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ABSTRACT In this paper, we address the problem of biometric recognition using the multimodal phys-
iological signals. To this end, four different signals are considered: heart rate (HR), breathing rate (BR),
palm electrodermal activity (P-EDA), and perinasal perspitation (PER-EDA). The proposed method consists
of a convolutional neural network that exploits mono-dimensional convolutions (1D-CNN) and takes as
input a window of the raw signals stacked along the channel dimension. The architecture and training
hyperparameters of the proposed network are automatically optimized with the sequential model-based
optimization. The experiments run on a publicly available dataset of multimodal signals acquired from
37 subjects in a controlled experiment on a driving simulator show that our method is able to reach a top-1
accuracy equal to 88.74% and a top-5 accuracy of 99.51% when a single model is used. The performance
further increases to 90.54% and 99.69% for top-1 and top-5 accuracies, respectively, if an ensemble ofmodels
is used.

INDEX TERMS Biometric identification, multimodal physiological signals, machine learning, convolu-
tional neural network, hyperparameters optimization.

I. INTRODUCTION
Automatic identification and authentication of people is a
task of enormous interest for numerous application fields,
including security, domotics, automotive etc [1]. These tasks
can be performed in different ways [2], [3]: typing in login
credentials, digital fingerprints recognition, speech recogni-
tion, face recognition, handwriting recognition, DNA recog-
nition, recognition using biometric data, recognition using
physiological signals, recognition using inertial signals, etc.
Among all these ways, the recognition of physiological sig-
nals has highlighted very interesting features. Firstly, these
signals capture unique characteristics among the subjects [3]
and therefore can be very robust to attempts at fraud.
Secondly, physiological signals can be used for aliveness
detection [4]. Thirdly, such signals can be nowadays easily
acquired thanks to the rapid development of non-invasive
(mostly off-the-shelf) wearable sensors [5], [6]. Last, the use
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of this signals can be integrated with the use of traditional
authentication and identification methods in order to improve
the goodness and thus reducing the errors [7]–[10].

Examples of common physiological signals adopted in
authentication and identification methods are: electrocardio-
gram (ECG) [3], [11], electroencephalogram (EEG) [12],
heart-rate (HR), heart-rate variability (HRV), pupil-dilation,
blood-pressure, respiration rate (BR), Galvanic Skin
Response (GSR) [13], etc. These signals can be exploited
individually or in combination. In the last case, the recog-
nition is multimodal [14], [15].

A recent paper published a large amount of physiological
data and telemetries acquired by people engaged in simulated
driving tasks with different levels of stress, with the aim to
enable research into driving behaviors under neatly abstracted
distracting stressors [16]. This data includes physiological
signals of n = 68 subjects that individually drove for about
70 minutes. In particular, the available signals are: peri-
nasal perspiration (PER-EDA), palm Electrodermal activity
(P-EDA), heart rate (HR) and breathing rate (BR). Although
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the purpose of the database was different, this is particularly
suitable for the study of people identification/recognition
methods.

In this paper we present a novel biometric recogni-
tion approach based on multimodal physiological signals.
The proposed method uses Convolutional Neural Net-
works (CNNs) to extract features that permit to perform
closed-set identification. This study is one of the first that
exploits multimodal physiological signals in combination
with CNNs for biometric recognition.

The rest of the paper is organized as follows: section II
reviews the state of the art; in section III we introduce the
dataset used in this work; section IV describes the proposed
method; the experimental results are reported in section V,
and finally section VI concludes the paper.

II. RELATED WORK
Israel et al. stated in 2005 that ECG traces express cardiac
features that are unique to an individual [3]. The electrical
currents generated by the heart depends on subjective fea-
tures that are position and size of the heart and physical
conditions of the body [17]. This findings enabled the use of
ECG signals for recognition of human identities [18]–[21].
Since then, a plenty of methods based on machine learning
techniques have been presented [11], [22], [23]. Most of these
methods have been tested on publicly available databases that
have been created for different purposes, such as automatic
ECG interpretation. Some examples of databases are the PTB
diagnostic ECG Database [24], Telemetric and Holter ECG
Warehouse [25], MIT-BIH [26], etc. The method proposed
by Labati et al. [11] based on deep learning achieves 100%
of accuracy considering about 50 human subjects.

