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 A B S T R A C T

Self-supervised learning has recently gained increasing attention in computer vision, enabling the extraction 
of rich and general-purpose feature representations without requiring large annotated datasets. In this paper 
we aim to build a unified approach capable of deploying robust and effective analysis systems, replacing the 
need for multiple task-specific models trained end-to-end. Rather than introducing new architectures or training 
strategies, our goal is to systematically assess whether a single frozen self-supervised representation can support 
heterogeneous food-related tasks under realistic operating conditions. To this end, we performed an extensive 
analysis of DINOv2 features across multiple benchmark datasets and tasks, including food classification, 
segmentation, aesthetic assessment, and robustness to image distortions. In addition, we explore its capacity for 
continual learning by applying it to incremental food classification scenarios. Our findings reveal that DINOv2 
features excel in many food-related applications. Their shared representations across tasks reduce the need for 
training separate models, while their strong generalization, high accuracy, and ability to handle complex multi-
task scenarios make them a strong candidate for a unified food recognition approach. Specifically, DINOv2 
features match or surpass state-of-the-art supervised methods in several food recognition tasks, while offering 
a simpler and more unified deployment strategy. Furthermore, they outperform end-to-end models in cross-
dataset scenarios by up to +19.4% Top-1 accuracy and exhibits strong resilience to common image distortions 
by up to +48.0% robustness in Top-1 accuracy percentual difference, ensuring reliable performance in real-
world applications. On average across all considered tasks, the DINOv2-based unified evaluation outperforms 
the state of the art by approximately 2.8% and 5.4%, depending on the chosen model size, while using only 
6.2% and 23.9% of the total number of model parameters, respectively.
1. Introduction

The automatic recognition of food in images has become a corner-
stone of many real-world applications, ranging from health monitoring 
and dietary analysis to food aesthetics assessment and waste reduc-
tion (Allegra et al., 2020; Liu et al., 2024; Wang, Zheng, et al., 2024). 
In these applications, tasks such as recognizing food items, segmenting 
their components, and assessing their properties (quantity, aesthetic 
quality, etc.) sometimes need to be carried out simultaneously. For 
instance, in compound plates, food recognition may need to segment, 
identify, quantify and describe the single components. These multiple 
processing stages are often to be carried out in resource-constrained 
devices like smartphones or embedded systems (Fakhrou et al., 2021; 
Kawano & Yanai, 2015; Kong et al., 2023) highlighting the need for 
approaches that are not only accurate but also efficient to train, update 
and deploy.
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The automatic recognition of food images presents significant chal-
lenges that push the boundaries of computer vision research since food 
items have high intra-class variability (e.g., the same dish can appear 
differently across cultures), high inter-class similarity (e.g., visually 
similar but nutritionally distinct foods), and require accurate detection 
in cluttered backgrounds, that can be further affected by varying light-
ing conditions, and occlusions.  Food recognition in real application 
scenarios requires therefore different tasks such as object localization, 
image segmentation, and image classification. These tasks are often 
carried out with traditional supervised learning approaches, such as 
Convolutional Neural Networks (CNNs) trained on large, annotated 
datasets (Chen et al., 2012; Min et al., 2020), achieving notable success 
in addressing, for example, single food recognition tasks. However, 
these methods face several limitations. First, the robustness of the meth-
ods depends on the use of large labeled data for training. The reliance 
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Fig. 1. Vision transformer architecture (Dosovitskiy, 2020) behind the DINOv2 model (Oquab et al., 2023). CLS: classification token. GF: global feature. LF: local 
feature.
on large-scale annotated datasets is resource-intensive and impractical 
for many applications. Moreover, traditional methods are often opti-
mized for a single task, requiring separate models for segmentation, 
recognition, and food description, leading to increased computational 
overhead. Finally, extending these models to new categories or datasets 
corresponding to different food cuisines typically requires retraining or 
deep fine-tuning the model on new data, which can be computationally 
expensive and time-consuming.

Self-supervised learning (SSL) provides a powerful alternative to 
traditional supervised approaches, leveraging unlabeled data to learn 
rich feature representations and reducing the need for large manually 
labeled datasets (Gui et al., 2024; Liu et al., 2021). Several SSL frame-
works have been developed in the last years, including SimCLR (Chen 
et al., 2020), MoCo (He et al., 2020), BYOL (Grill et al., 2020), 
and DINO (Caron et al., 2021). Among these, DINOv2 (Oquab et al., 
2023) has emerged as a particularly effective solution, offering robust 
and versatile features for various image recognition tasks. DINOv2 is 
a self-supervised vision model built on a Vision Transformer (ViT) 
backbone (Dosovitskiy, 2020) that balances computational efficiency 
and task performance, making it well-suited for applications requiring 
both accuracy and adaptability. An input image is first resized and 
partitioned into non-overlapping patches, each of which is projected 
into a latent embedding space. These patch embeddings, together with 
a learnable ‘‘[CLS]’’ classification token and positional encodings, are 
processed by multiple transformer layers composed of self-attention 
and feed-forward networks. The self-attention mechanism allows the 
model to aggregate information across the entire image, producing a 
global representation via the [CLS] token as well as spatially localized 
patch-level features. Fig.  1 illustrates the architecture of the DINOv2 
model and how its embeddings can be used to perform different tasks.

Throughout this work, the DINOv2 backbone is kept frozen, and 
the extracted features are used as input to lightweight task-specific 
heads for downstream food-related tasks:  global features are to be 
used in image-level tasks (e.g., classification), since they provide a 
description of the whole image, while local features are to be used 
in patch-level tasks (e.g., segmentation), since they provide rich spa-
tial information. This capability makes DINOv2 a versatile solution 
for scenarios requiring high-level semantic understanding and spatial 
delineation. While the strong out-of-the-box performance of DINOv2 
has already been demonstrated on a variety of vision benchmarks, its 
systematic evaluation across multiple food-related tasks and learning 
regimes remains largely unexplored.

In this paper, rather than focusing on the design of new task-specific 
architectures, we investigate the extent to which a single large self-
supervised visual representation can generalize across heterogeneous 
2 
food recognition tasks. To this end, we extensively evaluate DINOv2 
on a range of food recognition tasks with different complexities that re-
flect real-world food-related applications, highlighting its effectiveness 
compared to traditional task-specific models. Specifically, the tasks we 
considered are the following.

Food Segmentation. The food/no-food segmentation task (i.e., the 
task of classifying each image pixel as belonging either to food or to 
non-food regions, thus enabling automatic isolation of food items from 
the background) and the semantic segmentation task (i.e., the fine-
grained task where each pixel is assigned to a specific food category 
like pasta, salad, meat, etc., thus enabling detailed food recognition and 
nutritional analysis) require precise pixel labeling, often necessary for 
localization and recognition of food, and for food quantity estimation. 
These tasks are tested using datasets Food-50 (Chen et al., 2012) and
FoodSeg103 (Wu et al., 2021).

Food Classification. Food classification is a fundamental task in 
different applications and consists in automatically recognizing and 
assigning a food image to a predefined category (e.g., pizza, sushi, 
salad). This task is tested both on single datasets and in a cross-dataset 
scenario using Food-50 (Chen et al., 2012) and ISIA-Food500 (Min 
et al., 2020) datasets.

