height respectively.
The ground truth for each image has been generated by
nearest-neighbor assignment followed by Gaussian smoothing
to simulate illuminant mixing. This synthetic dataset thus
contain a total of 1704 images.

B. Benchmark Algorithms

Different benchmarking algorithms for color constancy are
considered. Since each image of the dataset contains only one
MCC, only global color constancy algorithms based on the
assumption of uniform illumination can be compared. Six of
them are generated varying the three variables (n, p, σ )
in Equation 4, and correspond to well known and widely
used illuminant estimation algorithms. The values chosen
for (n, p, σ ) are set as in [44]. The algorithms are used
in the original authors’ implementation which is freely
available online (http://lear.inrialpes.fr/people/vandeweijer/
code/ColorConstancy.zip). The seventh algorithm is the
pixel-based Gamut Mapping [45]. The other algorithms
considered are illumination chromaticity estimation via
Support Vector Regression (SVR [46]); the Bayesian
(BAY [14]); the Natural Image Statistics (NIS [17]); the
High Level Visual Information [19]: bottom-up (HLVI BU),
top-down (HLVI TD), and their combination (HLVI BU&TD);
the Spatio-Spectral statistics [18]: with Maximum Likelihood
estimation (SS ML), and with General Priors (SS GP);

the Automatic color constancy Algorithm Selection
(AAS) [16] and the Automatic Algorithm Combination
(AAC) [16]; the Exemplar-Based color constancy (EB) [22];
the Face-Based (FB) color constancy algorithm [20] using
GM or SS ML when no faces are detected; the CNN-
based algorithms [4] and the AlexNet fine-tuned with a
linear Support Vector Regression (SVR) [29] to estimate
the illuminant color for each image [4] (AlexNet+SVR);
the ensemble of regression trees applied to simple color
features [25] (SF); the corrected-moment illuminant
estimation [24] (CM); the one predicting chromaticity from
pixel luminance (PCL) [26]; the one exploiting bright pixels
(BP) [47] and the one exploiting both bright and dark pixels
(BDP) [42]; the Convolutional Color Constancy (CCC) [27];
the color constancy by deep learning (CCDL) [30]; and
the one approaching the computational color constancy as
a classification problem (CCP) [31]. The last algorithm
considered is the Do Nothing (DN) algorithm which gives the
same estimation for the color of the illuminant (I = [1 1 1])
for every image, i.e. it assumes that the image is already
correctly balanced. A schematic comparison of the proposed
method with the recent, most related, and best performing
algorithms in the state of the art are reported in Table I.

C. Learning of the Main Modules

We train our CNN on 32 × 32 patches randomly taken
from training images of the Gehler-Shi dataset in RAW
format (patches including portions of the reference MCC
are excluded from training). Images have been resized to
max(w, h) = 1200 pixels. The net is learned using a three-fold
cross validation on the folds provided with the dataset: for
each run one is used for training, one for validation and the
remaining one for test. For training, we assign each patch
with the illuminant ground truth associated to the image
to which it belongs. At testing time, we generate a single
illuminant estimation per image by pooling the the predicted
patch illuminants. By taking image patches as input, we have
a much larger number of training samples compared to using
the whole image on a given dataset, which particularly meets
the needs of CNNs. Net parameters have been learned using
Caffe [28] with Euclidean loss.

The learned net is then applied to each whole image in
the training set by masking the MCC to obtain an illuminant
estimation map. The pooled features computed from these
maps are the input to our local regressor to give a single global
illuminant estimate for each image. We train our regressor
using the same three-fold cross validation as before using an
ε-SVR [29] with RBF kernel in which we used a modified
cost function to minimize the median angular distance between
illuminant estimates and ground-truths. The regressor is able
to give a more accurate global estimate than a simple aver-
age or median pooling [4] for two reasons: (i) it is learning-
based and is able to leverage the different local estimates
coming from the patches belonging to the same image; (ii) it is
trained by explicitly minimizing the error metric using in the
evaluation of illuminant estimation methods. The regressor is
learned on single illuminant images, thus using as support size
equal to the whole image.
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TABLE I

SCHEMATIC COMPARISON OF THE PROPOSED METHOD WITH THE RECENT, MOST RELATED,
AND BEST PERFORMING METHODS IN THE STATE OF THE ART

V. RESULTS AND DISCUSSION

We evaluated the proposed method in both single and
multiple illuminant estimation.

