
Incremental Two-Stage Logo Recognition with
Knowledge Distillation

Simone Bianco , Marco Buzzelli , Gianluca Giudice
Department of Informatics, Systems and Communication

University of Milano – Bicocca
Milan, Italy

Abstract—The recognition of logos can be useful in developing
autonomous checkout systems, or monitoring brand presence
and advertisement in shopping malls. The continuous generation
and update of new brand logos imposes the definition of a
flexible solution to the problem. We therefore define a two-
stage logo recognition system composed of an agnostic logo
detector, to locate image regions that possess generic logo-like
characteristics, and an incremental logo classifier, to progressively
update the set of known logo classes. We investigate our solution’s
sensitivity to regularization and availability of training samples,
and we develop two alternative techniques for model compression.
Results are presented and compared with state of the art
solutions, showing promising results. Our code is made available
for public download.

Index Terms—Logo recognition, class incremental learning,
knowledge distillation

I. INTRODUCTION

Logo recognition consists in locating and identifying in-
stances of known logo classes in a digital image. The first
studies in this field date back to 1993 [1], yet this task is
becoming increasingly important in a variety of applications,
with works aimed at helping the development of autonomous
checkout systems in retail environments [2], developing video
advertising systems [3], monitoring brand visibility [4], and
protecting the intellectual property [5], while future appli-
cations might involve monitoring food items in smart home
appliances [6]. There are several challenges in logo recogni-
tion, starting from the fact that a symbol composed by text
and images can be considered a logo, but there is no formal
definition of what a logo is. In fact, logos can be created from
text using different typographic styles, any particular graphic
consisting of many colors, or even a combination of the two.
There is a large variety of logos, and this problem has both
high intra-class and inter-class variations, since the same brand
can have very different logos (e.g. only a stylized text version
and a graphic version) and logos which belong to different
brands might look very similar. Since many new brands are
constantly being created and each brand has its own logo, it
is necessary to develop systems that keep up with the creation
of new logos. A method for logo detection and recognition
should take into account this particular aspect of the problem
and should properly recognize each new logo. For this reason,

� Source code available at: https://github.com/gianlucagiudice/
logo-detection-recognition

Fig. 1: Training pipeline devised for incremental logo recog-
nition. Two different sources of training data are here exem-
plified: a first set of logo samples, and an update with “new
classes”.

there is the need to develop a system which is able to
adapt to these changes where standard closed-set classification
techniques would fail. One possible approach could be to train
a new classifier each time a new logo is created. However,
this method is very inefficient and unfeasible for large scale
datasets of logos. Moreover, retraining a model in such a way
would require to store a large quantity of examples, since both
the data from the previous logos and the new ones would
be needed. Open-set logo recognition allows models to detect
logos that are not available during the training phase. In this
way, it is possible to overcome the problems discussed above.
Open-set logo recognition can be addressed as a distance
metric learning problem, where instances are identified by
means of an advanced comparison with one or few examples
per class, or as an incremental learning problem, where the
system continuously learns to address new tasks from new data
while preserving knowledge learned from previously learned
tasks [7]. This latter way of learning, inspired from natural
systems which are intrinsically incremental [8], is the approach
that we adopt in this work, as highlighted in Figure 1.

In this paper: I. We define a two-stage logo recognition
system, composed of agnostic logo detection and classifica-
tion. II. We formulate the classification part as a incremental
classification problem, adopting the Dynamically Expandable
Representation approach [9]. III. We make training more
robust by integrating dropout regularization and data augmen-
tation. IV. We simplify the classification model considering
both pruning with trainable masks, and knowledge distillation.

https://orcid.org/0000-0002-7070-1545
https://orcid.org/0000-0003-1138-3345
https://orcid.org/0000-0003-4304-9157
https://github.com/gianlucagiudice/logo-detection-recognition
https://github.com/gianlucagiudice/logo-detection-recognition

II. STATE OF THE ART

A. Logo Recognition
A typical pipeline for logo detection and recognition con-

sists in logo region proposal followed by a classifier specif-
ically trained for logo classification, as proposed by Bianco
et al. [10], [11]. Another approach presented by Wang et
al. [12] involves a model based on YOLOv3 [13] to produce
both bounding boxes and classification for each detected logo.
Their proposed model is called Logo-YOLO, which introduces
into YOLOv3 a modification to the loss function and the re-
computation of the anchors sizes. The modified loss function
utilizes the Focal Loss to solve the problem of the logos which
are small objects to the background, and the Complete-IoU
loss [14] to obtain more accurate and faster regression of the
bounding boxes.

