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Abstract—In this paper we propose the truncated edge-based
color constancy. It is based on, and extends, the edge-based
framework by introducing the use of truncated Gaussian filters.
The truncation level can be controlled with the use of a dedicated
parameter that is added to the other three parameters existing
in the edge-based framework, namely the derivative order, the
standard deviation of the Gaussian filter, and the Minkowski
norm. Experimental results on two standard dataset for color
constancy show that the truncated edge-based framework allows
to achieve the same or higher illuminant estimation accuracy of
the edge-based framework considerably reducing the number of
operations.

Index Terms—Color constancy, illuminant estimation, trun-
cated Gaussian

I. INTRODUCTION

The colors of the objects that we observe in a scene
depend mainly on three different factors: i) the surface spectral
reflectance of the objects; ii) the spectral power distribution
of the illuminant; iii) the relative positions of the objects
and the illuminant. The aim of color constancy, also referred
to as illuminant estimation, is that of rendering the objects
in the scene as if they were seen under a chosen neutral
illuminant. It is therefore easy to imagine why this is a crucial
step in digital camera pipelines and why many computer
vision problems in both still images and videos make use
of color constancy as a pre-processing step. Notwithstanding
its simplicity, color constancy is a very challenging problem
[1] since it is underdetermined. To solve this problem many
different methods have been proposed in the state of the art,
ranging from simple statistics-based approaches ( [2]–[6]) to
learning based approaches based on handcrafted features, and
learning based approaches based on deep-learning exploiting
both supervised ( [7]–[9]) and unsupervised ( [10], [11])
learning.

Although recent deep learning based approaches allow to es-
timate the illuminant with a high degree of accuracy, they have
a large number of parameters to learn and therefore they need
very large training sets. For this reason, simple statistics-based
approaches are still used in practical applications, especially
when inference speed is crucial.

In this work, starting from the edge-based framework for
color constancy [4], we propose the truncated edge-based

� Source code available at: https://github.com/simone-255-255-255/
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framework that, by introducing the use of truncated Gaussian
filters, allows to obtain illuminant estimates with the same
or higher accuracy than those obtained by the edge-based
framework, all the while considerably reducing the number
of operations.

II. PROPOSED METHOD

The proposed method starts from the edge-based framework
introduced by van de Weijer et al. [4], whose general hypoth-
esis is described as:(∫ ∣∣∣∣∂nfσ(x)

∂xn

∣∣∣∣p dx)1/p

= ken,p,σ (1)

where n identifies the derivative order, σ is the standard
deviation for a Gaussian filter Gσ that when applied with the
convolution operator (∗) to the input image f(x) produces
the filtered image fσ(x) = Gσ ∗ f(x); p is the order of the
Minkowski norm, and f(x) is the input image. The above
framework includes six color constancy algorithms that can
be generated with different combinations of n, p, and σ: Gray
World (GW) [3] with [n, p, σ] = [0, 1, 0], White Patch (WP)
[2] with [n, p, σ] = [0,∞, 0], Shades of Gray (SoG) [12]
with [n, p, σ] = [0, p, 0], General Gray World (GGW) [4]
with [n, p, σ] = [0, p, σ], Gray Edge 1st order (GE1) [4] with
[n, p, σ] = [1, p, σ], and Gray Edge 2nd order (GE2) [4] with
[n, p, σ] = [2, p, σ]. Among these six methods we can observe
that only three make use of the Gaussian filter, i.e. GGW, GE1
and GE2.

In the edge-based framework the window size Wσ of the
Gaussian filter depends from the chosen σ:

Wσ = (⌊B · σ + 0.5⌋ · 2) + 1 = (⌊3σ + 0.5⌋ · 2) + 1 (2)

where B = 3 is the default break-off sigma used. This means
that the larger the σ of the filter, the larger will be the window
size Wσ , and therefore more computations will be required.