Galvanic Skin response (GSR) is another electrical phe-
nomena thatmeasure the ElectrodermalActivity (EDA) of the
human body. As for ECG, GSR depends on physical condi-
tions and thus is quite subjective. GSR has been successfully
employed for human identification and authentication [13],
[27], [28]. Cornelius et al. experimented the use of GSR,
acquired by a band worn on the wrist, for the identification
and verification of 8 subjects using Support Vector Machines
(SVM) [27]. Results achieved are quite good but the number
of subjects experimented is quite limited. Another physiolog-
ical pattern that can be employed for biometric application is
the breathing rate. User authentication has been obtained by
analyzing acoustic characteristics of the breathing rate [29].
The dataset experimented is composed of three types of
breathing gestures: sniff (two quick consecutive inhalations),
normal breathing, and deep breathing performed by 10 vol-
unteers. The results achieved are on average about 90%.

A multimodal human identification method that exploits
ECG, GSR, and airflow biosignals has been presented by
Camara et al. [15]. The method is based on an ensemble of
classifier and has been tested on database (not public) that
includes 6 subjects. Performance are of about 99%.

Blasco and Peris-Lopez [14] evaluated the feasi-
bility of using low-cost wearable sensors, such as

photoplethysmogram (PPG), electrocardiogram (ECG),
accelerometer (ACC), and galvanic skin response (GSR), for
biometric verification. They acquired a database of 25 sub-
jects using an home made device. The subjects involved
performed three actions for a total of about 13 minutes:
resting state, walking, and seated (after a gentle stroll). The
proposed method obtained 0.99 area under the curve and
0.02 equal error rate with only 60 s of training data.

III. MATERIALS AND METHODS
The pipeline of a biometric system based onmachine learning
techniques includes: acquisition of raw signals, signal nor-
malization and segmentation, feature extraction and classifi-
cation. In the case of convolutional neural network, the last
two module are merged.

A. DESCRIPTION OF THE DATABASE
The database used in this paper has been released in 2017 by
Taamneh et al. [16]. It contains multimodal signals acquired
in a controlled experiment on a driving simulator that involves
n= 68 volunteers that drove the same highway under four dif-
ferent conditions: no distraction, cognitive distraction, emo-
tional distraction, and sensorimotor distraction. The database
includes also a special driving session, where all subjects
experienced a startle stimulus in the form of unintended
acceleration-half of them under a mixed distraction, and the
other half in the absence of a distraction. Fig. 1 shows the
driving simulator set up and some samples extracted from
physiological signals recorded during the driving session.

The signals included in the database are speed, accel-
eration, brake force, steering, and lane position signals,
perinasal perspiration (PER-EDA), palm EDA (P-EDA),
heart rate (HR), breathing rate (BR), and facial expression
signals. Moreover, biographical and psychometric covari-
ates as well as eye tracking data were also obtained.
Perinasal perspiratory signals commensurate with electroder-
mal (EDA) in the palm, for this reason is called perinasal EDA
(PER-EDA) [30].

The database includes two sessions of experiments:
• EXPERIMENT-I: focused on the effect of cognitive,
emotional and sensorimotor stressors on driving behav-
iors under typical conditions.

• EXPERIMENT-II: focused on the effect of stress on
reactivity to a startling event while driving; this startling
event was unintended acceleration.

In this paper we focus on the EXPERIMENT-I and we con-
sider four signals: PER-EDA, P-EDA, HR and BR. Perinasal
perspiratory signals have been extracted from the thermal
facial videos using the S-Interface software [16] applied to
a region of interest. Palm EDA has been acquired with the
Shimmer3 GSR sensor (Shimmer, Dublin, Ireland) that has a
measurement range of 10-4700 k�. HR and BR signals have
been acquired with the adrenergic sensor Zephyr BioHarness
3.0 (Zephyr Technology, Annapolis, MD). The sensor detects
a heart rate range of 25-240 bpm and a breathing rate range
of 4-70 bpm. The adrenergic sensor was connected to a chest
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FIGURE 1. Left side of the figure: Image depicting the experimental setup adopted in [16] to record the physiological signals: Highlighted in green are the
sensors used to acquire the signals actually used in this paper. Right side of the figure: Graphical representation of the physiological signals acquired
during a driving session (of about 5000 seconds) of the experiments presented in [16] and used in this paper. Left side of this figure is courtesy of authors
of the paper [16], and it is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

strap that was worn underneath the subject’s clothing. Fig. 1
shows the PER-EDA, P-EDA, HR and BR signal related to
the Experiment-I and Experiment-II of the subject 1.