Food Aesthetic assessment. The aesthetic evaluation of food, i.e., au-
tomatically evaluating the visual appeal of food images using com-
putational models, is critical in domains like social media and food 
marketing. This task is tested using the Gourmet Photography 
Dataset (Sheng et al., 2018).

Continual Learning. Real-world systems must often adapt to new 
categories without retraining on an entire dataset. This task is tested 
using the ISIA Food-500 (Min et al., 2020) dataset.

Food recognition under distortions. Practical applications involve im-
ages with distortions such as noise, blur, or illumination changes. 
DINOv2’s robustness is analyzed under challenging conditions using the
ISIA Food-500 (Min et al., 2020) dataset.

Fig.  2 shows how the features extracted from the DINOv2 backbone 
are used in the different food recognition tasks, as well as the achieved 
performance compared to methods in the state-of-the-art. It is impor-
tant to underline that for DINOv2 the features are extracted from the 
same pre-trained model (i.e. DINOv2-B), while for the previous state 
of the art performance, a different method is considered for each task. 
We chose DINOv2-B since it is the best performing on average on the 
tasks considered, although other variants can obtain better results on 
individual tasks.

In summary, the contributions of this paper are as follows:
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Fig. 2. (a) Depiction of how the features extracted from the DINOv2 backbone can be used in a unified approach for different food recognition tasks. H and W 
denote the width and height of the image, respectively. (b) Performance comparison between the DINOv2-B features and previous state-of-the-art methods for 
the various food-related tasks. Please note that for DINOv2 the features are extracted from the same pre-trained model (i.e. DINOv2-B), while for the previous 
state of the art performance, the best existing method is considered for each task. The average performance of state of the art methods is 67.24%, while that of 
DINOv2-B features is 72.66% (i.e., 5.42% higher).
• A systematic empirical analysis of the unified usage of pre-trained 
DINOv2 self-supervised features to address different food recogni-
tion tasks, demonstrating how pre-trained self-supervised features 
can serve as a common backbone across multiple tasks without 
requiring task-specific model architectures.

• Extensive experiments across several benchmark datasets showing 
that DINOv2 features achieve competitive or superior perfor-
mance compared to traditional supervised models, particularly in 
cross-dataset scenarios.

• A comprehensive assessment of the DINOv2 features in a contin-
ual learning scenario showing significative performance improve-
ment, especially in the few-shot regime.

• A thorough analysis of the DINOv2 features against different 
image distortions showing the robustness of the features in main-
taining higher accuracy with respect to the other approaches, 
both in the case of single and multiple distortions.

The paper is organized as follows. Section 2 provides an overview 
of the state of the art for the considered food recognition tasks. The 
experimental setup is described in Section 3, while the experimental 
results are reported in Section 4. Finally,  Section 5 discusses the 
practical implications for real-world food recognition and Section 6 
draws the final conclusions.

2. Related works

Existing work on food recognition has achieved strong performance 
by designing task-specific models trained in a supervised manner for 
individual problems such as classification, segmentation, or aesthetic 
assessment. However, these approaches typically require large anno-
tated datasets, do not generalize well across datasets, and must be 
retrained or fine-tuned when tasks or domains change. Moreover, the 
literature largely treats these tasks in isolation, with limited exploration 
of whether a single representation can support multiple food-related 
tasks effectively. In this work, we investigate whether self-supervised 
DINOv2 features can address these limitations by providing a unified, 
general-purpose representation applicable across tasks, datasets, and 
learning scenarios. In the following subsections we give a survey of the 
most relevant works in the literature about the food recognition tasks 
considered in this paper.
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2.1. Food segmentation

Food segmentation, a key task in automatic food recognition, aims 
to delineate food regions in images, providing essential information for 
subsequent recognition and portion estimation. Food image segmenta-
tion has garnered significant attention in recent years due to its appli-
cations in dietary assessment, nutritional monitoring, and food recog-
nition systems. Early work by Dehais et al. (2016) focused on segment-
ing and recognizing multiple food items in meal images to facilitate 
carbohydrate counting, highlighting the challenges in distinguishing 
overlapping and mixed food items. Aslan et al. (2020) conducted a com-
prehensive benchmark of various deep learning-based food segmenta-
tion methods using their proposed Food50Seg dataset. Both food/no-
food segmentation and semantic segmentation approaches were eval-
uated. Evaluation was conducted from many different perspectives 
highlighting pros and cons of the methods.

To address the need for comprehensive datasets, Ege et al. (2019) 
proposed a new large-scale food image segmentation dataset aimed 
at improving food calorie estimation, emphasizing the importance of 
detailed segmentation in nutritional assessments. Also Wu et al. (2021) 
introduced a large-scale benchmark for food image segmentation, pro-
viding a foundation for training and evaluating segmentation mod-
els. Okamoto and Yanai (2021) release a dataset of 10,000 images 
annotated with complete segmentation masks and bounding boxes for 
training and testing state-of-the-art semantic segmentation models.

Recent advancements have explored the integration of transformer-
based architectures with convolutional neural networks. Sinha et al. 
(2023) investigated transferring knowledge for food image segmenta-
tion using transformers and convolutions, achieving notable improve-
ments in segmentation performance. Similarly, Lan et al. (2023) pro-
posed FoodSAM, a framework that combines semantic masks with the 
Segment Anything Model by Kirillov et al. (2023) to enhance segmen-
tation quality, demonstrating the potential of promptable segmentation 
in the food domain.

To tackle the problem of obtaining pixel-level annotations, Vla-
chopoulou et al. (2023) presented a weakly supervised methodology 
for food image classification and segmentation. Their approach utilizes 
attention-based multiple instance learning to generate semantic heat 
maps, reducing the reliance on detailed annotations. Due to the costly 
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problem in training a semantic segmentation model because it requires 
a large number of images with pixel-level annotations (Honbu & Yanai, 
2022) propose an unseen class segmentation method with high accu-
racy by using both zero-shot and few-shot segmentation methods for 
any unseen classes.

In the realm of real-time applications, Nguyen et al. (2024) devel-
oped FoodMask, a system capable of real-time food instance counting, 
segmentation, and recognition, highlighting the feasibility of deploying 
segmentation models in practical settings.

2.2. Food recognition

Food recognition is a fundamental aspect of visual analysis, es-
sential for obtaining accurate food item labels in dietary assessments. 
Traditional methods often struggled with the inherent variability in 
food images, leading to low classification accuracy. In contrast, mod-
ern approaches utilize deep learning techniques, enabling end-to-end 
learning where neural networks automatically extract relevant features 
and perform classification tasks on food images.

One of the first work in food recognition that utilizes CNNs is (Ka-
gaya et al., 2014). Through parameter optimization, the CNN demon-
strated significantly higher accuracy in both food detection and recog-
nition tasks compared to traditional support vector machine (SVM) 
methods utilizing handcrafted features. Notably, analysis of the con-
volutional kernels revealed a predominance of color features in the 
extraction process, underscoring the importance of color in food image 
recognition. Mezgec and Koroušić Seljak (2017) developed NutriNet, 
a deep convolutional neural network architecture tailored for food 
and drink image detection and recognition. The network is trained 
on a dataset of 225,953 images spanning 520 distinct food and drink 
categories. Bianco et al. (2023) trained and fine-tuned different vision 
transformer architectures on Food2K, a large-scale dataset of food 
images with 2000 categories, and compared the performance of vi-
sion transformers with convolutional neural networks on Food2K and 
Food101.