In this work we want to remove the dependence of the
window size from σ, making it explicitly parametrized by the
truncation level t:

Wt = (t · 2) + 1 (3)

therefore potentially resulting in a truncated Gaussian. It is
easy to see that the formulation in Equation 3 is equivalent to
the original one in Equation 2 if we set t = ⌊3σ + 0.5⌋.

https://orcid.org/0000-0002-7070-1545
https://orcid.org/0000-0002-7070-1545
https://orcid.org/0000-0003-1138-3345
https://orcid.org/0000-0003-1138-3345
https://github.com/simone-255-255-255/Truncated_EdgeBased_CC
https://github.com/simone-255-255-255/Truncated_EdgeBased_CC


(a) σ = 1, t = 4 (b) σ = 1, t = 3 (c) σ = 1, t = 2 (d) σ = 1, t = 1

(e) σ = 1, t = 4 (f) σ =
√
2, t = 4 (g) σ = 2, t = 4 (h) σ = 6, t = 4

Fig. 1: Effect of different combinations of Gaussian standard deviation σ and truncation level t. Fixed σ, and varying t (first
row): σ = 1, t = 4 (a); σ = 1, t = 3 (b); σ = 1, t = 2 (c); σ = 1, t = 1 (d). Varying σ, and fixed t (second row): σ = 1,
t = 4 (e); σ =

√
2, t = 4 (f); σ = 2, t = 4 (g); σ = 6, t = 4 (h).

The advantage of the truncated formulation is that we can
search the best parameter combination [n, p, σ] by explicitly
controlling the window size of the filters involved, therefore
controlling the number of operations required. Therefore we
propose a truncated edge-based framework that extends the
original edge-based framework [4] by exposing as fourth
parameter the truncation level t. The general instance of an
algorithm belonging to the truncated edge-based framework is
therefore represented by [n, p, σ, t]. In other terms, by setting
the truncation level t we are also setting the break-off sigma
B in the solution interval of t = ⌊B · σ + 0.5⌋, i.e.:

B ∈
[
t− 0.5

σ
,
t+ 0.5

σ

)
(4)

Examples of the effect of different combinations of σ and t
are reported in Figure 1. From the plots reported it is possible
to see that keeping σ fixed and decreasing t reduces the kernel
size of the filter, while keeping t fixed and increasing σ permits
to approximate the box filter (or average filter).

III. EXPERIMENTS

A. Experimental setup

Experiments are performed on the ColorChecker dataset
[13], composed of 568 images, and on the NUS dataset [14],
composed of 1853 images. These are considered standard
dataset in the specialized scientific community, and are charac-
terized by a variety of scenes and illumination conditions [15].
All images include in the frame a 24-patch Macbeth Color
Checker target that is masked for illuminant estimation. Mul-
tiple versions of the raw images and ground truth of the
ColorChecker dataset have been proposed through the years.
In this work we use the ‘recommended’ version by Hemrit et
al. [16], [17].

B. Experimental results

In order to allow for a fine-grained sweeping of the pa-
rameters of each considered method, all the experiments are
performed on a scaled version of the input images with the
longest side equal to 200 pixels.

Parameter sweep is performed on the same grid for all
the methods. The grid is created by the Cartesian product
of σ = {0.01, 0.1, 0.2, . . . , 1.0, 2.0, . . . , 50.0} and n =
{1.0, 2.0, . . . , 10.0,∞} for a total of 660 (= 60·11) combi-
nations. For the truncated versions a third parameter is swept,
that represents the truncation level t = {1, 2, . . . , 25} for a
total of 16500 (= 60·11·25) combinations.

In Table I we report the best results achieved by each
method in terms of median and average recovery angular
error. Next to each value it is also reported the parameter
configuration to obtain it and the corresponding number of
operations. Please notice that the best median and average
values can be reached with different parameter settings. From
the results relative to the ColorChecker dataset it is possible
to notice that the truncated versions of the algorithms are
able to achieve lower median errors than the original versions.
Considering the average error, the difference between the two
variants is very small, with the truncated version reaching
always a value lower or equal to the corresponding original
version. Results on the NUS dataset provide similar insights,
with lower median errors for the truncated versions.