The issue with these approaches is the closed-world assump-
tion which does not apply in the case of logo recognition.
Fehérvári et al. [15] propose a method based on Distance
Metric Learning (DML) using deep learning techniques called
SoftTriple Loss presented in [16]. Another work based on
DML has been presented by Li et al. [17] and can be consid-
ered as an extension to [15]. In this work the authors enrich
the latent space learned by DML with text features contained
in the logos. The authors highlight how a large number of
logos have remarkable amount of text or (stylized) letters, for
this reason, in addition to visual features, they consider text
features as relevant information for logo classification.

B. Object Detection
This task can be defined as follows: given an image, deter-

mine whether or not there are instances of a predefined set of
objects, usually referred to as classes, and, if present, return the
location of each instance [18]. The spatial location of an object
in an image can be represented using bounding boxes. Object
detection was initially addressed using handcrafted features
and shallow trainable architectures. As described in [19],
the frameworks of object detection methods can mainly be
categorized into two groups:

1) Two-stage Object Detection: generates region proposals
at first and then classifies each proposal into different
object categories.

2) One-stage Object Detection: adopts a unified framework
to achieve final results (categories and locations) directly.

In this paper we propose a solution based on two stages.

C. Class Incremental Learning
The problem of Class Incremental Learning (CIL) aims to

design algorithms that can learn new concepts in a sequential
way and eventually perform well on all observed classes [9].

To extend a trained model on new classes, a large amount
of labeled data for both new and old classes is necessary for
network finetuning. Otherwise, if the dataset of old classes is
no longer available, finetuning a deployed model with new
classes can lead to the catastrophic forgetting problem [20]–
[22]. Catastrophic forgetting means that a model degrades
performance on old classes when retrained on new ones.

The problem of CIL has been addressed using different
methods, which can be divided into three main categories:

1) Replay methods: these works store samples of old classes
which are replayed while learning a new task, by doing
so it is possible to alleviate forgetting. The samples are
either reused as model inputs for rehearsal, or to constrain
the optimization of the loss on the new tasks.

2) Regularization-based methods: these works do not store
raw data, therefore reducing the memory requirements.
An extra regularization term is introduced in the loss
function, in this way it is possible to learn new classes
while maintaining the previous knowledge.

3) Parameter isolation methods: methods in this class use
different model parameters for each task.

The taxonomy is based on the works by Liu et al. [23] and
Delange et al. [24], where additional references can be found.

III. PROPOSED METHOD FOR INCREMENTAL LOGO
RECOGNITION

The proposed system consists of two stages, performed by
corresponding deep learning models as shown in Figure 1:

1) Object Proposal for logo detection, performed by a class-
agnostic logo detector.

2) Classification for logo recognition, performed by a CIL
classifier.

Additionally, “Model compression” is also considered during
training of the classification stage.

A. Class-Agnostic Logo Detector

Our class-agnostic logo detector is based on YOLOv5-
v6.1 [25], which can be formulated in different versions,
depending on the size of the model and the size of the input
image. In general, versions with more parameters perform
better, with the disadvantage of longer training time, longer
inference time and more computational resources required for
training. On the other hand, a small model might achieve very
low performance, thus misleading the final evaluation of the
system that heavily relies on the detector. Therefore, a model
that is too small could act as a bottleneck for the whole system.
The class-agnostic logo detector used in this paper is based
on YOLOv5m6, with an image input size of 512×512px and
pre-trained on the COCO dataset [26].

Unlike the classification stage, the detection stage is not
strictly dependent on an update to consider new classes. We
hypothesize that the concept of what a generic logo is can
be learned and approximated adequately by using only an
initial set of logos, and that the subsequent introduction of new
classes will not disrupt the general idea of a logo. Nonetheless,
a degree of dependency on an updated set of classes can be
expected, which we explore in Section V-A.

B. Incremental Logo Classifier

As a basis for incremental logo classification, we rely on the
Dynamically Expandable Representation algorithm (DER) [9],
which structures the training procedure in different “tasks”,
starting from an initial set of classes, and introducing new

classes with each task. The algorithm can be divided as
follows:

1) Representation learning: the architecture of the Convolu-
tional Neural Network (CNN) is dynamically expanded
at each new incremental learning step, using a limited
memory to preserve classes from previous steps.