1) EXPERIMENT-I
This experiment is composed of 7 subsequent sessions:
• Baseline (B): subjects sat quietly in a dimly lit room,
listening to soothing music;

• Practice drive (PD): the subjects familiarized themselves
with the driving simulator;

• Relaxing drive (RD): the subjects had to drive following
some instructions;

• Loaded Drive (LD): Driving with no secondary activity
(no additional stressor);

• Cognitive Drive (CD): Driving under a cognitive stres-
sor. The cognitive stressor was mathematical questions;

• Emotional drive (ED): Driving under an emotional
stressor. The emotional stressor was emotionally stir-
ring questions posed orally by the experimenter in two
phases. There were two sets of questions: a set with less
pointed questions and a set with more pointed questions

• Sensorimotor drive (MD): Driving under a sensorimotor
stressor. The sensorimotor stressor was texting back
words, sent one by one to the subject’s smartphone; this
texting exchange took place in two phases.

The last three phases were developed alternating phases
with distraction and phases without distractions. We decide
to discard the session B because the physiological signals
related to this session are not available.

B. DATA CLEANING, NORMALIZATION AND
SEGMENTATION
A cleaning procedure has been applied to the database with
the aim of removing outliers signals from the dataset and
removing those subjects with missing or not valid signal

values. We removed from the database all the signals that
had a peak of the HR, BR and P-EDA respectively outside
the numeric ranges [40-120], [4-40], and [28-628] for at
least 30% of the signal duration. In case of an amount of
invalid values below than 30%, such invalid values have been
substituted by the mean of the signal.

To the scope of this paper, we have explored the use of HR,
BR, PER-EDA and P-EDA to biometric recognition. Since,
multimodal recognition is possible only if, for each time
instant, a valid value of each one of the four aforementioned
physiological signals exists, we discard all the subjects with
missing or not valid signals in any of the four signals. The
initial number of subjects available is 68, after the cleaning
and discarding procedures, the number of subjects is 37.

Before being processed, each signal is segmented by using
a sliding window of sizeW and overlap L. An overlap of 50%
means that two subsequent windows has 50% of their val-
ues in common. After having investigated several values for
W ranging from 50 to 400 seconds and three values of L
ranging from 25 to 75 % we decide to set W = 60 seconds
and L = 50%.

IV. PROPOSED METHOD
The proposed method is a Convolutional Neural Network
that exploits mono-dimensional convolutions (1D-CNN).
The proposed 1D-CNN takes as input the raw physiological
signals in windows of W = 60 samples (as described in
section III) and performs multimodal learning by concate-
nating the four monodimensional signals considered along
the channel dimension, resulting in an input size equal to
1× 60× 4.
Given the very limited amount of training data available,

the architecture of the proposed 1D-CNN is rather shallow:
the input layer is followed by a first convolutional layer
conv-1 with ReLU activation and pooling layer MaxPool-1.
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TABLE 1. Detailed architecture of the proposed 1D-CNN.

TABLE 2. Numerical ranges and data type of the hyperparameters
optimized with SMBO.

This is followed by a second convolutional layer conv-2 with
ReLU activation [31] and pooling layer MaxPool-2. Then,
we have two fully connected layers fc-1 and fc-2, each with
ReLU activation, followed by the softmax classification layer.
In order to reduce overfitting, each fully connected layer is
preceded by a dropout layer. To further deal with the limited
training data available, we perform offline data augmentation
by replicating the training set by adding Gaussian noise. The
detailed architecture of the proposed 1D-CNN is reported
in Table 1 with the size of each layer, its eventual stride and
padding, and the size of its activation map. From the architec-
ture it possible to see that it has some free hyperparameters.
In the following subsection we describe how we optimize
them.

A. HYPERPARAMETERS OPTIMIZATION
Using the architecture defined in the previous section as the
backbone, we want to optimize the values of the following
hyperparameters:

- n1: the number of filters in conv-1;
- n2: the number of filters in conv-2;
- pd : the dropout probability of dropout-1 and dropout-2;
- h1: the number of neurons in fc-1;
- augmRounds: the number of data augmentation rounds
performed (i.e. number of augmented versions of the
training set);

- augmNoise: standard deviation of the Gaussian noise
used for data augmentation.

TABLE 3. Hand-crafted features used in the preliminary experiment and
extracted from each of the four physiological considered (HR, BR, P-EDA,
and PER-EDA) on windows with width W = 60 seconds.