In Ciocca et al. (2017) the problem of food recognition in a can-
teen scenario is addressed. The food is put on trays and users select 
their meal within a set of daily dishes. The food regions are detected 
using traditional segmentation algorithms, while food recognition is 
performed locally the detected regions using a set of hand-crafted and 
CNN-based features coupled either with a k-NN or SVM classifier.

Food images pose peculiar challenges with respect to other im-
age domain since they do not exhibit distinctive spatial arrangement 
and common semantic patterns. To address this problem, Jiang et al. 
(2019) designed a recognition approach that integrates high-level se-
mantic features, mid-level attribute features, and deep visual features 
into a unified representation, capturing the semantics of food im-
ages across different granularities. The approach utilizes ingredient-
supervised CNNs to extract mid-level attributes based on ingredient 
information, while class-supervised CNNs derive high-level semantic 
and deep visual features.

Enhancing food recognition using ingredients and other ancillary 
information about food has been widely studied. Marın et al. (2021) 
created Recipe1M+, a large-scale dataset containing over one million 
cooking recipes and 13 million food images, making it one of the 
largest publicly available collection of its kind. Using this dataset, a 
neural network was trained to create a joint embedding of recipes and 
images, achieving strong performance in image-recipe retrieval tasks. 
Adding a high-level classification objective further improved retrieval 
accuracy, rivaling human performance and enabling semantic vector 
arithmetic. Liu et al. (2020) proposed an fusion approach to generates 
the feature embeddings jointly aware of the ingredients and food. To 
this end, an Attention Fusion Network (AFN) and a Food-Ingredient 
Joint Learning module were developed. AFN identifies key food re-
gions, while the joint learning module addresses ingredient imbalance 
4 
using balanced focal loss. The method takes full advantage of multi-
label ingredients information and improves the learning ability of the 
model. Shukor et al. (2022) proposed T-Food framework introducing 
a novel regularization scheme that exploits modality interaction while 
using unimodal encoders for efficient retrieval. It includes a dedicated 
recipe encoder to capture intra-dependencies and new triplet loss vari-
ants with dynamic margins for task difficulty adaptation. Leveraging 
Vision and Language Pretraining (VLP) models like CLIP for image 
encoding, T-Food significantly outperforms existing methods on the 
Recipe1M dataset.

Due to the very large food categories that exist, having a large 
dataset of food images is mandatory. Examples of this are the follow-
ing. Ciocca et al. (2018a) introduced Food-475, the largest publicly 
available food dataset at the time, comprising 475 food classes and 
247,636 images from four merged databases. Using a ResNet-50-based 
CNN, features were extracted and evaluated for food classification 
and retrieval. Results showed that features from Food-475 outperform 
others, highlighting the need for larger, more representative datasets 
to improve food recognition performance. The ISIA Food-500 dataset 
by Min et al. (2020) contains 500 categories and 399,726 images, 
surpassing existing benchmarks in size and diversity. A stacked global–
local attention network was proposed, combining global-level features 
(texture, shape) with local-level features (ingredient regions) using 
hybrid attention and spatial transformers. Experiments on ISIA Food-
500 demonstrated the model’s effectiveness, establishing it as a strong 
baseline for food recognition. Min et al. (2023) introduced Food2K, 
the largest food recognition dataset with 2000 categories and over 1 
million images, setting a new benchmark for food visual representation. 
A deep progressive region enhancement network is proposed, featuring 
progressive local feature learning and region feature enhancement 
through self-attention. Extensive experiments show the effectiveness of 
this method, with Food2K demonstrating strong generalization across 
various food-related tasks and offering potential for future applications 
in food nutrition and other complex tasks.

Recent work continues to propose new benchmarks and methods, 
including Res-VMamba (Chen et al., 2024), which sets new state-
of-the-art performance on the CNFOOD-241 benchmark using hybrid 
residual models, and SalientFusion (Song & Liu, 2025), which tackles 
context-aware compositional zero-shot food recognition. Additionally, 
recent supervised contrastive learning frameworks that leverage textual 
information show competitive results on Food-101 and ISIA Food-
500, highlighting multimodal and curriculum strategies (Jiang et al., 
2025). A comprehensive review of deep learning methods in food 
image recognition further contextualizes these developments (Liu et al., 
2025).

2.3. Food aesthetic

Automatic image aesthetic assessment is a computer vision task that 
aims to evaluate the visual appeal of images by analyzing their adher-
ence to aesthetic principles such as balance, harmony, contrast, or other 
photographic cues (Celona et al., 2021). Food images present unique 
challenges since the subjectivity inherent in aesthetic judgments, as 
perceptions of visual appeal vary widely among individuals due to 
personal preferences and cultural backgrounds. Moreover, domain-
specific criteria unique to food imagery, like presentation style and 
ingredient appeal, differ from general image aesthetics and require 
specialized consideration (Castagna et al., 2021). Additionally, there 
is a notable lack of large-scale, labeled datasets specifically tailored 
for food image aesthetics, which hampers the development of robust 
assessment models.

Sheng et al. (2021, 2018) release the first large-scale dataset
for assessing the aesthetics of food photographs, the Gourmet Pho-
tography Dataset (GPD). It includes 24,000 food images with human-
annotated labels (aesthetically positive or negative). The authors
evaluated various machine learning algorithms, demonstrating that 
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Fig. 3. Sample images in the Food-50 dataset: original images (top row); 
binary food/no-food groundtruth masks (center row); semantic segmentation 
groundtruth masks (bottom row).

Fig. 4. Sample images in the FoodSeg103 dataset: original images (top row); 
semantic segmentation groundtruth masks (bottom row).

deep convolutional neural networks trained on GPD can perform on 
par with human experts.

Gambetti and Han (2022) propose a food aesthetics assessment 
model using computer vision and deep learning to estimate aesthetic 
scores for food images. The model utilizes a multi-stage approach, 
leveraging pre-trained parameters from a general aesthetics dataset 
and fine-tuning with a food aesthetics dataset. It is applied to social 
media food images, with validation conducted through human ratings 
via Prolific and an analysis of photographic attributes like color and 
composition.

Also placement of the food on plates influence the perception of 
food. In this regards, Zhang et al. (2022) performed several exper-
iments, and found that food placed on more beautiful plates was 
perceived as tastier and healthier, while food on less beautiful plates 
triggered negative emotions. Food placed in the center of the plate was 
perceived as tastier than food at the edge.

3. Experimental setup

3.1. Datasets and evaluation metrics

In this section we describe the four datasets considered for our 
experiments.

Food-50 (Chen et al., 2012) contains 50 categories of worldwide 
food, with each category containing 100 photographs from different 
sources (e.g., manually taken or from internet web albums) for a 
total of 5000 images. The dataset is divided with stratified sampling 
into training and test according to a 70–30 split. Although differently 
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Fig. 5. Sample images in the ISIA Food-500 dataset. Left to right: samples 
of the class anago, avocado toast, parmigiana, and wakame.

Fig. 6. Sample images in the Gourmet Photography Dataset (GPD)
dataset: aesthetically negative images (top row); aesthetically positive images 
(bottom row).

stated in the paper, this is the split used. In addition to the food 
photographs, binary masks for food/no-food segmentation, and masks 
for food semantic segmentation are also available. Some sample images 
are reported in Fig.  3.