2) Masking and pruning: the CNN introduced in the last
incremental learning step is pruned using a channel-level
masked-based method.

3) Classifier learning: the classifier is retrained by integrat-
ing a limited number of training examples from previous
steps, with samples from the new classes.

A partial implementation of the DER algorithm is provided in
the PyCIL repository [27] , and it is used as a starting point
for the development of our CIL logo classifier. Starting from
the original architecture, a dropout layer [28] is added before
the fully-connected layer in order to avoid overfitting.

C. Model Compression

The DER algorithm addresses the problem of class incre-
mental learning by expanding the neural network architecture
at each incremental step. The super-feature-extractor Φt for
images x at step t of incremental learning is given by the
following concatenation:

Φt(x) = [F0,F1(x), ..., Ft(x)]. (1)

Each feature extractor Fi is a CNN, which in this paper is
implemented using ResNet-34 [29]. The parameters of the
neural network grow linearly as a function of the number of
incremental learning steps. For this reason, there is a need to
reduce the number of parameters of the neural network.

The authors of DER adapted the concept of model pruning
with trainable masks [20], where the super-feature-extractor is
pruned after the training of each step t. This is done using
a differentiable channel-level mask-based method to prune
filters of the extractor Ft, in which the masks are learned
jointly with the representation. The mask is then binarized
after the learning procedure, and the feature extractor Ft is
pruned using the binary mask, producing as output the pruned
network FP

t . This first solution to model compression was
implemented in the context of our work, since it was not
originally available within the DER implementation.

A second approach to tackle the problem of the large num-
ber of model parameters is Knowledge Distillation (KD) [30],
in which a smaller model (labelled “student”) is trained to
mimic a larger one (“teacher”). The distillation loss used to
train the student model is computed with the Kullback-Leibler
divergence considering both the logits produced in output by
the teacher (soft targets) and the real data labels (hard targets).
The probability pi of each class i, is computed by the teacher
model using its logit zi as follows:

p
({t,s})
i =

(
exp

(
z
({t,s})
i

T

))/∑
j

exp

(
z
({t,s})
i

T

) ,

(2)

Fig. 2: Number of objects in LogoDet-3K for each class.

where temperature T is used to smooth the probability dis-
tribution revealing hidden inter-class relationships. Equation 2
computes both the class probability predicted by the student
(p(s)i), and that predicted by the teacher (p(t)i : the soft targets).

IV. EXPERIMENTAL SETUP

A. Dataset

The LogoDet-3K dataset [12] consists of ∼3,000 logo
classes, 158,652 images and 194,261 logo objects. The objects
correspond to the bounding boxes in each image, and since an
image can contain more than one logo (not necessarily of the
same class), the number of objects is greater than the number
of images. The dataset is divided into nine categories, where
each category contains several brands and for each brand there
is a set of images. In this context, a brand is intended as a
logo class. In fact, the same brand can have multiple versions
of logos, for example, a symbolic logo and a textual logo.
These types of logos are treated as different classes in the
LogoDet-3K dataset. Figure 2 shows the distribution of the
number of objects for each logo class. An evident issue of
LogoDet-3K, representative of a real-world situation, is the
low number of objects for some classes. Specifically, 25% of
the classes have a number of images lower or equal to 27, and
half of the classes have a number of images lower or equal
to 54. Since several classes have a low number of images, it
could be challenging for the model to correctly predict these
classes. To this extent, we adopt online data augmentation.
The transformations used to augment the original dataset, and
to train the CIL classifier are the following:

• Geometric transformations: random affine, and random
perspective.

• Color transformations: sharpness adjustment, posteriza-
tion, and color jitter.

The original image is transformed using a combination of
one random geometric transformation and one random color
transformation.

A first random selection of 1,000 classes is used for the
initial classification task, followed by 8 steps of incremental
learning, each adding 250 new classes. The training, validation
and test sets for the classification problem are built from
the individual classes with stratified sampling following this

ratio: training set 70%, validation set 10%, test set 20%. The
splits for the detection problem are defined coherently, by
considering the training labels for the detector only if that
bounding box corresponds to a Region of Interest (ROI) used
as a training example for the classifier, otherwise the bounding
box is used in the validation or test set.