A. Global Illuminant Estimation

In Table II the median, the average, the 90th-percentile, and
the maximum of the angular errors obtained by the considered
state-of-the-art algorithms and the proposed approach on the
Gehler-Shi dataset are reported. The table is divided into three
blocks and for each of them the best result for each statistic
is reported in bold. The first block includes statistic-based
algorithms, the second one learning-based algorithms, and the
third one the different variants of the proposed approach. From
the results it is possible to see that the deep CNN pre-trained
on ILSVRC 2012 [3] coupled with SVR (i.e. AlexNet+SVR)
is already able to outperform most statistic-based algorithms
and some learning-based ones. The CNN introduced in our
previous work [4] in its various instantiations allowed to obtain
a median angular error below 2 degrees which is better than
almost all the other methods considered. Even better results
have been obtained with the recent method by Barron [27] for
which the median error is 1.22 degrees. The method proposed
here obtained the second lowest error (1.44 degrees if we
consider the median). The ranking of the algorithms does not
change if we consider the mean error instead of the median;
the best maximum error, instead has been obtained by the
fine-tuned CNN [4]).

Note that for this experiment we did not apply the mul-
tiple illuminant detection module and we always performed
the local estimate aggregation using a support size for the
regressor equal to the whole image. This last step brings a
significant improvement. In fact, without it the median error
raises by more than one degree, reaching the 2.69 degrees
corresponding to the “CNN per patch” result. It is also a
significant improvement with respect to the other aggregation
methods considered in our previous work: average pooling,
median pooling and fine tuning, that obtained median errors
of 2.44, 2.32 and 1.98, respectively.

Figure 7 reports some examples of images on which the pro-
posed illuminant estimation method makes the largest errors.
Even if during the illuminant estimation phase, the patches
overlapping the MCC are ignored, they are left unmasked
in the figure to better appreciate the results. Once we
have an estimate of the global illuminant color I, each
pixel in the image is color corrected using the von Kries
model [48], i.e.: ρout(x, y) = diag(I−1)ρin(x, y). Although
this dataset is used to evaluate global illuminant estima-
tion methods, Xu and Funt [49] showed that it contains
images with mixed-light conditions. They manually split this
dataset into images with uniform and non-uniform illumi-
nation, and compare on them the performance of different
global illuminant estimation methods. We run the same exper-
iment here, obtaining a median angular error on their splits
of 1.43 and 1.49 degrees respectively. This demonstrates that,
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TABLE II

ANGULAR ERROR STATISTICS OBTAINED BY THE STATE-OF-THE-ART
ALGORITHMS CONSIDERED ON THE GEHLER-SHI DATASET.

ALGORITHMS ARE DIVIDED IN THREE GROUPS

(STATISTIC-BASED, LEARNING-BASED, INVESTIGATED

IN THIS PAPER) AND, FOR EACH GROUP, THEY ARE
SORTED BY DECREASING MEDIAN

ANGULAR ERROR

as for other learning-based methods [49], our method appears
to be mostly unaffected by the presence of image parts with
different illuminants.

In Table III the median angular errors obtained by the con-
sidered state-of-the-art algorithms and the proposed approach
on the NUS dataset are reported. As commonly done, results
are reported separately for each camera and aggregated with
geometric mean. From the results it is possible to notice that
our method outperforms the other algorithms on all cameras
with the exception of CCC [27].

B. Local Illuminant Estimation

Our CNN predicts the illumination on small image patches,
so it can be easily used to predict local illuminants as well
as giving a global illuminant estimate for the entire image.
Given the performance of the per patch error in Table II we
expect our CNN to perform well even on local estimation.
We perform here a preliminary test by using our learned CNN
as-is on the synthetically relighted Geheler-Shi dataset.

Fig. 7. Examples of images on which the method makes the largest estimation
errors, in the case of a single illuminant. Left to right: input RAW image,
correction with the ground truth illuminant, correction with the illuminant
estimated by the proposed method (with the local-to-global regressor enabled),
and correction with the algorithm in the state-of-the-art making the best
estimate on the given image.