FoodSeg103 (Wu et al., 2021) is a large scale dataset for food 
segmentation. It contains a total of 9490 images annotated with 103 
ingredient classes (and one additional background class) with pixel-
wise masks. On average each image has 6 different ingredient labels. 
The dataset is divided with stratified sampling into training and test 
according to a 70–30 split. Some sample images are reported in Fig.  4.

ISIA Food-500 (Min et al., 2020) is a large scale dataset for 
food recognition, containing 399,736 images belonging to 500 food 
categories. The dataset is divided with stratified sampling into training, 
validation and test according to a 50-10-30 split. Some sample images 
are reported in Fig.  5.

Gourmet Photography Dataset (GPD) (Sheng et al., 2018) 
is a dataset for the aesthetic visual assessment of food images. It 
contains a total of 24,000 images retrieved from various social media 
websites with diverse food classes and geographical information, and 
complemented with images retrieved from many food categorization 
data sets. Image labeling into aesthetically positive or aesthetically 
negative classes was performed using Amazon’s Mechanical Turk and 
refined with additional expert photographers with adequate aesthetic 
perception. The dataset is divided with stratified sampling into training 
and test according to a 80–20 split. Some sample images are reported 
in Fig.  6.

Each task is evaluated using standard metrics commonly used by the 
corresponding literature. Top-1 accuracy is used for food classification, 
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Table 1
Summary of the different recognition tasks considered in this paper.
 Task Visual task type Dataset(s)  
 Food classification Image level Food-50, ISIA Food-500 
 Food/no-food segmentation Pixel level Food-50  
 Food semantic segmentation Pixel level Food-50, FoodSeg103  
 Cross-dataset food classification Image level ISIA Food-500  
 Food aesthetic assessment Image level GPD  
 Food classification (continual learning) Image level Food-50, ISIA Food-500 
 Food classification (robustness against image distortions) Image level Food-50, ISIA Food-500 
cross-dataset recognition, and food aesthetics assessment measuring 
the percentage of correctly predicted image labels. For segmentation 
tasks, Top-1 accuracy is used to measure the percentage of correctly 
predicted pixel labels. In addition, for the food semantic segmentation 
task, Mean Intersection over Union (mIoU) is used to assess region-level 
overlap between predictions and ground truth. For continual learning, 
performance is reported as Top-1 accuracy over all classes observed up 
to each incremental step.

3.2. Self-supervised features

The aim of this paper is to assess the performance of self-supervised 
features on a set of different food recognition tasks. The features are 
extracted from DINOv2 (Oquab et al., 2023), which is a foundational 
model trained in a self-supervised learning setting to learn general-
purpose visual features both at the image and patch level. From an 
architectural point of view DINOv2 is a Vision Transformer ViT/14 
model (Dosovitskiy, 2020) with 1B parameters then distilled (Gou et al., 
2021) into a series of smaller models:

• DINOv2 ViT-S producing 384-dimensional features;
• DINOv2 ViT-B producing 768-dimensional features;
• DINOv2 ViT-L producing 1024-dimensional features;
• DINOv2 ViT-g producing 1536-dimensional features.

Concerning the patch level features, DINOv2 considers image patches 
with size 14 × 14, and thus for a 224 × 224 input image it produces a 
16 × 16 × 𝑑 feature map with 𝑑 depending on the DINOv2 model size 
(i.e., S, B, L, or g).

In all our experiments the input images are normalized using the 
default ImageNet mean and standard deviation, without any data aug-
mentation. Both the global and local patch-level features are extracted 
from the pre-trained DINOv2 model without any fine-tuning of the 
backbone and are L2-normalized to have a unitary norm before being 
fed to the linear classification or segmentation heads; no additional 
feature standardization is applied. For all the tasks considered, a lin-
ear head is independently trained from scratch; being it constituted 
by a single layer, no activation functions are used in order to di-
rectly assess the linear separability and generalization capability of the 
self-supervised features, which is the standard evaluation practice in 
self-supervised representation learning. After all the linear heads have 
been trained, they can be integrated into a single unified model. A 
schematic representation of the training setup of the proposed unified 
evaluation framework is reported in Fig.  7.

For each food classification and food aesthetic assessment task, a 
single linear layer is trained to map the global 𝑑-dimensional features 
into the number of classes 𝑐 of each dataset considered, having thus a 
size of 𝑑 × 𝑐 + 𝑐 where the biases are included.

For food segmentation tasks, a single convolutional layer is trained 
to map each of the local patch-level 𝑑-dimensional features into the 
number of classes 𝑐 of each dataset considered, thus providing a class 
prediction at each spatial location. The convolutional layer is designed 
with 1 × 1 filters to preserve the spatial shape of the extracted features, 
and therefore it has a size of 𝑑 × 1 × 1 × 𝑐 + 𝑐, biases included. We can 
observe how the count of trainable parameters is identical to that of 
the food classification tasks.
6 
Fig. 7. Schematic representation of the proposed unified evaluation frame-
work for food recognition tasks.

Table 2
Top-1 accuracy for the food classification task on the
Food-50 dataset.
 Method Top-1 accuracy (%) 
 Chen et al. (2012) 68.3  
 ResNet-50 (Ciocca et al., 2018a) 93.8  
 DINOv2 ViT-S/14 (this paper) 97.5  
 DINOv2 ViT-B/14 (this paper) 98.2  
 DINOv2 ViT-L/14 (this paper) 98.1  
 DINOv2 ViT-g/14 (this paper) 97.7  

All experiments are run in PyTorch with a single Nvidia GeForce 
GTX 1080 gpu, using a cross entropy loss, Adam optimizer with a 
learning rate equal to 3 ⋅ 10−4, a weight decay equal to 5 ⋅ 10−4, a batch 
size of 16, for a total of 200 epochs.

4. Experimental results

In this section we describe the different food recognition tasks 
considered in order to assess the performance of DINOv2 features and 
compare them with the respective state of the art. In Table  1 we provide 
a summary of the different recognition tasks considered, providing a 
short description of each task, the type of visual task (i.e., if it is an 
image level or a pixel level task), and the dataset(s) used.