B. Training configuration

The class-agnostic logo detector is trained on the LogoDet-
3K dataset for 30 epochs with a batch size of 16 using the
Stochastic Gradient Descent (SGD) optimizer with Nesterov
momentum set to 0.937. L2 regularization is used to avoid
overfitting, with the weight decay parameter set to 5 · 10−4.
As training data, only those 1,000 classes available for the first
task are used to train the detector.

The training of the CIL model on LogoDet-3K is performed
for 200 epochs at the first step, and for 150 at subsequent
incremental steps. Early stopping is used to avoid overfitting
of the model: the number of epochs with no improvement
in accuracy on the validation set after which training will be
stopped is set to 30 (i.e. patience); the minimum change in
the monitored accuracy to be considered as an improvement
is set to 0.5%. To update the model weights two different
optimizers are tested: SGD and Adam [31]. In both cases,
an exponential decay scheduling is applied to the learning
rate: once training reaches one of the predetermined milestone
epochs, the learning rate of the optimizer is multiplied by a
factor γ = 0.1. The milestones are set to 60, 100 and 150
for the initial learning step, and to 40, 75 and 100 for each
incremental learning step.

V. EXPERIMENTAL RESULTS

The problem formulation consists of 1,000 classes used as
the initial task, then at each incremental step 250 classes are
added for the corresponding task.

A. Detection experiments

The detector is trained on the first 1,000 classes of the
initial task, then evaluation metrics are computed on the test
set of these 1,000 classes combined with the remaining 1,993,
thus covering the entire dataset. Results are shown in Table I,
offering a reference comparison between the detector trained
on 1,000 classes and the one trained on all the 2,993 classes.
This is done to asses the generalization capabilities obtained by
the detector trained on 1,000 classes. Mean Average Precision
(mAP) is used to evaluate object detection models based on
Intersection over Union (IoU), Recall, and Precision. It is
calculated as the weighted average of precision values at each
threshold of accepted IoU, while the weight is the increase in
recall from the prior threshold. Given k different classes, mAP
is the average of the AP values among each class.

Although the performance of the detector based on 1,000
classes can be considered acceptable, the gap in mAP@.5 and
mAP@.5:.95 between the detector trained on 1,000 classes and
the one trained on 2,993 classes is not negligible. This result is
an important aspect for the proposed system, and suggests the

TABLE I: Precision, Recall, mAP@.5 and mAP@.5:.95 ob-
tained by the detector trained on 1,000 classes, and that trained
on 2,993 classes. The test set is composed of all 2,993 classes.

Training classes Precision Recall mAP@.5 mAP@.5:.95

1,000 0.704 0.666 0.706 0.465
2,993 0.833 0.846 0.890 0.648

need to also investigate the topic of incremental logo detection
in future developments.

B. Classification experiments

We performed preliminary experiments on a subset of 100
classes, where 30 are used for the initial task, then the remain-
ing 70 classes are incrementally added 10 at a time. From these
experiments we selected the following optimal configuration: a
ResNet-34 backbone pretrained on the ImageNet dataset, data
augmentation, 0.5 dropout rate (tested against 0.3 and 0.1),
and Adam otpimizer (tested against SGD).

Table II reports results on the full dataset composed of 2,993
classes. Top-k accuracy is used to evaluate the classification
performance, focusing on cases where k = 1 and k = 5. We
provide a baseline having the same computational complexity
(in terms of architecture and number of parameters) of the last
step of CIL, but trained to directly classify all 2,993 classes,
which achieves 90.22% top-1 accuracy.

As a first set of experiments for CIL, an important factor for
testing the scalability of the model is the number of examples
stored for old classes. In particular 50, 20 and 10 are the
memory sizes taken into account. Since some classes do not
have enough training samples to reach the available budget, we
also report for reference the total memory across all classes.
The results quantify the relatively small impact that memory
size has on overall accuracy, going from 87.20% for 29K
samples, to 89.22% for 102K samples. The top-1 accuracy
of the baseline is only slightly better than that of the best
CIL model, proving that the DER algorithm is an effective
approach for achieving CIL.