Among the algorithms in the state-of-the-art able to deal
with non-uniform illumination, e.g. [21], [23], [32], [33], [50]
we report as comparison the results of the Multiple Light
Sources (MLS) [34] using White Patch (WP) and Gray
World (GW) algorithms, grid based sampling, in the clustering
version setting the number of clusters equal to the number
of lights in the scene; RETINEX [9], and Random Spray
RETINEX [51] (in the light random spray version [52]); the
Local Space Average Color (LSAC) [32]; fusion by Gradient
Tree Boosting and fusion by Random Forest Regression [33].
The numerical results are reported in Table IV, while some
examples are given in Figure 8. It is clear that the pro-
posed method obtains significantly better results than all the
other methods considered; the second best obtains more than
twice the median error (5.92 degrees) than the proposed one
(2.86 degrees).

Note that this comparison has been made by disabling
the detection of multiple illuminant and by always tak-
ing the local estimates. In a further experiment we eval-
uated the performance in a mixed single/multi illuminant
scenario. The dataset used is the single illuminant ver-
sion of the Gehler-Shi and one-third of the synthetically
relighted version so that the numbers of images having
single and multiple illuminants are equal. The numerical
results are reported in Table V, where the performance
of the four variants of the proposed method are reported:
i) single illuminant, that always applies the local regressorwith
a support size equal to the whole image; ii) multi illuminant,
that always keeps the local estimates; iii) the fully automatic,
that uses the multiple illuminant detector to decide the size
of the local regressor; iv) the oracle, that applies the local
regressor with a support size taken from the ground truth,
i.e. produces a global estimate when the image present a
single illuminant. The results obtained show that the use of the
multiple illuminant detector allows to obtain better results with
respect to adopting a single strategy. Its performance are very
close to those that can be obtained by exploiting the ground
truth information about the presence of single or multiple
illuminants (i.e. the oracle version).
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TABLE III

MEDIAN ANGULAR ERRORS OBTAINED BY THE STATE-OF-THE-ART ALGORITHMS CONSIDERED ON THE NUS DATASET

Fig. 8. Examples of the illuminant estimation on the relighted Gehler-Shi dataset. From left to right: relighted input image, local illuminant estimate,
illuminant ground truth, angular error map between estimate and ground truth, corrected image.

TABLE IV

ANGULAR ERROR STATISTICS OBTAINED ON THE SYNTHETIC RELIGHTED
GEHLER-SHI DATASET WITH SPATIALLY VARYING ILLUMINATION

TABLE V

ANGULAR ERROR STATISTICS OBTAINED BY VARIANTS OF THE

PROPOSED METHOD ON A MIXTURE OF THE ORIGINAL

AND THE RELIGHTED GEHLER-SHI DATASET

The first experiment on real world data is performed on the
subset of the Milan portrait dataset containing multiple MCCs.
The numerical results are reported in Table VI, where the
performance of the proposed method are reported enabling the

TABLE VI

ANGULAR ERROR STATS OBTAINED ON THE MILAN PORTRAIT DATASET

multiple illuminant detector to decide the support size of the
regressor. The results obtained show that the proposed method
performs better than all the single illuminant estimation algo-
rithms as well as all the general purpose multiple illuminant
estimation ones. The only algorithm able to outperform the
one proposed here is the face-based [21], which is specifically
designed to leverage skin properties in images containing
faces. An example taken from the Milan portrait dataset is
reported in Figure 9. Since ground truth illuminant is available
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Fig. 9. Example image with multiple illuminants taken from the Milan portrait dataset.

TABLE VII

AVERAGE AND MEDIAN ANGULAR ERRORS OBTAINED ON

THE TWO PARTS OF THE BEIGPUR ET AL. DATASET [43]:
LABORATORY (LEFT) AND REAL-WORLD (RIGHT)

only on the MCCS, pixel-level ground truth is obtained
by linear interpolation. As usual, MCCs are ignored during
illuminant estimation but are left unmasked in the figure to
better understand the results.

The last experiment concerning local illuminant esti-
mation is performed on the multiple illuminant dataset
by Beigpour et al. The numerical results are reported
in Table VII, where the performance of the proposed method
are reported enabling the multiple illuminant detector to decide
the support size of the regressor. The results are reported
separately for the laboratory and real-world settings. In both
cases the results obtained show that the proposed method
performs better than all the algorithms considered with an
average reduction of the median error of more than 16%.

TABLE VIII

MEDIAN ANGULAR ERRORS OBTAINED BY THE PROPOSED CNN-BASED

COLOR CONSTANCY ALGORITHM IN THE INTER-DATASET

CROSS VALIDATION EXPERIMENT

Fig. 10. Effect of the parameters on the CNN performance.