To this end, Sequential Model-Based Global Optimization
(SMBO) [32]–[34] is used. SMBO has been used in many
applications where the evaluation of the fitness function f :
X → R is expensive to be evaluated. SMBO works by
approximating f with a surrogate that is cheaper to evalu-
ate and optimize. New locations within the hyperparameters
domain X on which the original function f should be eval-
uated are sequentially selected by optimizing an acquisition
function S, that defines a balance between exploration and
exploitation, i.e. between exploring new areas in the objec-
tive space and exploiting areas that are already known to
provide good values. In this work we use Gaussian process
(GP) [35] as the surrogate to model the objective function,
expected improvement [36] as the acquisition function, and
top-1 accuracy as the fitness function. The maximum number
of function evaluation is set to 70. The search ranges for
the hyperparameters considered and their types are reported
in Table 2. All the CNN configurations explored by SMBO
are trained for a total of 4000 epochs, with a batch size
of 512, using the Stochastic Gradient Descent with Momen-
tum (SGDM) as optimizer [37], with initial Learning Rate
equal to 0.1 and a piece-wise decay policy with the reduction
by a 0.5 factor every 800 epochs.

V. EXPERIMENTAL RESULTS
In this section we report the performance of biometric
identification from physiological signals in terms of top-1,
top-3 and top-5 accuracy, i.e. we measure the number
of times that the right identity is the prediction given by
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FIGURE 2. Activation maps size of each layer of the proposed 1D-CNN with the hyperparameters optimized by SMBO.

TABLE 4. Results of the preliminary experiment for biometric identification from HR, BR, P-EDA, and PER-EDA physiological signals in terms of top-1 (a),
top-3 (b), and top-5 (c) micro accuracy. For each table the global best results is reported in bold, while the best result for each column is underlined. The
results are reported by performing a five-fold cross-validation.

TABLE 5. Best hyperparameter configuration found by SMBO for the
proposed 1D-CNN architecture.

the model with the highest probability, or it is respectively
within the three or five predictions with the highest probabil-
ities. The performance measures are computed on the whole
dataset by performing a five-fold cross-validation.

First we run a preliminary experiment by extracting com-
monly used features [38] on each of the four physiological
signals considered (i.e. HR, BR, P-EDA, and PER-EDA).

Whatever is the signal, 21 different features are extracted
from each segment of length W . The extracted features,
reported in Table 3, describe different properties of the signal
in both the time and frequency domains. For each fold, the
training features are normalized in a way that each feature
component ranges between 0 and 1. The test features are then
normalized using the values adopted to normalize the training
features. Three different classifiers are trained to classify both
the features extracted from the individual signals, and the
concatenation of the features extracted from all the signals:
k-NN, Support Vector Machines (SVM), and Artificial Neu-
ral Networks (ANN).

The k-NN uses Euclidean distance and k = 1, thus result-
ing in the 1-nearest neighbor classifier.

The SVMs used have a Radial Basis Function (RBF) ker-
nel. The optimal values of C and γ are found by grid search.
Due to the small quantity of data available the ANNs

used have a shallow architecture. The hidden layers are
unsupervisedly trained as Autoencoders, stacked together

VOLUME 7, 2019 83585



S. Bianco, P. Napoletano: Biometric Recognition Using Multimodal Physiological Signals

TABLE 6. Results for the biometric identification with multimodal physiological signals, i.e. HR, BR, P-EDA, and PER-EDA, in terms of top-1 (a), top-3 (b),
and top-5 (c) micro accuracy. For each performance metric the best result is reported in bold. The results are reported by performing a five-fold
cross-validation.

and are followed by a softmax layer. The number of
hidden layers and the number of neurons in each of
them, i.e. H1 and H2, are selected by grid search in the
range [0, 5, 10, 15, 20, 30, 40, 50] for individual features and
[0, 5, 10, 15, 20, 40, 60, 80, 100, 120, 140, 160] for concate-
nated features. The maximum number of hidden layers is
fixed to two. Given the possible ranges for H1 and H2,
if H1 = 0 or H2 = 0 the resulting ANN has just one hidden
layer. If H1 = H2 = 0, the resulting ANN has no hidden
layers and the input features are directly fed to the softmax
layer.

As an additional classifier we consider the stacked clas-
sifier, that performs the classification on the basis of the
predictions of the k-NN, SVM and KNN through majority
vote.