The second set of experiments is relative to model compres-
sion via pruning. When pruning is used in combination with
Weight Aligning (WA), the performance drops dramatically.
Therefore, only for models using pruning, WA is disabled.
Despite producing promising results in the preliminary exper-
iments with 100 classes, in the case of 2,993 classes pruning
yields poor performance: even considering the case where
50 samples are used for the pruning model, performance
deteriorates by almost 20%.

The subsequent experiment is relative to adopting a KD
approach to model compression, transferring the knowledge
of a teacher network trained in a CIL setup to a student
network. Here, a ResNet-50 model pretrained on ImageNet
is used as the backbone for the student, with a dropout layer
before the fully-connected layer. In order to replicate a realistic
situation, the student model is trained under the supervision of
the teacher, but only the samples stored by the teacher are used
as training data. As can be seen in table, the number of samples

TABLE II: Logo classification performance with class-incremental learning on the 2,993 classes of the LogoDet-3K dataset,
for different training configurations. Symbols ♢ ♣ ♠ ♡ are used to identify experiments that are referenced later on.

Solution Memory (class) Memory (total) (K) Weight align. Compression # Params (M) Top-1 acc. (%) Top-5 acc. (%)

Baseline (all) (all) no none 205.0 90.22% 94.36%

#1 ♢ 10 29 yes none 205.0 87.20% 92.19%
#2 20 53 yes none 205.0 88.47% 92.58%
#3 ♣ 50 102 yes none 205.0 89.22% 92.97%

#4 50 102 yes pruning 70.7 7.60% 10.67%
#5 10 29 no pruning 68.8 51.69% 62.56%
#6 20 53 no pruning 71.7 63.20% 73.97%
#7 ♠ 50 102 no pruning 68.3 70.37% 81.85%

#8 10 29 yes KD 29.6 73.52% 82.49%
#9 ♡ 50 102 yes KD 29.6 88.96% 93.57%

TABLE III: Performance of the full-recognition system using
the class-agnostic logo detector and different CIL classifiers.
Precision, Recall, mAP@.5 and mAP@.5:.95 are computed on
the test set composed of all the 2,993 classes.

Solution Precision Recall mAP@.5 mAP@.5:.95

CIL-10 ♢ 0.545 0.591 0.583 0.397
CIL-50 ♣ 0.578 0.615 0.614 0.417
CIL-50-pruned ♠ 0.496 0.485 0.489 0.347
CIL-50-KD ♡ 0.558 0.604 0.590 0.403

Logo-Yolo [12] - - 0.523 -
SeeTek [17] - - 0.705 -

used to train the student heavily affects the final performance.
Using 50 samples per class to train the student results in top-1
accuracy of 88.96%, i.e. an increase of 15% compared to using
only 10 samples per class. KD clearly outperforms the pruning
compression, both in terms of parameters and accuracy. More
importantly, we are able to achieve very similar performance
to the baseline that requires availability of the full training set,
at a fraction of the network parameters: 29.6 million against
205.0 million (i.e. about 14% of the parameters).

C. Full recognition experiments

In this last section, the whole system is tested. This consists
in combining the two stages: the class agnostic logo detection
which generates ROIs, and the actual classification performed
by the CIL classifier. The final performance is evaluated
considering the Precision, Recall, mAP@.5 and mAP@.5:.95
on the test set composed of all the 2,993 classes.

The model used for the first stage of the system is the class-
agnostic logo detector, trained with only the 1,000 classes
used for the first task by the CIL classifier. For what concerns
the CIL classifier the following models are compared, with
references from Table II:

1) CIL classifier with memory 10 (♢).
2) CIL classifier with memory 50 (♣).
3) CIL classifier with memory 50, pruned (♠).
4) Student trained with KD with memory 50 (♡).
Results are shown in Table III. As a comparison, the

performance reported in the literature by Wang et al. in Logo-
Yolo [12] and by Li et al. in SeeTek [17] are also presented.

The proposed approach using KD outperforms Logo-Yolo
but achieves lower performance than SeeTek. For reference,
SeeTek is an open-set retrieval approach and not an incre-
mental learning approach. In an open-set retrieval approach,
the classification of an input logo is performed by assigning
the class of the nearest logo in a latent space. By doing so,
if an input logo is similar, but does not actually match the
training images, it is still recognized, but the system will not
be able to integrate new knowledge to recognize new logos.