C. Inter-Dataset Cross Validation

Although we have shown state-of-the-art performance for
our CNN-based color constancy on the standard color con-
stancy data sets studied, following [23] we also investigate
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Fig. 11. Image patches producing the highest activations of the 40 neurons in the fully connected layer: each column represents a different neuron and
reports in decreasing order the patches corresponding to its top ten activations.

here whether our proposed method also work well in an inter-
dataset setup. This means that the model is learned on a dataset
and tested as is on a different one. All the previous experiments
were run doing cross-validation in an intra-dataset setup.
However, images from the same dataset could be corretaled
with each other to some degree due to the way image data
is gathered. Therefore cross validating between different
datasets is a more challenging experiment.

For this purpose, we run our proposed method, CNN-based
color constancy, on all the four datasets considered by learning
the model on one dataset and testing it on all the others. The
median angular errors for the inter-dataset cross validation
are reported in Table VIII. For completeness, the results for
the intra-dataset experiment are also reported taking them
from Table II, III, VI and VII where cross-validation on the
same dataset was used. It is possible to see that for each
dataset, the best performance is obtained when the model
is learned on the same dataset used for testing. On average
results for the inter-dataset cross validation experiment are
only almost 0.6 degrees worse than the intra-dataset ones, still
achieving state-of-the-art performance on all the four datasets
considered.

D. Computational Time

The average computational time of our method for one
tested image is 208ms on a PC with Intel i5-2500K 3.3GHz
CPU, Nvidia k40 GPU, using Matlab 2014b including image
read time, resizing, and patch by patch histogram stretching.

VI. NETWORK ARCHITECTURE

In this section we discuss the design of the network, how
its performance is affected by the parameters, and how we
can relate the behavior of the learned model to that of other
methods for computational color constancy.

The architecture of the network has been designed by
starting from a deep CNN similar to the LeNet [53] and by
removing layers until no further improvement in performance
was possible. The final model is a simplified convolutional
neural network with a single convolutional layer, max pooling,
and two fully connected layers. Differently from other com-
puter vision tasks, deepening the network causes slightly worse
results. This fact probably depends on the small variability in

Fig. 12. Activation maps of the 40 neurons in the fully connected layer on
all the patches of an entire image.

content provided by the annotated data sets for computational
color constancy. In fact, our training patches come from a few
hundreds of images, while deep networks are often trained on
millions of annotated images.

The performance of the network are quite robust with
respect to its parameters as shown in Figure 10, that reports
the variation in accuracy as a function of the size of the input
patches, of the width and number of convolutional kernels,
of the size of the receptive field of the pooling units, and of
the number of fully connected units in the second to last layer.
The plots are obtained by changing one parameter at a time
while setting all the others as in the optimal configuration.
In additional tests, not reported here, we also measured the
performance obtained by varying multiple parameters without
obtaining any surprising result.

The most striking element of the final network is the use
of 1 × 1 “convolutional” units. At first this could be surpris-
ing, since in different domains larger kernels are preferred.
However, it is not the first time that such small kernels
are used, see [54]. In our case, networks built with larger
convolutions failed to reproduce the spatial filters (edge detec-
tors etc.) that are usually observed in CNNs trained for image
classification. The number of the convolutional kernels seems
less important and we found that the optimal value was
around 240.

Another interesting element is represented by the rela-
tively large (8 × 8) receptive fields of the pooling units.
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Fig. 13. Activation maps of five selected neurons in the fully connected layer: neuron 8, 17, 22, 27 and 38.

As a consequence the max pooling layer strongly reduces
the dimensionality of the incoming data, while retaining just
some spatial information. Smaller receptive fields resulted in
a decrease in the performance of the network. We observe a
sort of duality with respect to the parameters used for CNNs
for image classification that usually prefer large convolutional
kernels and small pooling units.

Concerning the remaining parameters, we found that the
optimal number of fully-connected units was intermediate (40)
and that the network prefers large 32 × 32 patches over
smaller ones.