4.1. Food classification on food-50

The first experiment consists in the food classification task on the
Food-50 dataset. For the DINOv2 features, a linear head is trained 
to classify the 50 classes. The results in terms of top-1 accuracy are 
reported in Table  2. From the results it is possible to see that DINOv2 
features with a linear head are able to outperform the state of the art, 
i.e. a ResNet-50 fully trained on the same dataset, by a factor in the 
range [3.7%, 4.4%] depending on the size of the model considered.
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Table 3
Top-1 accuracy for the food classification task on the ISIA 
Food-500 dataset.
 Method Top-1 accuracy (%) 
 VGG-16 (Min et al., 2020) 55.2  
 GoogLeNet (Min et al., 2020) 56.0  
 ResNet-152 (Min et al., 2020) 57.0  
 WRN-50 (Min et al., 2020) 60.1  
 DenseNet-161(Min et al., 2020) 60.1  
 NAS-NET (Min et al., 2020) 60.7  
 SE-ResNeXt101_32 × 4d (Min et al., 2020) 62.0  
 NTS-NET (Min et al., 2020) 63.7  
 WS-DAN (Min et al., 2020) 60.7  
 DCL (Min et al., 2020) 64.1  
 SENet-154 (Min et al., 2020) 63.8  
 SGLANet (Min et al., 2020) 64.7  
 DINOv2 ViT-S/14 (this paper) 54.5  
 DINOv2 ViT-B/14 (this paper) 60.5  
 DINOv2 ViT-L/14 (this paper) 63.0  
 DINOv2 ViT-g/14 (this paper) 62.6  

4.2. Food classification on ISIA food-500

This experiment consists in the food classification task on the ISIA 
Food-500 dataset. For the DINOv2 features, a linear head is trained 
to classify the 500 classes. The results in terms of top-1 accuracy are 
reported in Table  3. From the results it is possible to see that DINOv2 
features with a linear head are not able to outperform the state of 
the art, which is constituted by a neural network fully trained on the 
dataset. The best methods in the literature achieves an accuracy of 
64.7% while the best DINOv2 features (i.e. DINOv2 ViT-L/14) achieve 
63%. This behavior is expected, as ISIA Food-500 represents a 
closed-world, in-dataset classification scenario with a large number of 
fine-grained classes and sufficient labeled data. In such settings, end-to-
end supervised training allows models to specialize on dataset-specific 
visual cues, which a frozen, general-purpose representation cannot fully 
exploit. DINOv2 features, by contrast, are optimized for broad semantic 
generalization rather than fine-grained class separation within a single 
dataset. As shown in subsequent experiments, this trade-off favors DI-
NOv2 in scenarios involving domain shift or limited supervision, while 
task-specific models retain an advantage when high-quality labeled 
data is available.

4.3. Food/no-food segmentation on food-50

This experiment consists into the food/no-food segmentation on the
Food-50 dataset. For the DINOv2 features a linear head is trained to 
segment the two classes (i.e., food and no-food). The DINOv2 features 
are upsampled with bilinear interpolation to the size of the groundtruth 
and followed by thresholding before the computation of the results. 
Since DINOv2 produces a feature map of size 16 × 16 for a 224 × 224 
input image, we also consider the results giving a 448 × 448 input 
image, which results into a 32 × 32 feature map. The results in terms of 
top-1 accuracy are reported in Table  4. From the results it is possible to 
notice that DINOv2 features computed on 224 × 224 inputs are not able 
to outperform the state of the art, which outputs a higher resolution 
segmentation. Giving instead as input a 448 × 448 image, DINOv2 
features outperform the state of the art by up to 0.5%.

4.4. Food semantic segmentation on food-50

This experiment consists in the food semantic segmentation on the
Food-50 dataset. For the DINOv2 features a linear head is trained to 
segment the different food classes. The DINOv2 features are upsampled 
with nearest neighbor interpolation to the size of the groundtruth 
before the computation of the results. As for the previous experiment, 
we also consider the results when a 448 × 448 image is given as input 
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Table 4
Top-1 accuracy for the food (/no-food) segmentation task on the
Food-50 dataset.
 Method Top-1 accuracy (%) 
 GUN (Ciocca et al., 2018a) 95.3  
 SSNet (Ciocca et al., 2018a) 94.9  
 SegNet (Ciocca et al., 2018a) 94.7  
 ENet (Ciocca et al., 2018a) 94.6  
 ERFNet (Ciocca et al., 2018a) 94.6  
 Edanet (Ciocca et al., 2018a) 94.6  
 DINOv2 ViT-S/14 (this paper) 94.3  
 DINOv2 ViT-B/14 (this paper) 94.3  
 DINOv2 ViT-L/14 (this paper) 94.1  
 DINOv2 ViT-g/14 (this paper) 94.4  
 DINOv2 ViT-S/14 (@448) (this paper) 95.7  
 DINOv2 ViT-B/14 (@448) (this paper) 95.8  

Table 5
Top-1 accuracy for the food semantic segmentation task on the
Food-50 dataset.
 Method Top-1 accuracy (%) 
 GUN (Ciocca et al., 2018a) 89.0  
 SSNet (Ciocca et al., 2018a) 84.6  
 SegNet (Ciocca et al., 2018a) 66.6  
 ENet (Ciocca et al., 2018a) 69.8  
 ERFNet (Ciocca et al., 2018a) 71.2  
 Edanet (Ciocca et al., 2018a) 83.5  
 DINOv2 ViT-S/14 (this paper) 89.0  
 DINOv2 ViT-B/14 (this paper) 88.9  
 DINOv2 ViT-L/14 (this paper) 89.4  
 DINOv2 ViT-g/14 (this paper) 88.8  
 DINOv2 ViT-S/14 (@448) (this paper) 91.9  
 DINOv2 ViT-B/14 (@448) (this paper) 90.8  

to DINOv2, which results into a 32 × 32 feature map. The results in 
terms of top-1 accuracy are reported in Table  5. From the results it is 
possible to notice that DINOv2 features computed on 224 × 224 inputs 
are able to obtain a result close to the state of the art, from 0.2% less 
to 0.4% more. Giving instead as input a 448 × 448 image, DINOv2 
features outperform the state of the art by up to 1.9%.

4.5. Food semantic segmentation on FoodSeg103

This experiment consists in the food semantic segmentation on the
FoodSeg103 dataset. Therefore the task is the same as the previous 
experiment, but with a dataset containing more than double the classes. 
The setup is identical to the one in the previous experiment with the 
addition of a variant of DINOv2 coupled with FeatUp (Fu et al., 2024), 
a model-agnostic framework for upsampling features, which is used 
to upscale DINOv2 features to 256 × 256 at the cost of about 200k 
additional model parameters.

The results in terms of top-1 accuracy and intersection over union 
(IoU) are reported in Table  6. From the results, it is possible to notice 
that DINOv2 features computed on 224 × 224 inputs obtain a result 
at best 18% worse than the state of the art. This is due to the high 
resolution of the groundtruth compared to the low-resolution features. 
Upsampling the DINOv2 features with FeatUp reduces this gap to about 
9%; giving instead as input a 448 × 448 image, DINOv2 features reduce 
this gap to just 3%. These results indicate that while DINOv2 features 
provide strong semantic representations, their relatively low spatial 
resolution limits the segmentation performance in scenarios where the 
ground truth contains many small objects and fine-grained details (also 
see Fig.  4). In FoodSeg103, this leads to reduced accuracy when 
using standard 224 × 224 inputs, since small ingredient regions cannot 
be precisely localized from coarse patch-level features. Increasing the 
input resolution or applying feature upsampling substantially alleviates 
this issue, confirming that the observed limitation is mainly due to 
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Table 6
Top-1 accuracy for the food semantic segmentation task on the FoodSeg103
dataset.
 Method Top-1 acc. (%) IoU  
 ReLeM-ViT-16/B (MLA) (Wu et al., 2021) 57.4 0.451 
 DINOv2 ViT-S/14 (this paper) 33.9 0.250 
 DINOv2 ViT-B/14 (this paper) 39.2 0.277 
 DINOv2 ViT-S/14 + FeatUp (this paper) 48.9 0.360 
 DINOv2 ViT-S/14 (@448) (this paper) 51.1 0.396 
 DINOv2 ViT-B/14 (@448) (this paper) 54.3 0.431 

spatial resolution constraints. Upsampling necessarily comes at an ad-
ditional computational cost. Let us consider DINOv2 at 224 × 224 our 
baseline computational cost; the computational cost of self-attention, 
the most expensive operation in ViTs, scales as (𝑇 2 ⋅ 𝑑) with 𝑇  being 
the number of tokens which is 256 in our case. FeatUp operates after 
feature extraction taking the 16× 16× 𝑑 feature map and upsampling it 
to 256 × 256 × 𝑑 using lightweight convolutional layers. DINOv2 still 
processes 256 tokens and therefore the expensive self-attention cost 
is unchanged, with the extra cost coming only from convolutions on 
feature maps. The FeatUp computational overhead is linear in spatial 
size and negligible compared to self-attention (less than 10% overhead 
relative to backbone). Using native DINOv2 upsampling, i.e. giving 
448 × 448 increases the number of tokens to 𝑇 = 1024, resulting in 
a self-attention which is 16 times more expensive.