As shown from the results, the full recognition performance
obtained by SeeTek (70.46% mAP@.5) is very similar to that
obtained by the proposed class-agnostic logo detector evalu-
ated without taking into account the class (70.60% mAP@.5
from Table I). This further suggests that, even without the
errors introduced by the classification stage, the performance
obtained by the classification stage are suboptimal, and can be
considered a current bottleneck of our solution.

Figure 3 presents some visual examples of the full system
for logo recognition. The tested images are not from LogoDet-
3K, in order to simulate an out-of-dataset real world scenario.
The ZARA example in particular shows the correct detection
(and classification) of two instances of the logo, while the
instance in the middle is not detected. This is possibly due
to its lack of contrast, which we can assume was learned by
the class-agnostic logo detector to be a discriminative feature.
The precision-oriented nature of the detector allowed to avoid
false positives, such as the label in the shop window.

VI. CONCLUSIONS

We addressed the task of logo recognition by formulating
the problem with a class-incremental learning approach, mo-
tivated by the observation that new logo classes are being
constantly generated, thus requiring a flexible solution. Our
two-stage system for logo recognition is composed of a class-
agnostic logo detector, and a classifier trained using the in-
cremental learning approach, later compressed via knowledge
distillation. Rigorous experiments show that we are able to
achieve classification performance close to a baseline that
requires availability of the full training set, at a fraction of
the network parameters (i.e. about 1/7). In terms of full-
recognition results, we outperform an existing solution based

Fig. 3: In-the-wild visual examples of the proposed two-stage
logo recognition system with knowledge distillation.

on the YOLO one-stage detector, while underperforming
against a solution based on distance-metric learning based on
textual image features. This type of image description could be
considered for integration in our own solution as a direction
for future developments. Our experiments also suggest that
the current bottleneck lies in the detection stage. This could
be expanded in terms of computational complexity, as well as
introducing incremental learning capabilities.

REFERENCES

[1] David S Doermann, Ehud Rivlin, and Isaac Weiss, “Logo recognition
using geometric invariants,” in Proceedings of 2nd International Confer-
ence on Document Analysis and Recognition (ICDAR’93). IEEE, 1993,
pp. 894–897.

[2] Cristina Mata, Nick Locascio, Mohammed Azeem Sheikh, Kenny Ki-
hara, and Dan Fischetti, “Standardsim: A synthetic dataset for retail
environments,” in International Conference on Image Analysis and
Processing. Springer, 2022, pp. 65–76.

[3] Zhi-Qi Cheng, Xiao Wu, Yang Liu, and Xian-Sheng Hua, “Video
ecommerce++: Toward large scale online video advertising,” IEEE
transactions on multimedia, vol. 19, no. 6, pp. 1170–1183, 2017.

[4] Yue Gao, Yi Zhen, Haojie Li, and Tat-Seng Chua, “Filtering of brand-
related microblogs using social-smooth multiview embedding,” IEEE
Transactions on Multimedia, vol. 18, no. 10, pp. 2115–2126, 2016.

[5] Xuan Jin, Wei Su, Rong Zhang, Yuan He, and Hui Xue, “The open
brands dataset: Unified brand detection and recognition at scale,” in
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2020, pp. 4387–4391.

[6] Marco Buzzelli, Federico Belotti, and Raimondo Schettini, “Recognition
of edible vegetables and fruits for smart home appliances,” in 2018 IEEE
8th International Conference on Consumer Electronics-Berlin (ICCE-
Berlin). IEEE, 2018, pp. 1–4.

[7] Marc Masana, Xialei Liu, Bartlomiej Twardowski, Mikel Menta, An-
drew D Bagdanov, and Joost van de Weijer, “Class-incremental learning:
survey and performance evaluation on image classification,” arXiv
preprint arXiv:2010.15277, 2020.

[8] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu,
Yandong Guo, and Yun Fu, “Large scale incremental learning,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 374–382.

[9] Shipeng Yan, Jiangwei Xie, and Xuming He, “Der: Dynamically expand-
able representation for class incremental learning,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 3014–3023.

[10] Simone Bianco, Marco Buzzelli, Davide Mazzini, and Raimondo Schet-
tini, “Logo recognition using cnn features,” in International Conference
on Image Analysis and Processing. Springer, 2015, pp. 438–448.

[11] Simone Bianco, Marco Buzzelli, Davide Mazzini, and Raimondo Schet-
tini, “Deep learning for logo recognition,” Neurocomputing, vol. 245,
pp. 23–30, 2017.