The results in terms of top-1, top-3, and top-5 micro accu-
racy are reported in Table 4. From the results it is possible
to see that the overall best results are obtained by using
the concatenation of the features extracted from all the four
signals considered and using a stacked classifier, reaching
a top-1 accuracy of 85.50%. The physiological signals that
permit to obtain a higher recognition rate are HR and P-EDA
reaching a top-1 accuracy of 51.46% and 41.37% respec-
tively. Considering top-3 and top-5 accuracy, the best results
are again obtained using the stacked classifier on the concate-
nation of all the features, reaching respectively a recognition
rate of 96.37% and 98.24%.

In the second experiment we compare the best solutions
identified in the preliminary experiment with the proposed
method. The best hyperparameters found by SMBO for the
proposed 1D-CNN are reported in Table 5, while a graphical
representation if its activation maps is reported in Figure 2.
The resulting 1D-CNN has a total of 60280 parameters to
be trained. The total time required by SMBO using a single
NVIDIA Titan V GPU is about 20.5 hours (approx. 17.5 min-
utes for evaluation), with the minimum time for an evaluation
equal to approx. 4 minutes and the maximum equal to approx.
24 minutes.

The recognition rate in terms of top-1, top-3, and top-5
micro accuracy are reported in Table 6. From the results it
is possible to see that the proposed method is able to improve
in terms of all the three metrics considered with respect to
both the individual classifiers and the stacked one fed with
hand-crafted features [38]. As a reference the improvement
in top-1 accuracy is 5.84% with respect to the best individual

FIGURE 3. Curves representing the ratio of subjects having a
top-1 accuracy above a given threshold in the range [0.3, 1.0] for the
methods compared in Table 4.

classifier (i.e. ANN) and 3.24% with respect to the stacked
one. With a top-1 accuracy density [39], i.e. top-1 accuracy
divided by the number of trainable parameters (in millions),
of 1472.1 we can assert that the proposed 1D-CNN uses its
parameters very efficiently.

Since the best results in the preliminary experiment are
obtained by using a stacked classifier, we investigate if an
ensemble of 1D-CNNs is able to improve the results of
the single 1D-CNN proposed. The ensemble is build taking
inspiration from the Snapshot Ensemble (SE) technique [40].
In SE, the different members of the ensemble are obtained at
different epochs of the training of the same model. In this
work instead, we create the ensemble by taking the mem-
bers from the list of the models evaluated by SMBO for
the hyperparameter optimization. The considered ensemble
is composed by three elements: the best model identified
by SMBO and the two before it. From the results reported
in Table 6 it is possible to see that this ensemble is able
to improve the top-1 accuracy of the proposed 1D-CNN by
1.8%, reaching a recognition rate of 90.54%. Furthermore
we can observe that for both the single-model 1D-CNN and
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the ensemble 1D-CNN(SE) the top-3 and top-5 accuracy are
higher than 98.5% and 99.5% respectively.

As a further comparison we report in Figure 3 a plot with
the ratio of subjects having a top-1 accuracy above a given
threshold in the range [0.3, 1.0]. From the plot is possible
to notice how the curves of the proposed methods are high-
est ones for all the thresholds. In particular, 1D-CNN and
1D-CNN(SE) are able to achieve a top-1 accuracy higher than
99% for the 5.4% and 8.1% of the users respectively.

VI. CONCLUSION
In this paper we addressed the problem of biometric
recognition using multimodal physiological signals. Four dif-
ferent physiological signals have been considered: of heart
rate (HR), breathing rate (BR), palm Electrodermal Activity
(P-EDA), and perinasal perspitation (PER-EDA).

The proposed solution exploited a Convolutional Neural
Network with mono-dimensional convolutions (1D-CNN),
taking as input a window of the raw signals stacked
along the channel dimension. Both the architecture and
training hyperparameters of the proposed solution were
automatically optimized with Sequential Model-Based
Optimization (SMBO).

Experiments run on a publicly available dataset of mul-
timodal signals acquired from 37 subjects in a controlled
experiment on a driving simulator show that our method is
able to reach a top-1 accuracy equal to 88.74% and a top-
5 accuracy of 99.51% when a single model is used, and
90.54% and 99.69% for top-1 and top-5 accuracy respectively
if an ensemble of three models is used.

As a future work we plan to increase the dataset both
in terms of subjects involved and in terms of physiological
signals considered, in order to be able to exploit deeper
architectures inspired by famous 2D-CNNs. We also plan to
study the combination of physiological signal with audio and
image/video signals for more robust biometric recognition.
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