4.6. Cross-dataset food classification on ISIA food-500

This experiment considers the features extracted from several neural 
networks trained on different food datasets, and trains on top of them 
a linear head to classify the ISIA Food-500 dataset, i.e. in a cross-
dataset scenario. This experiment is more fair than the previous one in 
Section 4.2, since now we are comparing DINOv2 features with other 
neural features, without having neural models fully trained on the tar-
get dataset. The results in terms of top-1 accuracy are reported in Table 
7. It is possible to see that DINOv2 features with a linear head are able 
to outperform the other features by a large margin, i.e. up to 19.4%. 
This cross-dataset classification experiment represents a particularly 
relevant real-world scenario, where a recognition system must operate 
on data distributions that differ from those seen during training. Unlike 
end-to-end supervised models, which require retraining or fine-tuning 
on the target dataset, DINOv2 features demonstrate strong generaliza-
tion across food datasets without any adaptation of the backbone. The 
strong performance of DINOv2 in cross-dataset classification can be 
attributed to the nature of its self-supervised training, which promotes 
the learning of dataset-agnostic and semantically rich visual representa-
tions. Unlike supervised food recognition models, which tend to overfit 
to dataset-specific visual and contextual cues, DINOv2 features capture 
higher-level food appearance characteristics that generalize well across 
domains. This results in a substantial advantage when the target dataset 
differs from the training distribution, a scenario that closely reflects 
real-world deployment conditions where annotated data for new food 
domains may be scarce or unavailable. 

4.7. Food aesthetic assessment on GPD

This experiment consists in the food aesthetic assessment task on 
the GPD dataset. For this experiment we extract the DINOv2 features 
and on top of them we train a linear head to classify the GPD dataset. 
The results in terms of top-1 accuracy are reported in Table  8. From 
the results it is possible to see that DINOv2 features with a linear head 
are able to obtain a performance close to the state of the art, which 
consists in a neural network fully trained on the GPD dataset.

4.8. Continual learning for food classification

In this experiment we want to analyze the performance of DI-
NOv2 features for continual learning, i.e. when new  data is available
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Table 7
Top-1 accuracy for the cross-dataset food classification task on 
the ISIA Food-500 dataset. 
 Method Top-1 accuracy (%) 
 ResNet-18 on ImageNet 26.2  
 ResNet-18 on Food50 @25classes 17.9  
 ResNet-18 on Food50 @50classes 19.8  
 ResNet-18 on food101 (Bossard et al., 2014) 25.2  
 ResNet-18 on Foodx-251 (Kaur et al., 2019) 32.9  
 ResNet-50 on Food-475 (Ciocca et al., 2018a) 43.6  
 ResNet-50 on ImageNet 29.5  
 ResNet-152 on ImageNet 32.0  
 DINOv2 ViT-S/14 (this paper) 54.5  
 DINOv2 ViT-B/14 (this paper) 60.5  
 DINOv2 ViT-L/14 (this paper) 63.0  
 DINOv2 ViT-g/14 (this paper) 62.6  

Table 8
Top-1 accuracy for the food aesthetic assessment task on the GPD
dataset.
 Method Top-1 accuracy (%) 
 Color+SVM (Sheng et al., 2018) 76.5  
 GIST + SVM (Sheng et al., 2018) 77.8  
 VGG-object + SVM (Sheng et al., 2018) 88.4  
 VGG-scene + SVM (Sheng et al., 2018) 85.7  
 VGG-food + SVM (Sheng et al., 2018) 87.7  
 GPD-AlexNet (Sheng et al., 2018) 77.3  
 GPD-VGG (Sheng et al., 2018) 88.2  
 GPD-InceptionV2 (Sheng et al., 2018) 89.0  
 GPD-ResNet (Sheng et al., 2018) 90.8  
 DINOv2 ViT-S/14 (this paper) 88.6  
 DINOv2 ViT-B/14 (this paper) 88.9  
 DINOv2 ViT-L/14 (this paper) 88.1  
 DINOv2 ViT-g/14 (this paper) 87.5  

(Lange et al., 2021; Wang, Zhang, et al., 2024). Two scenarios are 
considered: in the first one, the model has to classify new classes; in 
the second one, the model has to classify an increasing number of 
classes for which an increasing number of training images is available. 
In all continual learning experiments, the classes are incrementally 
introduced following a class-incremental learning setting. At each step, 
a fixed number of new classes is added, while previously seen classes 
remain part of the test set. For Food-50, the model is initialized with 
25 classes and extended in steps of 5 classes until all 50 classes are 
included. For ISIA Food-500, the model starts with 50 classes and 
is incrementally extended in steps of 50 classes all 500 classes are 
included. For both datasets, the classes are introduced incrementally 
following the lexicographic order of their labels. The DINOv2 backbone 
is kept frozen throughout the process, and only the classifier (linear 
head or k-NN) is updated. To mitigate catastrophic forgetting, La-
tent Replay (LR) is employed for all feature-based methods (Pellegrini 
et al., 2020), while Experience Replay (ER) is used for the supervised 
baseline (Rolnick et al., 2019). Performance is measured using top-1 
classification accuracy on the test set containing all classes observed 
up to the current incremental step. Unless otherwise stated, reported 
results correspond to the accuracy after each incremental update.

4.8.1. Class-incremental continual learning
In the first part of this experiment we consider the problem of 

class-incremental continual learning on the Food-50 dataset. We start 
with 25 classes and we increment them in steps of 5 until all the 50 
dataset classes are covered. On top of the DINOv2 features we train 
both a linear head and a 𝑘−NN classifier. For comparison we also 
include the features extracted from a ResNet-18 trained on ImageNet, 
and the features of a ResNet-18 trained on the first 25 Food-50
classes considered in this experiment. Furthermore, we also include 
a ResNet-18 supervisely trained on each considered class cardinal-
ity using Experience Replay (ER) continual learning (Rolnick et al., 
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Fig. 8. Top-1 accuracy for the food classification task with class-incremental 
continual learning on the Food-50 dataset: linear head (top); 𝑘−NN (bottom). 
Accuracy is computed on the union of all classes introduced up to the current 
incremental step.

2019). All the other configurations are trained using Latent Replay (LR) 
continual learning (Pellegrini et al., 2020).