Figure 2 displays selected images from the ColorChecker
dataset, under various types of correction. The first row
presents an example from the Canon EOS-1DS camera, cor-
rected with the GE1 and Truncated GE1 algorithm. The second
row presents an example from the EOS 5D camera, corrected
with the GGW and Truncated GGW algorithm. We select the
best parametrization of the algorithms according to the median



TABLE I: Best median and average angular errors obtained by the considered methods on the ColorChecker dataset (top) and
on the NUS dataset (bottom): for each entry we report the corresponding parameters and number of operations.

Dataset Method Median Parameters Operations Average Parameters Operations
C

ol
or

C
he

ck
er

[1
3] GGW 2.4958◦ [n, p, σ] = [0, 4, 0.1] 1.13M 4.0184◦ [n, p, σ] = [0, 2, 0.1] 1.13M

Truncated GGW 2.4074◦ [n, p, σ, t] = [0, 8, 16, 1] 1.13M 4.0184◦ [n, p, σ, t] = [0, 2, 0.1, 1] 1.13M

GE1 2.5958◦ [n, p, σ] = [1, 2, 0.9] 2.54M 3.8785◦ [n, p, σ] = [1, 1, 3] 6.59M
Truncated GE1 2.4333◦ [n, p, σ, t] = [1, 3, 23, 3] 2.73M 3.8524◦ [n, p, σ, t] = [1, 2, 27, 1] 1.45M

GE2 2.6935◦ [n, p, σ] = [2, 2, 9] 27.10M 3.8895◦ [n, p, σ] = [2, 1, 5] 15.52M
Truncated GE2 2.5346◦ [n, p, σ, t] = [2, 4, 26, 6] 6.83M 3.8874◦ [n, p, σ, t] = [2, 1, 5, 25] 25.17M

Dataset Method Median Parameters Operations Average Parameters Operations

N
U

S
[1

4]

GGW 2.4268◦ [n, p, σ] = [0,∞, 0, 6] 1.64M 3.3088◦ [n, p, σ] = [0, 9, 0.1] 1.13M
Truncated GGW 2.3068◦ [n, p, σ, t] = [0,∞, 23, 1] 1.13M 3.3088◦ [n, p, σ, t] = [0, 9, 0.1, 1] 1.13M

GE1 2.1517◦ [n, p, σ] = [1, 2, 0.4] 1.58M 3.1602◦ [n, p, σ] = [1, 2, 0.2] 1.45M
Truncated GE1 2.1455◦ [n, p, σ, t] = [1, 2, 0.9, 1] 1.45M 3.1602◦ [n, p, σ, t] = [1, 2, 0.1, 1] 1.45M

GE2 2.1645◦ [n, p, σ] = [2, 2, 0.9] 3.65M 3.1820◦ [n, p, σ] = [2, 2, 0.6] 2.78M
Truncated GE2 2.1581◦ [n, p, σ, t] = [2, 2, 5, 2] 2.97M 3.1797◦ [n, p, σ, t] = [2, 2, 0.7, 1] 2.01M

Ground truthTruncated GE1 (1.72°)GE1 (7.38°)

Ground truthTruncated GGW (0.50°)GGW (7.06°)

Fig. 2: Visualization of selected images corrected without and with truncated framework, compared to the version corrected
with the ground truth, indicated in Angle-Retaining Chromaticity.

angular error reported in Table I. The reference ground truth
for each image is also visualized, both in terms of corrected
image and Angle-Retaining Chromaticity [18].