A. Model Interpretation

After training the network, we analyzed the resulting
weights for the three layers with learning capabilities. The
last layer maps the 40 intermediate values (“features”, in the
following) in the three components of the illuminant estimated
for the input patch. The transformation is affine and is
represented by a matrix of 40×3 coefficients and by 3 biases.
A layer of this kind has been already shown to perform
well by Funt et al. [12], where it was used to process the
responses of indicator functions over a regular quantization
of the image chromaticities. It is also similar to combi-
national methods [55] where the outputs of different color
constancy algorithms are combined to give the final illuminant
estimate.

Differently from the work by Funt et al. [12], our network
exploits some spatial information encoded in the 40 features
that are computed as linear combinations of the 240 convo-
lutions after that they have been pooled according to a 4 × 4
spatial grid. According to Cheng et al. [42], local spatial infor-
mation does not provide any additional information that cannot
be obtained directly from the color distributions. We found,
instead, that some spatial information is still beneficial since
it allows to detect useful patterns, as better discussed in the
following. This also agrees with Gijsenij and Gevers [56]
who noted that the use of spatial information brings an
improvement over the application of color constancy to the
entire image.

To better understand the role of the 40 features, we report
in Figure 11 the ten patches producing their highest values.
The patches are taken from the first fold of the Gehler-Shi
dataset and are shown after the stretching of the color channels.
It can be seen how different neurons are activated by different
kinds of patches. Some of them are specialized in finding
uniform patches of a given dominant color (blue, red, green…)
that often correspond to specific content in the input images
(sky, vegetation…). Several neurons are able to identify high-
lights, an element that has been previously exploited for
color constancy [57]. There are also neurons specialized in
detecting strong edges (that have also been used in the past [7])
and patches with complex textures. Figure 12 shows the
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Fig. 14. Surface of the RGB cube resulting in the higher 10% responses of the 240 convolutional filters.

40 activations on the patches of a whole image, while those
of five selected neurons on six different images are shown
in Figure 13. These figures suggest that the network performs
a rough analysis of the content of the image by identifying
the main elements of the scene or by selecting elements that
may be useful for the estimation of illuminant. For instance,
neuron #8 seems to fire on image edges, neuron #17 on
highlights, neuron #22 on sky and bluish texture, neuron #27
on skin and orange/reddish texture, neuron #38 on vegetation
and greenish texture. The use of semantic concepts share some
similarities with the work of van de Weijer et al. [19] where
the illuminant is estimated by maximizing the likelihood of
the colors associated to each semantic class.

Finally, the first layer is of the convolutional kind, and it
consists of 240 units with 1 × 1 kernels. The activation of
each convolutional unit can be seen as the projection over a
specific direction in the RGB cube. Note that while 1 × 1
convolutions do not exploit spatial information, they also
preserve it unaltered for the subsequent layers. The combi-
nation of the 240 units forms a sort of “soft” quantization of
the color space that can be combined by the pooling units
to represent the local color distribution. Figure 14 shows
how different regions of the RGB color cube activate the
240 convolutional units. Since each unit corresponds to a linear
projection, the maximum activation always occur on a vertex
of the RGB cube (to improve visualization, cubes are rotated
so that the region of maximum activation is always front-
facing). It is possible to see that for all the eight vertexes
there are several units with high activations. In practice this
means that the quantization learned by the network covers the
whole color space instead of being focused on specific colors.
Several units seem redundant as they activate in presence of
very similar colors. We observed, in fact, small differences in
performance when we reduced the number of convolutional
units (see Figure 10).

VII. CONCLUSION

In this work we have developed a CNN-based color con-
stancy algorithm that combines feature learning and regression
as a complete optimization process, which enables us to
employ modern training techniques to boost performance. The
network has been specially designed to work on image patches

in order to estimate the local illuminant color. Local estimates
are then refined by local non-linear regression. The size of
the support of the regression is automatically determined by
a multiple illuminant detector: if only a single illuminnt is
detected, the support size is the whole image and a global
illuminant estimate is produced. The experimental results
showed that our algorithm is the second best performing
algorithm on images with a single illuminant. Experiments
on a synthetically relighted dataset with multiple illuminants
showed that our method outperforms all the general purpose
local illuminant estimation methods in the state of the art.
Results are further confirmed on two real-world datasets with
multiple illuminants, where our method is outperformed only
by an illuminant estimation method exploiting the presence of
faces. The robustness of the proposed method is confirmed by
inter-dataset cross validation. The results obtained suggest that
a possible future research direction is that of feeding additional
semantic information in the form of scene category or detected
objects to further improve illuminant estimation performance.
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