The classification results are reported in terms of top-1 accuracy 
in Table  9 and plotted in Fig.  8. From the results it is possible to 
notice that using a linear head or a 𝑘−NN classifier yield quite similar 
performance, especially for the larger DINOv2 models features. It is 
also possible to see how food-specific features learned on the same 
dataset with 25 classes, struggle to generalize to new classes, to the 
point that the test on 50 classes performs even worse than ImageNet
features. On the other side, we observe how the performance of DINOv2 
features remains almost constant with respect to the number of consid-
ered classes. Furthermore, we notice that DINOv2 features obtain an 
accuracy that is even higher than the ResNet-18 based on supervised 
training.

In the second part of this experiment, we consider the problem of 
class-incremental continual learning on the ISIA Food-500 dataset. 
We start with 50 classes and we increment them in steps of 50 until 
all the 500 classes are considered. This experiment is designed to be 
much harder than the previous one, since this corresponds to a tenfold 
increase in the number of classes. Since the classification results using 
a linear head and a 𝑘−NN classifier are similar, in this experiment only 
the latter is considered.
9 
Fig. 9. Top-1 accuracy for the food classification task with class-incremental 
continual learning on the ISIA Food-500 dataset. Accuracy is computed on 
the union of all classes introduced up to the current incremental step.

Performance in terms of top-1 accuracy is plotted in Fig.  9. We 
can observe that, as expected, all the features exhibit a reduction in 
accuracy as the number of classes increases. Regarding the individual 
features, we can see the formation of different groups of performance 
levels: in the top one there are the DINOv2 features, with DINOv2-S 
being the worst of this group. In the bottom one there are the food-
specific features trained on the smaller datasets and the ImageNet
features, with ResNet-152 ImageNet features and ResNet-18 Foodx-
251 features being the best ones of this group. The latter is a deep 
ResNet variant trained on the Foodx-251 dataset (Kaur et al., 2019). 
Halfway between the two groups there are the ResNet-50 food475
features: a ResNet variant trained on the Food475 dataset (Ciocca 
et al., 2018b). In general we observe how the best performance among 
competitor methods is obtained by very large features trained on a 
large food dataset (ResNet-50, with a feature size of 2048 trained on
Food-475).

4.8.2. Incremental and class-incremental continual learning
In this experiment we consider the incremental and class-

incremental continual learning task on the Food-50 dataset. The num-
ber of classes is varied as in the previous experiment (i.e., from 25 to 50 
in steps of 5), while the number of training images considered is varied 
among [1, 2, 3, 5, 7, 8, 10, 15, 20, 25, 30, 40, 50, 60, 70]. For each training set 
cardinality, ten independent random extractions are performed.  For 
all the features considered, a 𝑘−NN classifier is used. The performance 
in terms of top-1 accuracy, averaged over the ten independent runs, is 
plotted in Fig.  10 with one plot for each number of classes considered.

From the plots we can observe how the performance of the different 
features increases as the number of training images increases. We 
can also notice how the performance of the DINOv2 features and 
the features extracted from the ResNet-18 trained on ImageNet are 
less dependent from the number of images used for training with 
respect to the features extracted from the ResNet-18 trained on Food-
50. Furthermore, we can see that in the most difficult case (i.e., 50 
classes), DINOv2 features with just one training image per class perform 
equivalently (in the case of DINOvs-S) or even much better (in the case 
of the larger DINOv2 models) than the other features considered. In 



S. Bianco et al. Intelligent Systems with Applications 29 (2026) 200632 
Fig. 10. Top-1 accuracy for the food classification task with incremental and class-incremental continual learning on the Food-50 dataset. Accuracy is computed 
on the union of all classes introduced up to the current incremental step.
Table 9
Top-1 accuracy (%) for the food classification task with class-incremental continual learning on the Food-50 dataset: (a) linear head; (b) 𝑘−NN. Accuracy is 
computed on the union of all classes introduced up to the current incremental step..
 (a)
 Method Number of classes
 25 30 35 40 45 50  
 ResNet-18 on ImageNet 90.1 88.0 87.1 86.4 85.6 83.4 
 Resnet-18 on Food50 @25 cls. 95.6 91.6 89.3 87.9 85.0 82.5 
 ResNet-18 Superv.Learn. 95.6 95.4 94.8 94.4 94.2 93.3 
 DINOv2 ViT-S/14 (this paper) 97.5 97.2 97.4 97.7 97.5 97.5 
 DINOv2 ViT-B/14 (this paper) 98.0 97.9 98.1 98.0 98.1 98.2 
 DINOv2 ViT-L/14 (this paper) 98.3 98.0 98.3 98.3 98.4 98.1 
 DINOv2 ViT-g/14 (this paper) 98.3 97.8 98.1 97.8 97.9 97.7 

 

 (b)
 Method Number of classes
 25 30 35 40 45 50  
 ResNet-18 on ImageNet 88.4 86.4 85.9 85.8 84.4 82.3 
 Resnet-18 on Food50 @25 cls. 96.5 92.0 88.8 86.3 83.7 80.7 
 DINOv2 ViT-S/14 (this paper) 96.5 96.4 97.0 97.2 97.3 96.6 
 DINOv2 ViT-B/14 (this paper) 97.7 97.8 98.0 97.8 98.1 98.1 
 DINOv2 ViT-L/14 (this paper) 98.3 97.7 97.9 97.9 97.9 98.0 
 DINOv2 ViT-g/14 (this paper) 98.1 97.9 98.1 98.1 98.2 97.9 
Table 10
Top-1 accuracy for the food classification task on the distorted ISIA Food-500 dataset subdivided by distortion type (left), and percentual difference in top-1 
accuracy with respect to the case when no distortions are applied (right). The first column reports the performance when no image distortions are applied (No 
dist.); the next three columns report the results when blur (B), global illuminant change (I), or noise (N) are individually applied; the next three columns report 
the results when two different distortions are applied in sequence (B+I, B+N, I+N); finally, the last column report the results when all the three distortions 
considered are sequentially applied (B+I+N).
 (a)
 Method Top-1 accuracy
 No dist. B I N B+I B+N I+N B+I+N 
 ResNet18 on Foodx-251 29.0 18.8 21.6 6.2 12.2 2.7 4.3 1.8  
 ResNet50 on Food-475 39.1 28.2 35.1 10.4 24.0 3.8 7.8 3.2  
 ResNet152 on ImageNet 28.1 20.9 24.7 10.3 17.5 5.2 8.2 4.0  
 DINOv2 ViT-S/14 (this paper) 51.9 42.9 51.1 33.1 39.1 20.3 27.9 16.1  
 DINOv2 ViT-B/14 (this paper) 56.2 45.8 55.3 40.0 43.6 25.7 35.8 22.6  
 DINOv2 ViT-L/14 (this paper) 58.0 49.0 57.6 47.2 48.6 35.5 44.1 32.8  
 DINOv2 ViT-g/14 (this paper) 57.7 50.4 57.4 49.0 49.5 39.4 46.4 36.8  

 

 (b)
 Top-1 accuracy percentual difference wrt No dist.
 No dist. B I N B+I B+N I+N B+I+N 
 – −35.1 −25.4 −78.5 −58.0 −90.8 −85.0 −93.9  
 – −27.8 −10.2 −73.3 −38.6 −90.4 −80.0 −91.8  
 – −25.4 −12.2 −63.5 −37.5 −81.6 −70.9 −85.8  
 – −17.4 −1.6 −36.4 −24.8 −60.9 −46.2 −69.0  
 – −18.4 −1.5 −28.8 −22.3 −54.2 −36.2 −59.7  
 – −15.5 −0.8 −18.6 −16.2 −38.9 −24.0 −43.5  
 – −12.7 −0.6 −15.2 −14.3 −31.8 −19.7 −36.2  
10 
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Fig. 11. Sample images in the distorted ISIA Food-500 dataset. Top to 
bottom: sample images when no image distortions are applied (No dist.); 
sample images when a single distortion is applied: blur (B), global illuminant 
change (I), or noise (N); sample images when two different distortions are 
applied in sequence (B+I, B+N, I+N); sample images when all the three 
distortions considered are sequentially applied (B+I+N).

particular we notice that DINOv2 features with just one training image 
per class perform similarly to the other features with 50 training images 
per class.