[12] Jing Wang, Weiqing Min, Sujuan Hou, Shengnan Ma, Yuanjie Zheng,
and Shuqiang Jiang, “Logodet-3k: A large-scale image dataset for logo
detection,” ACM Transactions on Multimedia Computing, Communica-
tions, and Applications (TOMM), vol. 18, no. 1, pp. 1–19, 2022.

[13] Joseph Redmon and Ali Farhadi, “Yolov3: An incremental improve-
ment,” arXiv preprint arXiv:1804.02767, 2018.

[14] Zhaohui Zheng, Ping Wang, Wei Liu, Jinze Li, Rongguang Ye, and
Dongwei Ren, “Distance-iou loss: Faster and better learning for
bounding box regression,” in Proceedings of the AAAI Conference on
Artificial Intelligence, 2020, vol. 34, pp. 12993–13000.

[15] István Fehérvári and Srikar Appalaraju, “Scalable logo recognition using
proxies,” in 2019 IEEE Winter Conference on Applications of Computer
Vision (WACV). IEEE, 2019, pp. 715–725.

[16] Qi Qian, Lei Shang, Baigui Sun, Juhua Hu, Hao Li, and Rong Jin,
“Softtriple loss: Deep metric learning without triplet sampling,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 6450–6458.

[17] Chenge Li, István Fehérvári, Xiaonan Zhao, Ives Macedo, and Srikar
Appalaraju, “Seetek: Very large-scale open-set logo recognition with
text-aware metric learning,” in Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, 2022, pp. 2544–2553.

[18] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xin-
wang Liu, and Matti Pietikäinen, “Deep learning for generic object
detection: A survey,” International journal of computer vision, vol. 128,
no. 2, pp. 261–318, 2020.

[19] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu, “Object
detection with deep learning: A review,” IEEE transactions on neural
networks and learning systems, vol. 30, no. 11, pp. 3212–3232, 2019.

[20] Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou,
“Overcoming catastrophic forgetting with hard attention to the task,”
in International Conference on Machine Learning. PMLR, 2018, pp.
4548–4557.

[21] Chi Zhang, Nan Song, Guosheng Lin, Yun Zheng, Pan Pan, and
Yinghui Xu, “Few-shot incremental learning with continually evolved
classifiers,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 12455–12464.

[22] Michael McCloskey and Neal J Cohen, “Catastrophic interference in
connectionist networks: The sequential learning problem,” in Psychology
of learning and motivation, vol. 24, pp. 109–165. Elsevier, 1989.

[23] Yaoyao Liu, Bernt Schiele, and Qianru Sun, “Adaptive aggregation net-
works for class-incremental learning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
2544–2553.

[24] Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia,
Ales Leonardis, Greg Slabaugh, and Tinne Tuytelaars, “A continual
learning survey: Defying forgetting in classification tasks,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2021.

[25] Glenn Jocher et. al., “ultralytics/yolov5: v6.1 - TensorRT, TensorFlow
Edge TPU and OpenVINO Export and Inference,” Feb. 2022, https:
//github.com/ultralytics/yolov5 (Accessed on July 15th, 2022).

[26] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Per-
ona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick, “Microsoft
coco: Common objects in context,” in European conference on computer
vision. Springer, 2014, pp. 740–755.

[27] Fu-Yun Wang, “G-U-N/PyCIL: PyCIL: A Python Toolbox for Class-
Incremental Learning,” 2021, https://github.com/G-U-N/PyCIL (Ac-
cessed on July 15th, 2022).

[28] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting,” The journal of machine learning research,
vol. 15, no. 1, pp. 1929–1958, 2014.

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep
residual learning for image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 770–
778.

[30] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al., “Distilling the
knowledge in a neural network,” arXiv preprint arXiv:1503.02531, vol.
2, no. 7, 2015.

[31] Diederik P Kingma and Jimmy Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/G-U-N/PyCIL

	Introduction
	State of the Art
	Logo Recognition
	Object Detection
	Class Incremental Learning

	Proposed method for incremental logo recognition
	Class-Agnostic Logo Detector
	Incremental Logo Classifier
	Model Compression

	Experimental setup
	Dataset
	Training configuration

	Experimental results
	Detection experiments
	Classification experiments
	Full recognition experiments

	Conclusions
	References