Another important aspect to be investigated is the best
performance that can be achieved by the original and truncated
algorithms when we impose an upper bound on the total
number of operations. For each method, we compute the total
number of operations required to process one input image of
the ColorChecker dataset having the longest side equal to
200 pixels, with all the combinations of parameters above
described. For each method we plot the minimum average
and median angular error that can be reached by imposing
an upper bound on the total number of operations, ranging
from the lowest to the highest value required by each method
in steps of 1000 operations. The corresponding plots in terms
of millions of operations (MOps) are depicted in Figure 3.

From the plots reported in Figure 3 (a) it is possible to
see that both the original and truncated GGW are able to
achieve their best performance with the lowest number of
operations (i.e. 1.13 MOps). Allowing them to use parameters

combinations that result in a higher number of operations does
not improve the performance. We can observe how they obtain
the same average error, while the truncated GGW obtains a
lower median error with respect to the original GGW.

From the plots reported in Figure 3 (b) we can notice that
with the lowest number of operations (i.e. 1.45 MOps) trun-
cated GE1 is much better than the original GE1 both in terms
of median and average error. While the number of operations
required by both variants to achieve their best median error
is quite similar (i.e. 2.73 MOps for truncated GE1 and 2.54
MOps for original GE1), the number of operations required for
achieving their best average error is very different, i.e. 1.45
MOps for truncated GE1 and 6.59 MOps for original GE1.
Furthermore we can observe that the ranges of performance
obtainable by the two variants of GE1 are separated, with those
of truncated GE1 being always lower than the corresponding
ones of original GE1. In other words, it does not exist a
number of operations that allows the original GE1 to equal
the performance that can be obtained by truncated GE1.

From Figure 3 (b) it is possible to see that the performance



(a) (b) (c)

Fig. 3: Best average and mean recovery angular errors that can be obtained at different number of operations: (a) original
GGW vs truncated GGW; (b) original GE1 vs truncated GE1; (c) original GE2 vs truncated GE2.

Fig. 4: Computational complexity (MOps) of the GE2 algo-
rithm by varying the Gaussian kernel standard deviation σ.

of the truncated GE2 are better than those of the original GE2
for all numbers of operations. While the average errors tends
to be very similar when we allow a number of operations
above 19 MOps, the difference in median errors remains
consistent regardless of the number of allowed operations. In
particular, the original GE2 needs 12.62 MOps to obtain a
median error close to the one that the truncated GE2 is able
to obtain with just 2.01 MOps. Moreover the original GE2
is not able to obtain a median error close to what truncated
GE2 obtains with 2.98 MOps regardless of the considered
number of operations. Concerning the average error instead,
the original GE2 requires 6.84 MOps to outperform what the
truncated GE2 obtains with 2.01 MOps, and 9.73 MOps to
outperform what the truncated GE2 obtains with 2.98 MOps.

In Figure 4 we report the number of operations as a function
of the kernel size. We analyzed GE2, which is the most
expensive among the algorithms considered, by changing the
input image size (i.e. 200 × 200, 400 × 400, 800 × 800),

the filter σ in the range [1, 30] (corresponding to a filter size
Wσ ∈ [7, 151]). Furthermore we also report what happens to
the number of operations at three different truncation levels
t = {9, 31, 61}.

IV. CONCLUSIONS

We proposed the truncated edge-based color constancy,
which is based on, and extends, the edge-based framework
by introducing the use of truncated Gaussian filters. The
truncation level is explicitly regulated with a dedicated pa-
rameter that specifies the filter window size, as such implicitly
regulating the Gaussian break-off parameter. We conducted an
extensive experimentation to investigate the range of perfor-
mance achievable by the truncated edge-based framework in
relation to the computational effort. We showed that thanks
to this simple, yet effective, parametrization, it is possible to
achieve equivalent or higher accuracy than the original edge-
based framework, while reducing the required operations.

These results can be framed within a line of research in
computational color constancy that aims at high-efficiency
for integration in embedded devices. To this extent, in the
future we will consider exploiting the truncated edge-based
framework in the domain of video color constancy [19], [20].
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