4.9. Robustness against image distortions

In this experiment we want to analyze the robustness of DINOv2 
features against image distortions for food classification on the ISIA 
Food-500 dataset. In particular three different distortions are con-
sidered and applied to the test set: blur, global illuminant change, 
and noise. All the possible combinations of distortions are considered: 
no distortions, a single distortion, two distortions in sequence, and 
all the three distortions in sequence.  For the blur distortion a 2-D 
Gaussian smoothing kernel with standard deviation randomly sampled 
11 
with uniform distribution in the range [0.5, 2.5] is considered. For the 
global illuminant change the diagonal Von Kries model is used with an 
independent scaling factor for the red, blue and green color channels; 
the scaling factors for the red and blue channels are randomly sampled 
with uniform distribution in the range [0.5, 1.5], while the scaling 
factor for the green channel is fixed to 1 to preserve the luminance 
of the image. For the noise distortion we add to the image zero-mean, 
Gaussian white noise with a variance randomly sampled with uniform 
distribution in the range [0.01, 0.05]. Some samples of distorted images 
are reported in Fig.  11. 

For all the considered features, a 𝑘−NN model is trained. The results 
in terms of top-1 accuracy are reported in Table  10. In order to better 
evaluate the robustness of each feature considered, the percentage 
difference between the top-1 accuracy of the considered distortion type, 
and the top-1 accuracy in absence of distortions is also reported in 
the same table. From the reported results it is possible to see that 
DINOv2 features are the ones obtaining the best performance across all 
the considered distortion combinations, with DINOv2-L and DINOv2-
g obtaining the highest accuracy. Concerning the robustness of the 
features, we observe how the DINOv2 are the ones having the lowest 
difference with respect to the case where no distortions are applied. 
In particular, DINOv2-g features are the most robust against image 
distortions of all the considered features.

4.10. Performance summary and computational complexity

To summarize the performance on the different tasks considered we 
report a radar plot in Fig.  2. For the state-of-the-art performance the 
best method for each task is reported, while for the proposed unified 
framework only the features extracted from the same pre-trained model 
(i.e., DINOv2-B) are considered for all the tasks, although on individual 
tasks other DINOv2 backbones obtained better performance. DINOv2-B 
is chosen since it is on average it is the best performing on the tasks 
considered. For most of the tasks the performance is directly taken from 
the corresponding tables, while for continual learning we report the 
average accuracy over the number of classes considered on the ISIA 
Food-500 dataset, and for the robustness against image distortions 
we report the average accuracy over the single and multiple distortions 
considered.

In Fig.  12 instead we compare the average performance of DINOv2-
B and DINOv2-S with that of the state of the art against the total 
number of model parameters. We can observe how both DINOv2-S and 
DINOv2-B are able to outperform the state of the art by about 2.8% 
and 5.4% respectively. Moreover, this improvement is obtained at a 
fraction of the number of model parameters: DINOv2-S and DINOv2-B 
have respectively about 6.2% and 23.9% of the parameters of the best 
state-of-the-art methods when all the tasks are considered. Considering 
the single tasks, DINOv2-S has on average 50.7% of the parameters with 
respect to the best state-of-the-art method, while DINOv2-B has 198.4% 
of the parameters.

5. Practical implications for real-world food recognition

The findings of this study have direct implications for real-world 
food recognition systems, where robustness, scalability, and adaptabil-
ity are often more critical than peak in-dataset accuracy. In industrial 
quality control and manufacturing, where food items may vary across 
production lines or acquisition conditions, the strong cross-dataset 
generalization of DINOv2 features enables reliable deployment without 
retraining for every new setting. Similarly, in supermarket sorting 
and inventory systems, a unified feature representation can support 
multiple tasks such as classification and segmentation, while reducing 
the need for task-specific models. For consumer applications such as 
calorie and nutrient estimation, the ability of self-supervised features to 
generalize across diverse food appearances and cuisines is particularly 
valuable, as annotated data is often limited or unavailable. At the 
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Fig. 12. Top: Average performance across all the tasks considered obtained 
by the best state-of-the-art approaches (considering a different method for 
each task) and by the proposed unified framework with respect to the total 
number of parameters. For the proposed unified framework only the variants 
with a number of parameters lower than that of the state of the art are 
considered: DINOv2 ViT-S/14 and DINOv2 ViT-B/14. Bottom: Detailed number 
of parameters for each task.

same time, our results indicate that high-resolution supervision or 
task-specific fine-tuning remains important for applications requiring 
precise localization or fine-grained discrimination, highlighting a trade-
off between generalization and specialization that practitioners should 
consider. This principle of balancing general-purpose features with tar-
geted fine-tuning extends beyond food analysis. The empirical insights 
provided by this study may also inform representation-centric design 
choices in other AI-assisted decision-making pipelines, beyond food 
analysis (Ghorbani et al., 2025; Ye et al., 2025).

6. Conclusions

In this paper, we conducted a comprehensive empirical study on 
the use of DINOv2 self-supervised features for food recognition tasks 
showing that they  achieve state-of-the-art or near state-of-the-art per-
formance across multiple benchmarks. Specifically, across such datasets 
as Food-50, FoodSeg103, and ISIA Food-500, DINOv2 features 
deliver high accuracy even in challenging scenarios like semantic seg-
mentation and cross-dataset generalization. DINOv2 features enable 
the simultaneous handling of tasks such as segmentation, recognition, 
and aesthetic assessment, thus simplifying model deployment and re-
ducing the computational complexity for a food recognition pipeline 
eliminating the need for task-specific supervised models. Furthermore, 
DINOv2 features exhibit strong resilience to common image distor-
tions, including blur, noise, and illumination changes, ensuring reliable 
performance in practical applications where image quality may vary. 
12 
Finally, in a continual learning setting DINOv2 features proved their 
robustness achieving high recognition accuracy even with very few 
images per class. This highlights the potential of using them in real 
scenarios where data distributions and tasks evolve over time.

Although DINOv2 represents a major step forward, opportunities 
for further improvement include extending the evaluation to larger 
and more diverse food datasets, such as those covering additional 
cuisines, acquisition conditions, or long-tail class distributions, to fur-
ther assess generalization under more challenging real-world scenarios. 
Another promising direction is improving inference speed and effi-
ciency through model distillation, feature compression, or lightweight 
adaptation strategies, enabling deployment for real-time recognition on 
mobile and edge devices where computational resources are limited.
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